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1

Let X (1), t 2 0, be a stationary Ornstein—Uhlenbeck velocity process, that is,
a real separable Gaussian process with mean 0 and the covariance function

2

K(s.1)= EX(s) X (1) = 5’2— N )
X

(60 >0, a > 0 parameters).
The aim of this note consists in pointing out two different possibilities of
calculating the Laplace transform F,(4), A = 0, of the quadratic [unctional

Y(r):=“[X2(s)ds (r > 0).

0

This problem arose in connection with sequential estimations of density
parameters of stationary Gaussian processes (see [4]), where the Markov
times

,:=min{t 2 0: Y(1) =al, a>0,
are considered and the existence of the moments Et) (n = 1, 2,...) has to be

proved. Unfortunately, we have not succeeded in finding a simple proof of
this fact. From

{tg>1t] = Y() <a}
and the Chebyshev inequality we obtain

Pz, >1) < e Ee T,
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and in this way the problem in question could be handled by finding the
asymptotics of F,(1) as t - co. We shall explicitly calculate F,(1). We have
the relation E,(1) ~ e "°" as t - oo for some y, > 0, and from this the proof
of existence of all moments of 7, easily lollows.

2

The first possibility of calculating F,(4) consists in reducing the Ornstein—
Uhlenbeck velocity process to the Wiener process and in applying a
Cameron—Martin type formula. Without loss of generality we can assume

g

/2

Y%

X(s) = -e” - W(e?™), s= 0,
where W(t), t = 0, is a Wiener standard process. We have

n

E (%) = Eexp(—l-_‘[ X?*(s)ds) = Eexp(— | q, () W?(u) du)
[1] 1

. . i} ag?-A
with  1:= e, q)= 7. == ()
A Cameron-Martin type formula (see, e.g., [3]) leads to
H
"
5 1
F, () = Eexp(— | q(u) W*(u)du) = exp (5 J 'y(u)du),
° o
0 for O<u<l,
) _ 5
with  q(u) {ql(u) for 1<ust, O

where y(u), 0 <u <t,, is the unique continuous solution of the Riccati
equation

V) =2qw)-y'w, O<u<t, u#l,
y(t,) = 0. ()

Equation (3) can be solved explicitly. From the continuity of y(u) and the
relation q(u) = 0 for 0 < u <1 we calculate

t

F (1) = exp(} | v(u)du)-(1—y(D)" V2. (4)

1

In the interval [1, ¢,] we have to solve the Riccati equation

2
¥ W) = 257 )
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A special solution of (5) is

o 1) = =
spec "
where
c—c—-2p=0.
Let us choose
c=c;=4-5/T+88 (e <0). (6)

With the aid of y,,. (u) the general solution of (5) can be determined, and we
get — under the boundary condition — the result

2c9—1 -1
¢, |1 1 u 1 1
2, . - . —_ I<u<t,. (7
‘y(u) [73 +u |Vl‘-2('2+(t1) (2(:2—1 CZ ’ “ ! ( )

Finally, a direct calculation yields by (4), (6), (7) the following

THEOREM.
t
F,(A) = Eexp(—4 | X?(s)ds)
0
= (da Jal+202 4 ) [(a+ /o + 202 1) exp(t \/a® + 267 )
—(a—/a?+202 )  exp(—t Ja?+2¢2 1)) /2

2 2 -172
=e°’""-[ x+o 4 sinh(t- /e’ +20° l)+cosh(t'\/a2+2021)J . (8)
o«

Jat+20% 2

COROLLARY.
t
202 y) (a? 4 2021
limEexp(—JXz(S)ds)exp(E-t( 1+i2—1))= Va:(a+207) ,
2°\W e at Jal+20°

0

3

As a second possibility of calculating F,(4) we use the Karhunen represen-
tation and an identification theorem of Hadamard in complex analysis. This
method of deriving the Laplace transform is applicable to other Gaussian
processes too.
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Now let us consider the Karhunen representation of the Ornstein-
Uhlenbeck velocity process:

X(6)= Y 0us) VA X, 0<s<l. ©)
n=1

Here, the X,, n=1, 2,..., are independent identically N (0, 1) distributed
random variables, and 4, and ¢, (n=1, 2,..)) are the eigenvalues and
eigenfunctions respectively of the nuclear integral operator K corresponding
to the kernel K (u, v), 0 < u, v <t, in the space I?[0, ] of square-integrable
functions on the interval [0, t].

The representation (9) yields

F(A) = Eexp(—=A[ X*(s)ds) = Eexp(=) 44,  X7)
o] n
=[J(1+244,)" "% = D(=24)" 12, (10)

where

D(A):=T] (1—44,)

denotes the Fredholm determinant of K (compare, e.g., [6], [2]).
We consider the equation of eigenfunctions for determination of D{4):

Ko(s)=[ K(s,wowdu=14p(s), 0<s<rt. (11)

0

By differentiating twice we can see that (11) is equivalent to
0_2
qo”(s)—(:xz——i)-go(s)zQ 0<s <, (12)

with the boundary conditions

¢'(0)—29(0) =0, o' (t)+ap(t) =0. (13)

With the general solution of (12)
0.2 1/2
@(s)=C;-e"+Cyre™™, ﬂ=(“‘7)’
the boundary conditions (13)
Cy(n—a})—Cy-(n+a) =0,
Ci-(nta)e"—Cy(n—a)-e™=0

yield an equation for the determination of the eigenvalues:



CALCULATING THE LAPLACE TRANSFORM 441

A number /1 is an eigenvalue of K iff G(4) =0 with
G(A) = —e "(n—a)*+e"(n+a)

a2 \? o2 a2 \2 a?
ey 2T Y. R P 2 9\, 2 9,
(a a /1) exp( - r)+(a+ o /1) exp( a’—— t)

4 1 1 - . -
The function G(2):= G|- |'——=——=—— 15 an analytic one with the zeros at
a) Jat—c?-A

1
A= I and with an exponential rate of increase less than 1. As the Fredholm
k

determinant D(A) has the same properties, the Hadamard identification
theorem (see, eg., [5]) yields

D(1) = const- G ().

For the determination ol the constant we set 4 =0 and finally get

D(4) = (4xe™) -G (A) = (4ae™ - Ja?—a%A)" -G G) (14)

From this, together with (10), the same result (8) follows.
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