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1. Introduction

We are given a set X of possible trials (of elementary experiments). At each
trtal xe X we can observe a random variable y(x) which is distributed
according to p(-|x, 0) on R! Here # stands for the unknown vector of
parameters. We suppose that < @ = a given subset of R™.

The experimenter can choose a sequence of trials x,,..., x5 which are to
be performed in the experiment. We suppose that the random variables
y(xy),..., y(xy) observed in the experiment are independent.

The choice of trials x,,...,xy can be done either a priori, before
performing observations, or sequentially, according to the scheme

... design ... observation ... estimation of 0 ... design ..., etc.

In the linear regression model, which 1s considered in Section 2, we can
predict the variances of linear estimates without performing observations. As
a consequence, instead of a sequential design, we use an iterative procedure
for computing designs:

... design ... computation of variances ... design ..., etc.

In Section 2 there is a briel survey on iterative design procedures in
linear regression models. In Section 3 the nonlinear models are considered.

2. Iterative designs in the linear regression model
In this section we suppose that € = R™ and that the mean of y(x) is
Egy(x)=f'(x)8  (BeR", xeX), (1)

and the variance is
Var y(x) = 6 (x),
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where f| (x),....f,(x) and ¢%(x) > 0 are known continuous functions on the

set X, which is supposed to be compact, and 6 := (6,,...,0,,) is the vector of

unknown parameters. The functions f; (x),...,/,(x) are linearly independent.
The matrix

N
M= Z f(xk)f’(xk)a_z(xk) (]
k=1

is the information matrix corresponding to the design x,,..., xy. It i1s well
known that, if M is nonsingular, the vector of the BLUE-s of 0,,...,0,, 1s
given by

N N
§=Argmin Y o 2(x)[y(x)=f ()01 =M1 Y f(x)o™2(x)y(x),

0cR™ i= i=1

and its covariance matrix is
Var(0|M) = M~ 1. (3)

For a general M (singular or nonsingular), a function of the parameters
g’ 0 is estimable without bias if and only if the vector g can be expressed as g
= Mu for some ucR™ Then the variance of the BLUE of g’ is

Var(g' 0iM) =g'M g,

where M~ is a g-inverse of M.

Designs of experiments are compared, roughly speaking, according to
the value of Var(g’'0/M) for different vectors g. Hence the role of the
information matrix in comparing designs is of crucial importance. It is
emphasized still more if we consider robust estimates instead of the least
squares estimates, since the covariance matrix of the robust estimates of
,,...,0, tends to kM ' with N — oc, where k depends on the method of
estimation but not on the design (cf. [2]).

Let us denote by c(x) the cost per one observation in a tnial x, by

N(x) the number of repetitions of x in the design x,,...,xy, and by
¢ = Z N (x)c(x) the total cost of the experiment.
xeX

The design measure is defined by
E(x):= N{x)c(x)/c (xe X).
Evidently
M = cM (),

where M () is the information matrix of the design measure ¢,

ME):=Y [0 (x)E(x), (4)

xeX
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and where f(x):=f(x)o~"(x)c” Y?(x). Without restriction on generality we
shall write f(x) instead of f(x) in (4).

We identify the set of all possible design measures with the set = of all
probability measures on X which are supported by finite sets. The set

M:= (M(Q): Ee5) (5)
is convex and compact.
An optimality criterion is given by a function ¢: 9 — R!, which ex-
presses in a statistically meaningful way the aim of the experimenter. Using
such a criterion, the experimenter tries to find a {*¥eZ such that

¢* = Argmin ¢ [M()]. (6)

ceZ

The design measure &* is called ¢-optimal. A variety of different functions ¢

have been proposed as optimality criteria. They can be divided into two
main classes:

a) Global (regular) optimality criteria. They are defined by: ¢(M)
< o0 <=M is nonsingular. This means that ¢ (M) is finite iff all parameters
6,,...,0, are estimable without bias.

b) Partial (singular) optimality criteria. They are defined by: There is
an M e IR such that M is singular and that ¢ (M) < co. Partial criteria are
used when there are nuisance (useless) parameters, or functions of
parameters.

Examples of global optimality criteria.
1 1/p
d)p_H(M):[—tr(HM‘H')P] (MeM, det M + 0)
m

where pe(0, 1), and H is a nonsingular m xm matrix ([3]).
Special cases. D-optimality (p—»0, H=1), E-optimality (p— oo, H
= 1), A-optimality (p=1, H=1), L-optimality (p =1, H = arbitrary).

