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§ 1. Introduction

The purpose of these lectures is to show how two mathematical tools
not traditionally used by control theorists have become important in
recent years. The tools are

(1) Real analyticity, and

{2) The Lie bracket of vector fields.

It is not our goal here to provide a comprehensive survey but only
to show, by means of several examples, why these tools are useful. We
discuss real analyticity and the Lie bracket together because many of the
applications actually involve both.

In §2 we describe the class of control systems to be considered.
In §3 we take one problem —that of generalizing to the nonlinear case
the familiar controllability criteria for linear systems —and we use it as
motivation for introducing the Lie bracket and for considering real analy-
ticity. Then we state (without proof) the important theorem of Nagano
on Lie algebras of real analytic vector fields, as well as some facts on
orbits, and we give Krener’s proof of the “positive form of Chow’s theo-
rem”. In § 4 we show how, in a very precise sense, the set of all Lie bracket
relations between the vector fields of an analytic control system at a point p
determines the system in a neighborhood of p, so that one can think of
this set as a kind of Taylor series for the system. In § 5 we apply the results
of §4 to give a simple proof of a necessary and sufficient condition for
a gystem to be locally equivalent to a linear system. In § 6 we state a bang-
bang theorem where the system is required to satisfy a certain Lie-theo-
retic condition. In § 7 we develop a formalism based on exponential Lie
series and we sketch a proof based on this formalism of a local controlla-

bility theorem conjectured by Hermes. Finally, in § 8 we mention some
other applications.

[615]
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§ 2. General definitions

A general control system is an ordinary differential equation of the form

(1) & =f(e,u), zeM,uecl.

Here M, the “state space”, could be taken to be a FEuclidean space R"
or, more generally, an open subsct of some R™ However, it turns out
that we get a nicer theory if we allow M to be'a more-gencral object.
Specifically, we will assume

(I) M is a C™ manifold.

Remark 1. We include in the definition of “manifold”: the requirement
that M be finite-dimensional, Hausdorff and a countable union of compact
sets. ®

When M is an open subset of R", then f should be required to be
a mapping which to each z e M, u e U, assigns a. vector f(z, u) € R".
In the more general case where M is a manifold we have to assume that
f(xz, u) is a tangent vector to M at x. Moreover, we will agsume that the
dependence on « is smooth, i.e.,

(II) For each w e U, the map x—f(x,u) is a C® vector field on M.

In order to talk about trajectories of (1) for general controls, one
has to assume something about the control space U, and about the depen-
dence of f jointly on x and «. Then one has to make assumptions on the
class of admissible controls. This gives rise to technical problems that are
easy to settle but uninteresting. So we shall limit ourselves to a particular
type of situation, namely, the case when the control enters linearly in (1).
That is, we will assume

(ITT) U 48 a convex subset of R™ and f(x, u) has the form

(2) flm,u) = fol@) + D ufy(x).

1=l

But we emphasize that:

Remark 2. Much of what will be done here under assumption ITI gene-
ralizes to the case when linearity in % is not assumed. m

The following assumption can be made with no loss of generality:

(IV) U has a nonempty interior in R™.

(Indeed, if (IV) were not satisfied, we can always redefine our system
so that (IV) holds.)

An admissible control is a bounded, measurable U-valued function
defined on some interval I < [0, oo) such that 0 € I, A trajectory for an
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admissible control 4(:): I—U is an absolutely continuous curve z(-): I-M
such that

(3) (1) = f(a(t), u(t)
for almost all t e I.

If 2oe M, #,¢ M, T >0 are such that there is a trajectory x(-):
[0, T]>M corresponding to some admissible u(-): [0, T']—>U for which
z(0) = ®,, ®(T) = x,, we say that x, is reachable from x, in T units of
time. The set of all points #, that are reachable from z, in T units of time

is the téme T reachable set from z, and we denote it Reachy(xy). Also we
let

(4) Reach (2) = | ) Reachy(a,).
>0

§ 3. Integral manifolds and Nagano’s theorem

In this section we state a very natural question (referred to as (Q1)) about
nonlinear systems and show how, in order to answer it, one is naturally
lead to the study of Lie brackets, and to paying special attention to the real
analytic case. We state an important theorem due to Nagano (ef. [5]), as well
as the so-called “positive form of Chow’s theorem?”. These two results to-
gether enable us to answer the original question. Moreover, we derive
a nonlinear analogue of Kalman’s controllability criterion and we show
how the property that the ring of germs of analytic functions is Noethe-
rian plays an important role. Thanks to it, the “nonlinear controllability
criterion” becomes a test which gives a definitive yes or no answer in a finite
number of steps. We emphasize that question (Q1), as stated, does not
involve any mention of Lie brackets or real analyticity. In our view the
true criterion to decide whether or not a mathematical theory 4 has
significant applications to an area of research B is whether, using A, one
can answer questions about B that make sense before A is brought in, but
cannot be answered without 4. The discussion that follows shows that,
in our particular case, the criterion is met.

(Ql) What ts the analogue, for the systems considered here, of the basic
results of controllability theory for linear systems?

First, let us elarify what Q1 means. For a linear system

(5) & = Ax+ Zuibi (M = R*, U = R™)

=1

there is a well-defined “controllability” concept, which can be defined in
many equivalent ways. For instance, we may call (5) controllable if either
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(Ca) Reach(w,) = R" for all z,,
or

(Cb) Reach(0) = R",
or

(Ce) Reach(w,) has a nonempty interior in R" for all z,,
or

(Cd) There exists no linear subspace § € R" such that
8 # R" but Reach(z,) = 8§ for all z, < 8,

or

(Ce) There exists no linear subspace 8 < R" such that § # R" and
that, whenever #»,e M, », € M, z, € Reach(z,), then z,e 8 iff z, 8.

It is a trivial matter to prove that (Ca), (Cb), (Ce), (Cd) and (Ce) are
equivalent. Moreover, any system (5), even if it. does not:satisfy these
conditions, can always be “reduced” to one that does. (Just let 8 be the
linear span of all the vectors A*b, for all k, <. Then (5) can be restricted
to 8, and the restricted system satisfies (Ca}, (Cb), (Ce), (Cd), (Ce).)

For our more general systems one sees right away that, in general,
it is not true that if Reach(2,) has a nonempty interior in M for all 2, € M,
then Reach(z,) = M for all z,. (For example,let M = R and take the
system & = 1.) So the nonlinear analogues of (Ca), (Cb), (Ce), (Cd), (Ce) are
no longer equivalent.

" Let us call a subset 8 of M forward invariant for the system (1) if
Reach(z,) < 8 for all z, € 8. Let us call 8 bi-invariant if, whenever z, € M,
z, € M, z, € Reach(wx,), then z, e 8 iff #, € 8. With this terminology the
definition of controllability for linear systems can be restated by saying
that (5) is controllable iff there is no proper bi-invariant subspace of M or,
equivalently, if there is no proper forward invariant subspace. Moreover,
since Reach(0) is always a linear subspace, an equivalent condition for
controllability is simply that there is no proper forward invariant set or
that there is no proper bi-invariant sef. When a linear system is not con-
trollable, then there is a unique minimal forward invariant get (MFIS)
through 0. This set turns out to be a linear subspace and a minimal bi-
invariant set (MBIS). Since it is a linear subspace, the restriction of (5)
to this set turns out to be another system in the class we started with,
i.e., a linear system.

For nonlinear systems it is therefore natural to try to answer (Q1) by
first asking:

(Qla) Given a system (1) and an z,e€ M, is there always an MFIS
containing ,?

(QLb) Is there always an MBIS through x,?
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(Qle) If the answer to (Qla) or (QLlb) s “yes”, 8 the MFIS (or the
MBIS) a subset S of M such that the restriction of (1) to S is well defined
and i8 another system in the class we staried with?

The answers to both (Qla) and (Q1lb) are clearly “yes”. (For (Qla)
take 8§ = Reach(x,). For (Qlb) let § be the intersection of all bi-invariant
sets through ,.) In order to answer (Qlc) we have to find out whether
the MFIS or the MBIS through «, is a manifold. The answer is obviously
“no” for the MFIS (example: & = 1 once again).

It turns out that for real analytic systems the MBIS through any z, € M
is always an analytic submanifold of M, and that the restriction of (1)
to this submanifold is another analytic system. Moreover, the MBIS
through 2, can be characterized as an integral manifold of the family of
vector fields congisting of the f; and their Lie.brackets of all orders. This
s the first reason why real analyticity and Lie brackets are tmportant.

Remark 3. Incidentally, this also shows one reason why we have to
allow our state spaces to be general manifolds. Had we started with open
subsets of Euclidean spaces, we would have run into trouble with systems
such as & = uy, § = —uz, (r,y) € R*. Here the MBIS through (1, 0)
is a circle which is not a state space of the kind we were willing to allow. &

‘'We now make the preceding’ considerations precise. An analyiio
system is a system (1) whieh satisfies our hypotheses (I), (II), (III), (IV)
and for which, in addition:

(AS1) Mis a real analytic manifold, and

(AS2) The vector fields f,, ..., f, are real analytic.

If M is a C® manifold, let V(M) denote the set of all C* vector fields
on M. If f,g € V(M), the Lie bracket of f and g is another vector field,
denoted by [f, ¢], which can be defined in at least two ways. Since both
definitions are of interest to us, we will give them both. First, let us use
the notation @'(t) for the flow of f (that is, if #, € M, then i—>®/(1) (x,)
is the integral curve of f which goes through z, when ¢ = 0). Recall that
V(M) can be thought of as the set D,(M) of all first order differential
operators F: C°(M)—~C* (M), where C*(M) = {p: M—-R, p €}, (That
is, F € V(M) iff F is a map C*(R)—C*(R) such that F(ap+ fy) = aFp+
+pFy, Flp'y) =¢ Fp+y Fp for all ¢,peC”(M), a,feR). The
identification V(M) ~ D,(M) is the map which to an fe V(M) assigns
the F e D,(M) given by

1
(6) (Fg) (@) =Yim —[p (/(1) (@) — p(a)] -

The Lie bracket is defined as follows:

DEFINITION 1. If F € D, (M), @ € D, (M), welet [F, G]: 0”(M)->O”(M)
be the map FG—GF.
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DEFINITION 2. If fe V(M),ge V(M), x € M, we let [f, g] (z) be the
tangent vector at ¢t = 0 to the curve

(7) t—>®7(— V1) D (—V1) D (V1) D! (V1) ().

Remark 4. The equivalence of these two definitions is a standard
fact which, in any case, will be proved below (cf. § 7). &

A Lie algebra of vector fields on M is a subset A of V(M) which is
a linear space (over R) and satisfies fe A, ge A=>[f,gle A. If A e V (M),
there is a smallest Lie algebra L of vector fields that contains A. It is
called the Lie algebra generated by A and we use Lie(4) to denote it.

Now let us return to the study of the MBIS § through a point 2, ¢ M
for a system (1). If we wish to prove that 8 is a submanifold of M, it is
reasonable to try to determine its tangent space T_.(S) at every € 8.
Since § is bi-invariant, the curve t—®?(¢) () must be contained in S if g
is any vector field of the form

m
(8) g =1t D aifs
]
for which (a,, ..., a,) € U. Therefore every such g must be tangent to 8.
In view of assumption (IV), it follows that every linear combination of
Joy +++y Jm i8 tangent to M. From this one can conclude that every
g € Lie({fo, ..., fm}) must be tangent to §. (Reason: if f, g are tangent to 8
then the curve (7) lies in 8 if e 8. So [f,g) () eT_8.) So T,8 must
contain the space Lie({fy, ..., fm}) (¥), where if A € V(M), » € M, we let

(9) A(z) = {g(x): ge A}.

An integral manifold (IM) of a set A < V(M) is a connected sub-
manifold 8 of M such that

(10) T,8 = linear span(4(x)) for all z€8.

A maximal integral manifold (MIM) of A is an IMI S of A such that
whenever S’ is an IM of A such that SN8’ += O, it follows that 8’ < 8.

NAGANO’S THEOREM. Let M be an analylic manifold and let L = V (M)
be a Lie algebra of analytic vector fields. Then for every x € M there exisis
a MIM of L through x. m

Remark 5. The MIM of the preceding statement is obviously unique.

Returning to our system (1), it is reasonable to expect, in view of
Nagano’s theorem plus our earlier remarks, that the MIM of Lie({f,,...
..+» Jm}) through =, will turn out to be the same as the MBIS through x,
if (1) is analytic. This can actually be proved as follows: the set X of
MIM’s of Lie({fo, ..., fm}) is a partition of M. Every f; is tangent to every
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8 € Z. Therefore, if 2(-): I->M is a trajectory of (1) and if ¢, € I, =(i,)
€S 2, it follows that (1) € 8 for t e (t,—¢&,t,+¢&)NI for some &> 0,
So {t: x(t) € 8} is relatively open in I for each 8 € 2. Therefore every
trajectory of (1) is entirely contained in one § € XZ. So all the members
of Z are bi-invariant for (1). To prove that they are MBIS’s, we will use
another important result. First we need two definitions. We say that
a system (1) has the accessibility property (AP) from 2, if Reach(z,) has
a nonempty interior in M, and that (1) satisfies the rank condition (RO)
at x, if

(11) dimLie({fy, ..., fn}) () = dimM.

PoSITIVE FORM OF CHOW’S THEOREM (PFCT). Let (1) be analytic and
let vy € M. Then (1) has the AP from =z, iff (1) satisfies the RC at ©,.

Proof (cf. Krener [4]). Suppose that (11) holds. Let W < M be open
such that z, e W and that the RC holds at every x ¢ W. Let @ be a sub-
manifold of M of the largest possible dimension such that @ < Reach(z,)NnW.
If ¢ is any vector field of the form (8) with (a,, ..., a,) € U, and if g(z)
¢ T, Q for some z € @, then (¢, y)—>P?(1) (v) has rank (dim@) +1 at (0, z),
and it maps (0, £) XZ diffeomorphically onto a submanifold @’ such that
@’ = Reach(x,)NW, if £ > 0 is small enough and Z is a sufficiently small
neighborhood of #. Then dim@’ > dim@, contradicting the maximality
of dim¢. So ¢ is tangent to Q. Since this is true for every ¢ of the form (8),
with (a,,..., a,) € U, we conclude as before (cf. the argument between
formulas (8) and (9)) that

Lie({foy .y fm}) (@) s T,Q

for all # €. Since the RC holds at every «# €, we conclude that dim@
= dim M. So @ is open and therefore (1) has the AP from z,.