¢« (M) = max {g’'(M)" ' g: ge 6)
where ® is a set of vectors in R™ which span R™.
Special cases. G-optimality (& = {f(x): xeX}), E-optimality (®

= {g: geR™ |igll = 1}).
Examples of partial optimality criteria.

F. o (M) = [({/s)tc(H' M~ H)"]''?  if H = MV for some mxs matrix V,
H RS otherwise

where s < p, H an m xs matrix of rank s ([3]).
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d';m(M) =

max {g' M~ g: ge 6} if g=Mu, Vge®,
00 otherwise

where the set (® < R™ does not span R™.

(M) = _ Z Viguiy M- }iljl M }i,.j, Viteeody

(the variance of the estimate for a polynomial
p(0):= Z Vigomouiy 9:'1 9.‘,,
(10 iy

as proved in [4], Chapter 1V).

Global criterion functions are continuous on 9. Partial criterion func-
tions are continuous on M, := {MeIM: det M * 0} but are only lower
semicontinuous on YR. All given criterion functions are convex on I Some
of them are differentiable on 9N, , e, there is a gradient V¢ (M),

_ 0p(M)
~8{M),

For the other (nondifferentiable) criteria convexity implies the existence of
the directional derivative

¢[(1-P)M+BL]— (M)

(P (M)}; G,j=1,...,m). (7)

0p(M, L):=lim (LeIM, MeIN,).
“glo i
In the differentiable case we have, evidently,
0 (M, L) = tr Vo (M) (L— M). (8)

There are many iterative procedures to compute optimal designs under
different optimality criteria. We shall discuss some common features.

An iterative procedure to compute a ¢-optimal design {eq. (6)) is started
by an arbitrary design measure &, such that det M (&;) # 0. At the nth step of
the procedure a design measure &,,, is computed from &, as

én+l =(1_ﬁn)‘fn+ﬂnxm (9)

where f,€(0, 1), x,€E. The choice of f, and of %, has to ensure the
convergence of the sequence {¢[M(£,)1)1>, to min¢@{M). The procedure is
Me

stopped at some step n according to a stopping rule. Then £, is considered as
approximately ¢-optimal.

The requirement det M (£;) # 0 implies that det M(£,) # 0, as follows
from (9) and from the positive semidefiniteness of an information matrix (eg.
(4)). Hence the whole iterative procedure does not exceed the frame of the set
M, . Nevertheless, M, is dense in M, since for every MeM, MecM, we
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have lim(1—1/m)M+1/nM = M. Hence there are no principal difficulties

n—+ao
with iterative procedures for global criterion [unctions (which are continuous
on M). The same cannot be said about partial optimality criteria.
Fortunately, there is a simple and effective universal stopping rule for
convex optimality criteria ([3]). It is expressed by the implication

[¢IM(] <o and (VMeW)(p[M(S), M]= —d)]
= ¢[M(E] <mingp(M)+5, (10)

M e
which is a direct consequence of the convexity of ¢. Since {f(x) f'(x): xe X}
is the set of extreme points of YR, for differentiable optimality criterion
f[unctions ¢ we obtain from (10)

[¢[M(&)] < oo and min f'(x) Ve [M ()] [ (x) = tr M(E) Ve [M(£)] -]

xeX

= ¢[ME)<minp(M)+s. (11)

Melt
The most intricate task in proposing a new procedure for computing
optimal designs is to prove its convergence. We shall sketch a general scheme
of such a proof. To ensure this convergence it 1s required first that lim S,
n— o

= 0, and that Z B, = co. The choice of the correcting design x, in equation

n=90
(9), which is the “essence” of the procedure, can be formalized as follows:
with every M e IR, we associate a closed convex set K(M) < M and take x,
such that

M(E,iq)— M(E)

Bn
We suppose that the mapping R is closed in the sense that

M,eM, LeRM,), M,~M,L,~L = Le&(M),

= M{x,)—M () e KM ()] (12)

and bounded by a number C < oo,
Il <C  (LeR(M), Me), (13)
where ||L||* = tr LL’. The mapping

" M, )M
r: 1e<0, 0) - M(E)+(t=Y B) “5"; () (14)

1s a “trajectory” in I, corresponding to the iterative procedure. From
equation (13) it follows that

et —eieall _
£, — 23

C (ty, t,€<0, ), (15)
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and from (12) it follows that dt/dte R[M(&,)] if te(nil B, Zn: B:>. With n
0 0

tending to infinity this interval becomes shorter, and we find that
“approximately”

j—:e Rz (0] (16)

The “trajectories” in M, which satisfy (15), but also (16) for almost
every te (0, o), are of special interest. Intuitively they correspond to “trajec-
tories” of iterative procedures with “infinitely small §,—s".