For the converse, if the AP from =z, holds, we already know that
there is a MIM of Lie({f;, ..., fu}) through z, and that Reach(z,) is con-
tained in this MIM. The AP from z, then implies that the MIM has dimen-
sion dimM and so the RC holds at z,., This concludes the proof of the
PFCT. m

We now return to the proof that for an analytic system (1) the MIM’s
of Lie({fy, ..., fm}) are MBIS’s. We already know that they are bi-inva-
riant sets, so all we need is to prove minimality. Let 8 be a MIM for
Lie({f) ...y fm}). The system (1) can be restricted to S, and the restricted
system has the RC at every point of 8, and therefore it has the AP from
every x € S. Moreover, S is connected. So our conclusion follows from:

LeEMMA 1. If a system (1) has the AP from every . € M and if M is
connected, then M ¢s8 the only bi-invariant sei for (1).
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Proof. Let § < M be a MBIS for (1). If x € 8, let W < Reach(z) be
open, W # @. Then W < 8. Take some %(-): [0, T]—U that steers x
to some y € W. For z ¢ W, let y, be the trajectory for «(-) such that y,(T)
= 2. Then y, is defined on [0, '] for 2 in some open W’ such that y e W’
c W. The set {y,(0): z € W'} is a neighborhood of # and by the bi-inva-
riance of S it is8 a subset of 8. So x e IntS. So 9 is open. So the MBIS’s
of (1) form a partition of M whose members are open. Since M is connected,
M is itself a MBIS. The proof of Lemma 1 is complete. m

As indicated earlier, we have now proved:

THEOREM A, For an analytic system (1), if @, € M, then there exists an
analytic submanifold S such that z, € S, and that S i3 a minimal bi-inva-
riant get for (1). m

., This result is our nonlinear analogue of the linear controllability
result. Call a system (1) conirollable if M is itself a MBIS for (1). Then
Theorem A asserts that (if (1) is analytic) for every z, € M there is a sub-
manifold § (the “controllable piece through z,”) such that (1) can be
restricted to 8, and that this restriction is controllable. Moreover, controlla-
bility can be characterized quite easily, as follows:

THEOREM B. Consider an analytic system (1). Then the following are
equivalent:

(a) M i3 a MBIS,

(b) M 8 connected and the RC holds at every x ¢ M.

Proof. That (b) =-(a) follows from the PFCT and Lemma 1. Assume (a)
holds. Since every connected component is bi-invariant, 3/ must be con-
nected. Since M is a MBIS, then M i8 an integral manifold of Lie({f,, ...
..y fm}) by Theorem A. Therefore the RC holds at every r e M. w

Remark 6. Theorem B 18 the nonlinear analogue of the Kalman con-
trollability criterion, It is easy to verify that for linear systems the RC
yields exactly the Kalman criterion.

Remark 7. Simple examples show that both Nagano’s theorem and
the PFCT, as stated here, fail if the vector fields under consideration are
only C® but not analytic. Theorem B is also false for general C* systems.
(Example: consider the system & =1, ¥ = up(®), where ¢: R—R is
a C* function such that ¢(z) =0 for <0, ¢(z) > 0 for x > 0. Then
R? is the only MBIS but the RC only holds on {(z, y): = > 0}.) The ana-
logue of Theorem A is true (cf. Sussmann [6]). m

Remark 8. An important feature of Kalman’s controllability criterion
is that it involves a finite number of steps. The system (5) is controllable
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iff the vectors 4*b,, i =1,...,m, k =0,...,n—1, span R". (Thanks
to the Cayley—-Hamilton theorem.)

For the nonlinear case we can ask whether, if we compute successive
brackets of the f; at a particular %,, a point is ever reached when we know
for sure whether the RO holds at x,. The answer is “yes”. To see this,
let o, denote the ring of germs of analytic functions at z,, and let ¥
denote the set of germs at =, of analytic vector fields. Then ¥7, is a fini-
tely generated .. -module. Since ., i8 a noetherian ring, every sub-
module of ¥, is finitely generated. In particular, let B, (fy, ..., f;») denote
the set of all brackets of the f; of degree < k (i.e., By(fo, -5 fm) = {foy ---

v Jm} and, for k>1, geB(foy...;fn) i g€By_ (foy...rfn) OF g
= [hy, },] Wlth hy EBIq (fos «+es fm)y %o +ky = k). Then let M (fos vroySm)
be the submodule of ¥z, generated by the germs at z, of the g € By(foy0-

<.y fm). Then the Mzo( fo, ..., f) are an increasing sequence of submo-
dules and so there exists N such that
(12) Moy -orSm) = B2 (for oor fi)

Then it is easy to verify that the RC holds at z, if By(fo, ...y fm) ()
spans T, M. That is, if we want to find out whether or not the RC holds
at x,, we compute successive brackets of the f;, and we see whether they
span T, M. As soon as we have computed all brackets of degree not greater
than N where N is such that (12) holds, we do not need to compute more.
If the brackets already computed do not span T, M, we know that the
RC at &, does not hold. m

§ 4. Local equivalence of nonlinear systems

An important feature of analyticity is that analytic objects can be expan-
ded in a “Taylor series” about a point, and that the object’s properties
in a neighborhood of the point are completely determined by the Taylor
coefficients at the point. We now ask

(Q2) What 48 the analogue, for a nonlinear system such as (1), of the
Taylor series?

More precisely, we would like to obtain information about the tra-
jectories emanating from z, (e.g.: Is every time-optimal trajectory bang-
bang? Are the reachable sets Reach,(w,) finite unions of submanifolds?t
Is it possible to reach a full neighborhood of z, from «,?) using values
of the vector fields f;, and of their derivatives, at #,. It turns out that
what we need is an object called the set of Lie relations between the f; at
z, which we denote by Rel; (fo, ..., fn)- To define this, we introduce m +1
symbols (“indeterminates”) X,,..., X,,, and define the free associalive
algebra Assoc(X,, ..., X,) to be the set of all formal polynomials in the
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X,, with real coefficients, and with the X, not commuting. (Precisely:
a monomial is any finite sequence

(13) II =X‘II{2...X¢", Oéijgm,
the elements of Assoc(X,, ..., X,,) are the sums ) a;X; such that a; ¢ R,
T

and that a; = 0 for all but finitely many multiindices I. Elements of
Assoc(X,, ..., X,,) are multiplied using the rule X, X, = X,;,, where IJ
is the concatenation of the multiindices I, J. We let X5 = 1.) Then we
define Lie(X,, ..., X,,), the free Iie algebrain X, ..., X,,, to be the small-
est linear subspace of Assoc{X,,..., X,,) that containg X,,..., X,
and is closed under the Lie bracket. (The Lie bracket [Y, Z] of two ele-
ments of Assoc(X,, ..., X,,) is simply YZ —ZY.) Given f, ..., fn, We can
define a map

(14) B(fos ooes fm): Assoc(Xy, ...y Xp) =D (M)

(where D(M) is the set of all linear differential operators C*(M)—>C™(M))
by

(15) B(foy oy Jm) (X1) = Fyp,
where, for I = (i, ..., 1),
(16) FI =F‘l“'F‘k'

and ¥; € D,(M) is the operator that corresponds to the vector field f; as
before.

It is easy to see that u(f,, ..., fn) maps Lie(X,, ..., X,;) into D, (M)
and that u(f,,...,f,) i8 an algebra homomorphism (i.e., it is linear and it
satisfies B, = B, B, whenever A, = 4,4, and B; = u(fy, ..., fm) (4;)
for 1+ =1,2,3).

Let »(fy, ..., fu) denote the restriction of u(fy, ..., f.) to Lie(X,, ...
coey Xp). Then v(fo, ...y fm) i8 a Lie algebra homomorphism (i.e., it is R-
linear, and it satisf.es B; = [B,, B,] whenever 4, =[4,, 4,] and B;
= ¥(foy .oy fm) (4;) for ¢ =1,2,3). For 2z e M, let Ev,: D,(M)>T M
be the evaluation map (recall that D,(M) ~ V(M)). Then we define

an Rel,(fo -y fm) = Ker(BY,09(fo, ..y fu)-

That is, the elements of Rel.(f,,...,f,) are those finite linear combi-
nations of the X, and their brackets which vanish when the F; are plugged
in for the X; and the resulting vector field is evaluated at =.

A Lie subalgebra of Lie(X,, ..., X,,) (or of any Lie algebra) is a subset
S which is a linear subspace and is closed under the Lie bracket operation.
Then we have

LEMMA 2. For every system (1) and every slate x,, Rel; (fy, ..., fn)
t8 a Lie subalgebra of Lie(X,, ..., X,,) of finite codimension.
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Proof. The first part follows from the fact that if g, h are vector fields
such that g(p) = h(p) = 0, then [g, h](p) = 0. The second part is tri-
vial. m

THREOREM C. Consider two systems:

m
(18.7) o =i+ D ufiah), e
j=1
and initial points xie M', i =1,2. (The control u = (%, ..., Uy) 18 re-
qutred to belong lo U and both systems are supposed to satisfy (I)-(IV).) Assume
both systems are analytic. Let S° be the MBIS through af. Then the following
two properties are equivalent:
(a) There exist meighborhoods W* of o in §° and a diffeomorphism

4: W'>W? that maps trajectories of (18.1) to trajectories of (18.2)(corres-
ponding to the same conirol).

(b) Relzé(f;! 7.”1;) = Relzg(fgy 7f1=u)

Proof. Suppose (a) holds. Let fi denote the restriction of f} to W',
Since 4 maps trajectories to trajectories, it follows that

(19) A4(f3(@) =F3{A ()

for all v € W'. (Here A,: T,W'>T_W* is the differential of 4.) If we let
Fie D,(W') be the corresponding first order differential operators, we
can then conclude that

(20) lod¥* = A*o F2,
where 4%: C*°(W?)—~>C®(W?") is the map ¢—¢o 4. Therefore
(21) (F} ... F})oA* = A*o(F} ... F})
for all ¢,,...,4,. If

A = Z aIXI
is an element of Assoc(X,,..., X,,), then (21) implies that
(22) pUos o r ) (A)o 4% = A*ou(f3, ..., f2) (4).

Equation (22) holds in particular if A e Lie(X,, ..., X,,). Therefore, for
any such A, we have
(23) v(£5y 0 Fm) (4) (9o d) = [(f3, ..., f2) (A) plo 4
if ¢ e C0®(W?), Now we have:
A belongs to Relzé(f.,, ceosfm)  HE ¥(foy ooy fh) (4) () =0,
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ie., itf  »(f3,....fn) (4) (@) =0,
ie., iff [»(f}, ..., L) (A)y](x}) =0 for all y e C°(W?),
ie., ifft  »(f}, ..., L) (4) (pod) (z}) =0 for all p € C°(W?),
ie., iff [v(fi,...,fa) ()@l (#}) =0 for all p e C°(W?),
ie., iff A eRel:,(ﬁ, ces IH).
0
So (a) implies (b).
Let us show that (b) implies (a). Assuming (b) holds, let M = M' x M>.
For fe V(M'), g€ V(M?), let us define a vector field f xg e V(M) by

(24) (f X g) (@* &%) = (f(=Y), g(a"))
using the canonical identification

(25) T M ~ Tmllll xT M
Then it is easy to verify that

(26) [fxg,f' xg']1=1f,f1x[9,9]

for all f,f e V(M"), g, 9 € V(M?). Therefore the identity

(27) (o X fs5 -- s Fm X T0) (A) = »(fo, .oy F) (A) X 2(f3, ..., f) (4)
holds for every A € Lie(X,,..., X,).

Let L be the set of all vector fields on M" x M? that are of the form
y(fixfE, ..., fhaxf2)(4) for some A eLie(X,,..., X,). Then the ele-
ments of L are analytic vector fields. Moreover, the fact that »(f; X f3, ..
eees fr X f2) is a Lie algebra homomorphism implies that Lis a Lie algebra.
Therefore we can conclude from Nagano’s theorem that there exists
a MIM of I through the point (3, #). Let this MIM be denoted by S.
We can define two maps p': S—>M!, p*: §—>M? by P!, o®) =af. If
v is a tangent vector to 8 at (z}, 73), then v = (o', v*), where

v = ”(fg’ ooy Jh) (A) (25)
for some A. Then ' vanishes iff A ¢ Rel 4 fi, ooy £3). In view of Hypothesis
0

(b), we conclude that o' = 0 iff »* = 0. Clearly, p%(v) = ¢*. Therefore
if ps(v) = 0, it follows that » = 0. So the differential of p' is injective
at (x}, #%). A similar conclusion holds for p?® Therefore, it follows from
the implicit function theorem that there is @ connected open neighborhood
W of (@}, #2) which is mapped diffeomorphically by p', p* onto submanifolds
W, W? of M', M:. The map A: W'->W?* given by 4 = p*o(p")~! is
therefore a diffeomorphism.

If zt e W, let a2 = A(z'). A vector v' e Ta,M' is tangent to W'
iff ¥' = pi(v) for some v in T ;1 2 W. Since W is open in §, and §is an
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integral manifold for L, v belongs to T, ,W iff v is of the form
v(fo X3y ooy T X TR (4) (a3) for some A € Lie(X,, ..., X,). So o' e TaW?
iff ' = g(«;) for some g in Lie(f;, ..., f%). This shows that W" is an inte-
gral manifold of Lie(f}, ..., fL). So W! c §'and W'is open in §". A similar
argument shows that W? = 8% and W* is open in §°

Now let 21(-}): I->W?* be a trajectory of (18.1) corresponding to a con-
trol u(-): I>U. Let

u(:) = (u(-)y..ry um())

Let #*(-): I—>W* be given by z(t) = 4(z(t)). Then *(-) is absolutely
continuous because 4 is a diffeomorphism. For almost every ¢, the tangent
vector 4(t) is d«(&'(2)), i.e.,

]
A (i@ )+ 3w S (=" 1)-
et
But our construction of 4 clearly implies that A.(f;(®)) = fj(4(=)) for
j=0,...,m oW Therefore

m
#(1) = f3 (&) + D) s (0f] (2 (1))
J=1
So z%(-) is a trajectory for «(-). This means that 4 maps trajectories to
trajectories and our proof is complete. m
We now consider the special case when both systems satisty the AP
from z}. In this case the MBIS through «} is open in M*. (Actually, the
MBIS is the connected component of M* through «f,) So Theorem C
gives:

THEOREM D. In addition to the hypotheses of Theorem C, assume thai
both systems (18.1), (18.2) have the accessibility property from x}, x;, res-
pedtively. Then the following are equivalent:

(a) There are meighborhoods W* of zi in M*, and a diffeomorphism
A: W'->W? that maps trajectories of (18.1) to trajectories of (18.2) corres-
ponding to the same conirol.