If we can show that

a) the global criterion function ¢ can be extended to a finite convex
function on a set M < M, which is open in the span of M.,

b) the function re {0, w) = ¢[t(f)] 1s decreasing on “trajectories”
which satisfy (15) and (16) unless 7(¢) is the information matrix of a ¢-
optimal design,

¢) +oo is not a limit point of the sequence |¢[M(E)]) <0,
then the procedure is convergent, i.e.,

lim ¢ [M (¢,)] = min ¢ (M),
n— MeWl

Further details and proofs concerning the content of this section can be

found in [4].

3. Sequential designs in nonlinear models

In this section we shall suppose that the parameter set @ is an open bounded
set in R™, that the set X of possible trials is finite and that y(x) is distributed
according to an arbitrary probability distribution p(-|x, ) on R!. We shall
suppose further that for any Borel set A < R' and any xe X the function
0e ® — p(A|x, 6) is continuous.

A sequential design of an experiment is a successive choice of trials
Xy, X3,--., X;,... which is based on the results ol previous observations. This
means that at the ith step of the sequential procedure we have to decide
whether to stop further observations or to choose another trial x;,, in an
optimal way, and to observe y(x;,,).

Let us denote by x;, = (x,,..., x;) the sequence of the first i trials and by
Yy = (y(xy),..., ¥(x;)) the sequence of the observed random variables.

To be general, we shall suppose that the stopping time and the choice of
x;, at the ith step are random. The stopping time is defined by a sequence

Q.= {Q’i(x(i), J’(i))}iaio, .
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where @;(x), y.) is the probability of stopping the experiment at the ith step
if y; has been observed in the sequence of trials x;,. The choice of new trials
i1s given by a sequence

6= {0;("1xw), Yy }iZ 0

where &, (-|x;, V) is a probability distribution on X and J;(x|x,), y;) 1s the
probability of x;,, = x if y; was observed and the procedure has not been
stopped before the (i+1)st step.
The sequential design of the experiment is thus defined by the pair (¢, ).
An optimality criterion is given by a sequence of functions
{9(xs, Yi)}iZo such that —g(xg, y) expresses the quality of the experiment
if it is stopped at the ith step after observing y;, in the sequence of trials x,.

ExampLE 1. Let us suppose that there is a probability density f(y|x, 6)
= dP(ylx, 8)/dA with respect to the Lebesgue measure A which satisfies the
usual conditions of regularity. Let K — @ be a compact set and let us denote
by 6 = 6(x,, i) the M.L. estimate

09 : = Arg min i log f(y(x;)x;, 6). (17)

feK j=1

The Fisher information matrix is

i=1

i [logf Olx;, 6) log f(ylx;, 6)

V(0] - —
IMPO)ha:= ) Eq 26, ) ] k,I1=1,...,m) (18)

We may define
q(x, yiy) = logdet M(’?(g(f))

(the local D-optimality), or

( ) % Y O IIMPOM] ;i MP(@9) is non singular,
I X¢y Vi) = k=1

o0 otherwise

(the local A-optimality), etc.

ExaMpPLE 2. Under the assumptions given in Example 1, take 5, as an
a priori pd. on K. We may define

a(Xg, Ya) = I logdet M g) (6)no(dd)
K

(the Bayesian D-optimality), etc.

29 — Banach Center t. 16
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We return to the general case. Let us denote

Wi (x4, Yiy i = 1_[ [1 —@;(xg), y(J))]’
Jj=0

A; (x> Ya) i = [T 84 11xGys yii)s
j=0

P(-Ixw, 8):= [ p(-1x;, 6)
i=1
(the joint pd. of y;, if x;; is given)

Pm(x(.'), d}’(i)|9) =4, (x(i— 1 Yii- 1,)P(dy(,-)|x(,-,, 6) (19)

(the joint pd. of x;, y), and let EP denote the mean with respect to
PO (-9).

The distribution function of the optimality criterion function g can be
written as

Fulbio.8)= ¥ EPLinoioi]  (be R (20)
where
B(b):= {{i, x, ya): 4(x@), ya) < b},
and @, ¥;-, = @, ']__[1 (1—¢;) is the probability of stopping exactly at the ith
i=o

step. Two sequential designs (¢, 8) and (@, §) are considered as equivalent
(with respect to ¢) iff

Fo(blp, 8) = Fo(blg, 5)  (beR).