(b) Bely(f}, ...r fi) = ReLy(f3, ..o S,

Theorem D shows that for analytic systems (1) that have the AP
from a point p the object Rel,(fy, ..., f,) Plays a role similar to that of
the family of Taylor coefficients for an analytic function.

§ 5. Local equivalence to linear systems

Let us say that two systems (18.1), (18.2) are locally equivalent about
points z}, % if property (a) of the statement of Theorem D holds. We
now ask:
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(Q3) When is a system (1), with an inilial state x, such that the AP
from =z, holds, locally equivalent to a linear system about 01

. To answer this question we first observe that if two analytic systems
(18.1) (18.2) are locally equivalent about points x}, z3, and if (18.1) has
the AP from z}, then (18.2) has the AP from ;. So in order to answer
question (Q3) we may limit ourselves to considering linear systems which
have the AP from 0, i.e., to systems of the form (5) that are completely
controllable. Let Lin(m) be the class of all these systems. For a system
8 eLin(m), let Rel(§) be the set Rely(f,,...,f,), where f,(z) = Az,
fi(z) = b, for ¢ > 0.

Theorem D tells us that a necessary and sufficient condition for
a system (1), which has the AP from z,, to be locally equivalent to an
8 € Lin(m) about 0 is that

(28) Rel, (fuy .+s fm) = Rel(8)

for some 8 € Lin{m). So our first task is to determinc which Lie subal-
gebras of Lie(X,, ..., X,) can be equal to Recl(8) for some S e Lin(m).
We begin by listing some properties that Rel(S) must have for every
S € Lin (m).

We claim that if § ¢ Lin(m) and A4 = Rel(S), then

(I) X, e4, .
(I) (ad Xy) ... (ad X,) (Xi,“) eA
for every r € Z, r > 0, and every sequence ¢,, ..., 1,,, of integers between 0

and m such that at least two of the ¢, are > 0 (here if Z eLie(Xyy ou.y Xpp)y
adZ denotes the linear map X —»{Z, X]).

That (I) holds is simply a consequence of the fact that the vector
field f., vanishes at 0. To prove (II), just observe that any time & linear
vector field (i.e., a vector field of the form ¢(z) = Pz, P a square matrix)
is bracketed with a constant vector field, the result is again constant.
Also, any bracket of two constant vector fields vanishes. From this it
follows that any time we bracket several of the f; in such a way that at
least two of them are taken from {f,,...,f,)}, the result will have to
vanish. So (II} is proved.

There is a third condition which 4 must satisfy, namely,

(ITI) A i3 a subalgebra of Lie(X,, ..., X,,) of finite codimension.

LeMMA 3. Assume that A < Lie(X,, ..., X,,). Then A = Rel(8) for
some 8 € Lin(m) if and only if (I), (II), (IIT) above hold.

Proof. Only the “if” part requires proof. Let

V = Lie(X,, ..., X,,)/A.
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Then -V is a finite-dimensional linear space. Let
n: Lie(Xyy ..., Xp) >V
be the canonical projection.. Define vectors b,, ..., b, in V by
by = n(X,).
Aho, defme a linear map A: V-V by
(29)- An(Z) —n({[Xq, Z]).

This map is well deﬁned because if n(Z) = n(Z'), then Z—2Z' € A and so
(X,,Z—2Z'] € Asince Xy, and 4 is a Lie subalgebra.

Then we have defined a linear gsystem 8. (The reader who 8o wishes
may choose a basis for ¥, and think of 4 as a matrlx and the b; 28 TOW
vectors.) 'We now have to show that Rel(8) = '

As before, let f (z) = Az, fi(@) = b, for i > 0 Let 7 ‘denote the map

f.,. .y Jm), S0 that (X)) = f;, and uisa homomorplnsm from LIG(X.,,

.y X,,;) into the-Lie: algebra of veetor fields on V. aE

Let Z'eLie(Xy, .., X,;). Then Z- ha.s a -unique’ expresmon of ‘the
form - ! . S

m .', K ; I
Z =aX,+ ) Y ay(ad X)) (X;)+Z,
§ Jwml
where Z' is a linear combination of'hifa,clépts which involve at least two
X;y, 3> 0. It is a simple exercise to show that if g(z) = Pz, h(z) =0
(P a linear map V—>V ¢ 2 constant vector), then [g ,'b] (w) = —Po. There-
fore

p((ad Xo) (X)) = (adfo)‘(f,) |
is the constant vector field whose value is (—A)b;. But formula (29)
implies that

(—.A)‘bj = :z((a;dXo)'(XJ-)).
Therefore

1 ((ad X,) (X)) (@) = a((ad Xo) (X))

for all x € V. In particular, Ev.,(p((adX)‘ X,))) equals =((ad X,)'(X))).
On the other hand, Ev,(u(X,)) —fo 0) =0, and a(X,) = 0 because
X, € A. Finally, 7(2Z') = 0 because Z' € A, and u(Z') = 0 because every

bracket [‘f,;1 [f,z [ffr_l, f,' ]] where at least two ¢; are greater than 0,
must vanish. So we can conclude that

7(Z) = Ev,(u(2).

But then Kerz = Ker (Ev,u), i.e.,, 4 = Rel(S). m
Now we can answer question (Q3):

M — Banach Center t. 14
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THEOREM E. Consider an analytic system (1) and a state z, such. that
Jo(xg) =0 and (1) has the AP from =z,. Then (1) is locally equivalent
to a linear system by an equivalence map which takes x, to 0 if and only if
every brackel g = [fh[ Tl U f"]]]] for which at least two i, are
# 0 satisfies g(z,) = 0.

In a similar fashion, it is easy to derive conditions for local equiva-
lence to a linear system by means of a map which does not necessarily
send 2, to 0 (and without assuming that f(x,) = 0). It turns out that it
is better to study equivalence to systems of the form

»
(30) @ =Am+c+2u,b,,
i=1
and that every such system initialized at a point  is equivalent to a similar
system initialized at 0.

THEOREM F, Consider an analylic system (1), and let x, be a state. Then (1)
18 locally equivalent to some sysiem (30), with an equivalence that takes z,
to some point %, if and only if the following two conditions hold:

(a) Eeery bracket g = (adf; ) ... (adf; _)) (fi) for which at least two
t,'8 are greater than 0 satisfies g(xr,) = 0.

{(b) Whenever a linear combinaiton

(31) ho= D' Y ay(adfyf(f;)

f />0
satisfies h(z,) = 0, then necessarily [fy, h] (x,) = 0.

Proof. If (1) is indeed a system of the form (30), then every vector
field & of the type (31) is constant. So, if » vanishes at one point, it follows
that A =0, and so {f,, 2] = 0. So (b) holds. Also, every vector field g
of the type considered in (a) is a bracket of two or more A’s of the form
(31). So the ¢’s must vanish and (a) holds as well. So (a) and (b) hold for
systems of the form (30) and therefore they hold for every system which
is equivalent to one of the form (30). '

To prove the converse, suppose (a) and (b) hold. Let L = Lie(X,, ...
ey Xp)y A = Rel; (foy .-y fm). Let L, be the Lie subalgebra of L gener-
ated by the X;, i> 0, and by all the brackets (adfy)... (adf;) (f, )
with 0 < i; < m, r > 1. Then L, has codimension one in L. Let 4y = L,NA.

Let Vo = L,/LgnA. Then V, is a finite-dimensional linear space.
Define vectors b} € V, by

b =m(Xy), i=1,..,m,

where =,: L,—V, is the canonical projection. Then define a linear map
Ay = V>V, by
Ao(”o(z)) = —my([Xg, Z]), Z€L,.
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This map is well defined because hypotheses (a), (b) imply that A, is
invariant under ad X,. Exactly as in the proof of Theorem E, one shows

that it fi (@) = 4,0, f§(2) = b{ for i > 0, then u(f3, ..., /%) (2) (0) = n(2)
for all z € L,, so that

Ay = Relo(f3, ..., f%).

Now let us distinguish two cases.

Case 1. fo(x,) belongs to the linear span Z of the vectors f;(x,) (1 > 0),
(adfy ) ... (adfe) (f;,, ) (0) (r > 0,0 <4 < m).

Case 2. f3(m,) ¢ Z.

In Case 1 we take ¥V = V,, A = A, b; = bj. We choose some rela-_
tion of the form

Z =2z, = ) Y a,ad X, (X))
i >0
such that Z e A, and we let 0 = 3 a,;4'D,. Then we have defined a system
[

of the form (30). Let f,(x) = Az +e¢, fi(x) = b, for ¢ > 0. Then if Z e L,
we can write Z a8 a sum

(32) Z =aX,+ ) Y ay(ad X,)(X))+Z,

i J>0
where Z' involves brackets with two or more f;, j > 0. Then it is clear
that 2’ € A,, and that x(f,, ..., n) (Z') = 0. Also,

p(for .. Fm) (A XY X)(0) = A'D; = my((ad X,) X)),
Finally,

Bfor ooy fu) (Xo) (0) = ¢ = 7 (X, —2).
So we have
plfor -1 Tm) (2) (0) = m(Z— aZ).

Since Z e A, we see that zeA iff u(fy,...,fn)(Z)(0) =0. Therefore
(33) A = Rely(fo, ooy fm)-

In Case 2 we take V = R@V,, A = (0, 4,), b, = (0,b]), ¢ = (1,0).
Then A = A,. If Z is as in (32), we see that u(fy, ..., ) (Z) (0) equals

(a, g (Z — aXo)).

Therefore u(fy, ..., m) (Z) (0) =0 iff @ =0 and Z—aX,€4d,, ie., iff
Z e A. So again (33) holds.

We have proved that both in Case 1 and Case 2 Rel, ( Jos veis Sm)
is equal to Rel,(f;, ..., f,) for some system (30). The concluswn follows. m
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§ 6. Bang-bang theorems

It is well known that linear systems satisfy the ‘bang-bang property.
Thérefore any system which is equivalent to a linear system also satisfies
a bang-bang property. Now, the obstruection for a system to be equivalent
to a linear system is the existence of brackets [f;, (adf,)*(fi)],j > 0, k> 0,
that do not vanish. So it is reasonable to expect that. some condition on
these brackets, weaker than the requirement that they vanish, might
suffice to prove a bang-bang theorem This can be substantmted at least
for m =1. g

Precigely, consider a system !

*34) b = fol@) +ufi(@), <1

THEOREM G. Suppose the sysiem (34) 18 analytic. Assume that for every
stale xo and every ¢ there i8 a neighborhood U of «, such that

41

(35) Lfiy AF (] =3 g adfo) (fl

k=0
on U, where the g, are analytic functions on U such ihat |p; 4, (@) <1
Jor all # € U. Then (34) satisfies the following property:

(BBBNS) (Bang-bang with bounds on the number of switchings)
For every compact set K = M, and every time T.> 0, there exists a posilive
integer N such that, whenever y €8 a time-optimal trajectory of (1) whick ¢s
entirely contatned tn K, and goes from a point p € K {o a point q € K tn time
not greater than T, then there exists a time-optimal trajectory y' from p to q
which 18 bang-bang with at most N swilchings.

The proof of this theorem is quite long and it is:given in Sussmann
[10]. An explanation of why this result is useful for nonlinear synthesis
theory can be found in Sussmann [12]. An important open problem is to
find a good generalization of Theorem G to the multiinput case,

§ 7. Lie series and local controllability
Consider a system
(36) & =fol@)+ Y wifil®), |ul<1
i=1

We say that (39) is small-time locally controllable (STLC) from a peint
@, if, for every T > 0, the sct

(37) Reach () = (J Reach,(x,)
I<i<T
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contains z, in its interior. Small-time local controllability is a local pro-
perty, and it is invariant under changes of coordinates, so it should be
possible to characterize it in terms-of Lie bracket relations. A good ne-
cessary and sufficient condition for STLC is not known at present but
substantial progress has been made. Here we present a rough sketch of
one method that has been used. It is based on the idea of associating with
every admissible control an ezponential Lie series. '

—_
Let Assoc(X,, ..., X,) be the set of all formal power sertes in the

A~
indeterminates X;,..., X,,. The elements of Assoc(Xg,..., X,) are all
formal sums ) ay X, where the sum runs over all multiindices I = (¢,, ...
«.+y t,) of arbitrary length 7 such that 0 < ¢, < m for all . It is not required
that a; = 0 for all but finitely many I’s.

For each 7, let Assoc.(X,, ..., X,,) denote the set of all homogeneous
elements of degree r of Assoc(X,, ..., X,,), i.e., the set of all formal sums

S a; X;, where I runs overall multiindices of length 7. Then Assoc(X,, ...
: v o0
v..y Xp) can be identified with the infinite product [] Assoc,(X,, ..., X,,),

r=0
i.e., with the set of all formal infinite sums

ZZ,, Z, € Assoc,(X,, ..., X,,).

r=0 ’

Let
Lie,(X,, ..., X,,) = Assoc,(X,, ..., X,,)nLie(X,, ..., X,)

a oo
and let Lie(X,, ..., X,;) be the set of all sums } Z_with Z, € Lie, (X,, ...

re=1
cey X))
The elements of Lie,(X,,..., X,,) are called Lte¢ series in X,, ..., X,,,
N

and the elements of Assoc(X,,..., X,,) are the noncommutaiive formal
power series in X,,..., X,..

N
We let Assoc?®(X,, ..., X,,) denote the set of formal power series with
i
no constant term and then 14 Assoc®(X,, ..., X,,) is the set of all formal
S
power series whose constant term is equal to 1. If S € Assoc®(X,, ..., X,.),

then the series

(38) exp(8) = — 5

o™y

s
a_l,_.;

-0
is well defined because, for each r, if

NN S
p,: Assoc(Xy, ..., X,,)+As80C,(Xy, .0ay Xp)
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is the obvious projection, then p,(S*) = 0 for all but finitely many ;.
Similarly, the series

V1 (D7
(39) log(1+8) = )~ — &

fe=1 ¢

TN
18 also well defined. It is easy to see that exp maps Assoc?(X,,..., X,)
N NS

onto 1 -+ Assoc’(X,,..., X,), log maps 1-+Assoc®’(X,,...,X,) onto
N
Assoc®(X,, ..., X,), and exp and log are inverse maps.

NN
A scries Z € Assoc(X,,..., X,,) which is of the form exp(8),Se
Lie(X,, ..., X,,), s called an exponenital Lie series (EL8) in X, ..., X,,.