Sometimes, it is useful to consider an a priori p.d. 5, on K with n4(K)
= 1. For simplicity let us suppose that K is finite. The a posteriori p.d. is

"(le(i)a y(:‘)) = h()’(.’)a X(iys 0) no(0), (21)
where h(-, x;, ) is the density of P(-|x;, 6) with respect to
pu(-):= Z P('Ix(i)a 0)no(6). (22)
fek
Evidently,
n(Kl|xg, ya) = 1.
THeOREM. Let q(xg, yy) be a function of n(:|xg), ye)

Q(x(.-), J’(i)) =Q;[n(- Ix(i)a }’(i))] (i=0,1,..)
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Then to every sequential design ¢, 0 there is an equivalent sequential design

(@, &) such that
q)i(x(i)s yu')) =¢;[n(- |x(i), Y(n)],
0; (x; 4 1|x(i), Jf'(i)) = D;[xi+1, (- Ix(i), y(i))]
for some functions ¢;, D, (=0, 1,..).

Note. The criterion function in Example 2 satisfies the assumptions in
the theorem.

CoroLLARY. If the criterion functions given in Example 1 are used, then
it is sufficient to consider only those sequential designs which depend on x,, y;
only rhrough the likelihood function

fe@® - Y log f(ylx;. 0).

j=1
Proof. If #, is proportional to the counting measure on K then

[1 £ Dyix;, 6]

J=1

> 11 /Dy, 6]

ek j=1

" (le(i), Vi) =

Moreover, the M.L. estimate 8" can be expressed as

Al . ﬂ(gfx(i), Vi)
0" = Arg minlog — 2"
g oeK 8 10(6)

LEmMMA. The sequence of statistics
(X3 .V(.'))GXi x R — (- 1xgy, Yy (i=0,1,..)

is a transitive sequence of sufficient statistics (in the sense of [1]) with respect
to the measures |PP(-|0);0eK! (i=1,2,...).

Proof. Let v be the counting measure on the set X* (ie, v(x,) = 1;
(xp€X") and let u be given by equation (22). According to (19) and to (21)

de(x(l')’ y(i)le) dP(y“,Ix(,-,, 9)
d[-l XV - du - G[’?( lx(l'): y(i))a 9]a

where the function G is defined by

Gn(-), 01 = n(6)/no (9).
Hence the sufficiency is proved. Further

W(9|x(i), .V(.')) _ dp(yilx;, 0)
'7(9|x(i— 1y Vi- 1)) dyy ’
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where y; () = Z p(1x;, 9)'1(9|x(i— 1)» Yi-1))- Hence n(- x4, vi) depends only
0ek

on x;, y; and on n(-|x4_y), ¥4—1y)- The transitivity follows from [1]. ]
Proof of the theorem. Let us define

Eg) Lo i n (x4, Yl

@i (x> Yoy) = i ’ (23)
@ Yo E%)['l/i—lm('lx(i)s ,V(i))]
and
EP [6: (xi 1l Wiz 1ln (1%, vyl
Si(xi 1X6y, Yay) = gt : 70 (24)
P e EY (i 1n (- [x6y, Yyl
According to (20) it i1s enough to prove that
Eg) [gomi @i 11 = E® [gon; @; lpi— 1] (25)

for any bounded function g defined on the set of all probability measures on
K, where n;:=n("[x;, y,)- We proceed by induction on i. Since @y = @y,
do(x;) = 8o (x,), equation (25} is evident for i = 1. Suppose that (25) is true
for i = k—1. We have according to (23)

EY [gon oo i) = ES (gom EP [ - (Ini]}
= E‘s” {Qoﬂk E},"’ [P Vs - 1|'1h]}
= Egd {gom G Wi— } . (26)

We shall use the following notation: If I: X*xR* > R! then ["*¥:
X* ! xR"! 5 R! will be defined by

Xp. V)
l‘ (x(k— 1) Y- 1)) = l(x(m, Y(k))-
(Xgsyg)

From the transitivity of {n(:|xg, yp)}s, it follows that [gon, @] is
a function of #(-|{x4_ 1y, y&-1)). Hence, using (19), we obtain

Eg‘) [90’1; OeWi-1]
= ¥ [ EE D8, 000 ) [9om 3™ Y- 1} pldyilx, 0)

xkex R

= Y §EF Y {lgom @17 ES V606 ) Wi 11} (dyilxi, 0)
xkex R

=Y [EY V{lgon &8 (il ) ¥— 1} i, 0), (27)
.tkEX R

the last equality being a consequence of (24). Since ¥, =(1 —¢,_ )Y, -2,
using the validity of (25) for i = k—1, we obtain

E§™ Y {[gom @ 0y Cald Wi 1} = EE™  {[gom @1 8 (% )W—1}.  (28)
Substituting (28) in (27) and comparing with (26), we obtain (25). ]
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