We use ELS(X,, ..., X,) to denote the set of all exponential Lie
series in X,,..., X,,. One of the most useful results of the theory of Lie
series is the Campbell-H ausdorff formula which says that EL8(X,, ..., X,,)
is a group under multiplication. Precisely, if exp(Z) and exp(Z’) are
ELS’s, then

(40) exp(Z)exp(Z’) = exp(Z"),
where Z" is a Lie series, whose first few terms are
41) Z' =Z+Z'+;[2,2'1+3l2, 12,Z)| +5(Z, (%, 2] + ...

Now let u: [0, T]>R™ be bounded and measurable. We define a series,
which we denote by Ser(u), and a series-valued curve

N
S,: [0, T]—>Ass0c(X,, ..., X,,)

as follows: 8, is the solution of the differential equation

(42) 80 = 8 (X + Y w(t) X))
for which §(0) =1. Then
(43) Ser(u) = 8,(T).

Then an explicit expression for S, can be given in terms of sterated integrals.
For any w: [0, T]->R™, let u, always denote the function constantly
equal to 1. Then define, for any multiindex I = (s,,...,4,), and t € [0, T]:

81

t ¢ 8
fu, =f‘“¢1(81) f Ug, (85) ... f Uy (8,)d8, ... ds,.
0 0 0

Also, let I* denote the multiindex I in reverse order. Then S, turns out
to be given by the formula

f
(44) 8u(0) = Y [ wi) Xse.
I o
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Also, one can prove (e.g., by the Campbell-Hausdorff formula) that
8,(t) is always an ELS. Therefore we have defined a map

Ser: #,—>ELS(X,, ..., X,),

where #,, is the class of all bounded, measurable, R™-valuned functions
on intervals {0, T'], T > 0. Moreover, if %,, is equipped with the operation
of concatenation (which turns #,, into a semigroup) and ELS(X,, ..., X,,)
with multiplication, then Ser is a semigroup homomorphism. In addition,
the map Ser is one-to-one.

Now let f,, ..., f, be smooth vector fields on a manifold M. If v € %,,,
%: [0, T)]>R™, then we define S,(fy, ..., a) () and Ser(%) (fo, ...y fm)
to be the results of “plugging in” the f; for the X, in 8,(t), Ser(u), respec-
tively. Then S,(fo, -+ fwm) (1) and Ser(%) (fo, ..., fm) are formal series of
partial differential operaiors. Precisely, if we let

i =1ty T,

for I = (44, ...,1,), then

]
(45) Sulfor +oer Sud () = D{ [ 1) Fres
I o
and r
(46) Ser () (foy +vr f) = 2 ( [ ) S
I o

Each u € %, is defined on an interval [0, T']. Let us use T', to denote
the T that corresponds to a given u. For u e #%,,, v € M, let t>=n(u, ©, )
denote the trajectory corresponding to the control « which goes through =
when F = 0. Then =n(u, z,t) is defined for all ¢ in some interval J(z, 4)
< [0, T] such that 0 edJ(z,%) and that if supJ(z,u) =t< T, then
té¢J(z,u). If K< M is compact and > 0 is & constant, then there
is an & > 0 such that J(z, 4) = [0, ] for all x € K and all 4 € 4, such that
e<T, and

sup{llu(®)): 0<t<e} < a.

Let us refer to any ¢ with these properties as a good ¢ for the given K, a.
If ¢: M—>R is a smooth function, and if 4 € %,,, then we can define
a function P, (p) by

Py(p) (z) = ¢(n(u, z, T,)).
The domain of P,(¢p) is the open set
Qu = {w: J(.’D, %) = [0, Tu.]}-

Now consider a compact set K and an a> 0. If £ > 0 is good for
K, q, then K = @, for all « € #,(¢, a), wherc

Up(e,a) = {u: T, < &, 8uplu, ()| < a}.
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Hence, for any ¢: M—R, the function P,(¢) is well defined on K forall
u € ¥%,(c, a). If ¢ is smooth, then we can consider the series

Ty
(47) Ser () (for ver f) (@) = O ([ 1) frees
I 0

where f7.¢ is the result of applying to ¢ the partial differential operator f;..

‘It turns out that Ser(u) (fo,...;fm) (p) €8 an asymptolic series for

P,(p) as T,—0 while u € %,,(¢, a). P}e'cisely, let us define the “truncated”
Y

series Sery(w) to be the sum Y ( [ w;)X,., where (I| is the length of I.
<N ¢

Then define Ser,(u) (f.,, o Jm) and Bery(u) (fo, .0y fn) (qb) in an ob-
vious way. '

LEMMA 4. Consider a system (1), where the f, are C* vector fields. Le
K = M be compact, a > 0, e good for K, a. Then for every smooth ¢: M >R
and every nonnegative initeger N, there exisis a constant C > O such that

lp(7(, u, T,)) —Bery(u) (foy ...y f) (9) (2)] < CTTH
Jor all z € K and all u € #,,(¢, a).

The proof of this lemma is straightforward and we omit it. We now
explain how the lemma can be used to generate “control variations.”
Suppose {u,} is a family of controls depending on a real parameter ¢ and
belonging to #,(e, a) for some fixed e, a. Assume that T, -0 as ¢—0,
and that the coefficients of Ser(u,) are finite linear combmatlons of (not
necessarily integral) powers of o¢. Since Ser(u,) is an exponential Lie
series, we have

| Ser(u,) = exp (Z (u,),
where
Z (ug) = log(Ser(u,)),

8o that Z(u,) is also a series in powers of o. Then we can write
Z(u,) = 0*Z +o(a%),
where Z' is a Lie polynomial in X,,..., X,. From this it follows that
Ser(u,) = 1+*Z +o0(cf).

Since Ser(u,) is a series in powers of o, the coefficient of X, in Ser(u,)
is also a series in powers of o, and so

~pd* as o0,

for some g > 0, 1> 0. Then the lemma 1mphes that for any smooth func-
tion ¢

(48) pln(@, 4y I,,)) = (@) +0°Z (fo; o1 Im) (@) (@) +0(0°)
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as o0, uniformly as long as zstays in afixed compact set. (Indeed, take N
so large that N > degree (Z’), and that A(N +1) > p. Then

Sery(4,) =1+ *Z' +o0(0%)
and so (48) holds if ¢(n(w,u,,T,)) is replaced by Sery(u,)(fo,..-
v ooy fm)(@) (w). On the other hand, the lemma implies that Sery(«,) (fo, ...
v fa)@) (@) and ¢(n(z,u,, T,)) differ by an O(TJ*!), ie. by an
0(0,))- , |

The vector field Z'(f,, ..., f,,) then has the property that for every =
the tangent vector at { = 0 to the curve

t—>m(x, U, Tu"l[c)
is precisely Z'(fy, ..., fm) (2).

As an illustration, let us take m = 2. For each o > 0, let u, be de-
fined on {0, 4¢], by letting (u,), equal 1, 0, —1, 0, respectively, on [0, o],
(g, 20], (20, 3a], (30, 40], and (u,), equal 0, 1, 0, —1, on the same inter-
vals. Let f,= 0, f, = f, f, = g, where f and g are smooth vector fields.
Then (using the notation of §3),

(5, Uy 40) = 9?(—0) P! (—0) D (0) D' (0) ()
and
(49) Ser(u,) = exp(oX,— o0X,)exp(cX,— 0X,)exp(cX,+ 0X,)
‘exp(aX,+0X,).

Since we are going to “plug in” 0, f, g for X,, X,, X,, we can forget
about X, in (49).

From the Campbell-Hausdorff formula, we get

Ser(u,) = exp(o*[X;, X,])+P,
where P involves monomials that contain X,. So the tangent vector to
the curve
17 (a, uyi, 4V1)

at t =0 is [f, g](x). This proves the equivalence of Definition 1 and
Definition 2 of § 3.
Now let us consider a system

(50) . & = fo(@) +ufi(z), |u[<1.
Hermes introduced a condition which, he conjectured, implied small-time
local controllability. Recently, we have been able to prove Hermes’ con-

jecture, using the exponential Lie series formalism. Let us first state
Hermes’ condition.

For each k> 0, let #*(f, g) denote the linear span of all brackets
of f’s and ¢’s that involve no more than % ¢’s. Then

LS 9) € L 9).€ U9 -
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At any point z, let &*(f, g)(z,) denote the set of all X(x,) with
X e #%(f, g). The following is Hermes’ conjecture:

THEOREM H. Suppose that the system (50) satisfies the RC at z,, that
f(z,) = 0, and that

F*(fy @) (@) = F*H(, 9) (w,)

for every odd k. Then (50) t8 STLC from wz,.

The proof of this result is too long to be given here. We shall limit
ourselves to a brief sketch. Pick a very large N. Let ELS, (X,, X,) denote
the set of all exponential Lie series in X,, X,, truncated at N. Then
ELS(X,, X,) is a nilpotent Lie group, whose Lie algebra is Liey(X,, X,),
the set of all Lie polynomials in X,, X,, of degree not greater than N.
The system

(51) 8 = 8(X,+uX,)

can be regarded as evolving in ELSy(X,, X,). The trajectory of (51) for
a given control u, starting at § =1 when ¢ = 0, is the curve

t—>[8,(t) 1wy

where [-]y denotes truncation at XN.

So the accessible set from 1 is {Sery(u): u € #,}. On the other hand,
it is easy to see that (51) has the AP from 0 and so {Sery(u): v e %,}
has a nonempty interior.

Pick a control ¥: [0, T]—>R such that P, = Sery(%) is in the interior
(relative to ELSy(X,, X,)) of the reachable set from 1. Now P, is the
exponential of an element Z, of Liey(X,, X,). If we let Z; denote the
result of replacing X, by —X,; in Z,, and if

-P; = exp(Z;),

then P, is also reachable from 1 and so P, = P, P, is in the interior of the
reachable set from 1.
Now we can write

Zl = (Zl)even+ (Zl)odd!

where (Z,).vensy (Z1)0aq are the parts of Z, that involve, respectively, brackets
with an even number of X,’s and brackets with an odd number. Then
Z; = (Zl)ev'en - (Zl)odd'
Then
P, = exp(Z,)exp(Z,) = exp(Z,),
where
Zz = ZI+Z;+§[ZUZ;]+
=2 (Zl)even+ [(Zx)odd| (Zl)even] + ...
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so that Z, is the sum of a part that is even in X,, and a part which has
total degree not less than 2. Repeating this procedure, one can produce
P,, P, ... such that P; = exp(Z;), where Z; is the sum of a part which
is even in X, and a part which has total degree not less than ¢. Since
Liey(X,, X,) is nilpotent, we conclude that there is a @ which is of the
form Sery (u) for some % € %, and satisfies

Q = exp(Y)

with Y even in X,, and which belongs to the interior of the reachable
set from 1.

Now suppose
B = (adX,-l) . (ad Xy ) (Xc,)’

where each 4, is either 0 or 1. Assume that B is even in X,. By the hy-
pothesis, B(f,, f1) (z,) is equal to a linear combination

(; aBCC) (for 1) ()

where C runs over brackets with fewer X,’s than those that appear in B.
We can write
Y = Z YpB,
B

where the sum suns over brackets that are even in X,. Let D be a Lie
monomial in X,, X,, not necessarily even in X,. Since exp¥ is in the
interior of the reachable set from 1, there is an ¢ > 0 such that the point

Q4,n) = exP(Y(A) "7))1
where

Y(4,n) = 3-D+2?IB(B— 2’750“800)1
B c

is reachable from 1, whenever 1€ R, n = {ngc}, satisfy
Al <e, gl = max{ingel: B, O} <e.

Now fix, for each 2, n for which |1]| < ¢, [l < ¢, a control u, ,: [0,T; ]
—R such that

Sery(uy,,) = @(4,n).
Let r be a fixed positive integer. For 0 <t < 1, || < ¢, [nll < &, define
ui',,: (0,:7,,]>R
by 4},(8) =t"u,,(&/t). Then

(52)  Sery(u},) =exp (}.t“D)D 4 2 yB(t"(B’B — 2 4 r)mawD)) ,
B G
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where, for each bracket C,
8(C) = ru(C)—»(C).

Here »(C) is the total degree of C, and x(C) is the degree in X,.
Bach term t*)yzoa50C that appears in (52) corresponds to B, C
such that
#(C) < u(B).

Since only a finite number of B’s and (’s are involved, it is possible

to choose » such that 6(C) < 4(B) for all the B, C that occur in (52), and
that 8(D) >

Then we can choose

npo(t) = PB4 A@) =t, () = {nze(t)}.

Then, if ¢ is small enough, |A(t)|< e and [p(t)]l < e Bo Wy .y is well
defined, and

(53) SerN('"';u).nu)) = exp [t‘w) HD+ Z thd(B)RB]!
B

where

=B—ZaBOC.
C

If we expand the exponential in (63), we find that
Sery (W mn) =1+ D H +o (DY),

where H is a linear combination of products Ep ... Rp, 8>1. If we
plug in f,, fy for X,, X, and evaluate at x,, then H will vanish because
all the Rgz(f,, f1) (@,) vanish. So if ¢: M—R is smooth, we find

‘P(?’(t)) = ‘P(wo) +ta(D)+l[D(fo’: Fel (@) +0(taw)“) +0(Tiv+l)1
where
T, =T,
“ag)n(t)
and.

() = n(u’;.(t),q(l)) Zoy Iy).

Now if N is sufficiently large, the o(TV*') will be an o(1*P+!) as
well. Then the tangent vector to the curve g-»y(¢'*+¥P) at ¢ =0 is
D(foy f1) ().

But D(f,, f,) was an arbitrary bracket of f,, f;, and these brackets span
the space of tangent directions to 2, because of the rank condition. So
we can build control variations in all directions, and therefore it is possible
to reach, from z,, a full neighborhood of z,.
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This completes our sketch of the proof of Theorem H. The details will
be published elsewhere (Sussmann [11]).

§ 8. Concluding remarks

Lack of space prevents us from surveying other applications of Lie brac-
kets and real analyticity. In particular, we have not discussed observa-
bility and realization theory. A theory of observability of nonlinear systems
has been developed, as well as a theory of minimal realizations (cf, Suas-
mann [7], [8]). Also, Fliess has developed a local theory where, to each
system with an observation y = h(x), one associates a formal power
series in noncommutative indeterminates. In [3] Fliess has found a necess-
ary and sufficient condition for a series to arise from an analytic system.

A deep development in the theory of real analytic functions is the
theory of analytic stratifications and of analytic, semianalytic, and sub-
analytic sets. One application of this theory to a system-theoretic problem
was given in [9], where we proved that for an analytic system there
exists a universal imput, that is, an input «» with the property that, when-
ever two states produce different outputs for some input », then they
produce different outputs for u.

The hardest (and possibly the deepest) use of real analyticity in control
theory is the work (begun by Brunovsky in [1]) on the existence of regular
synthesis. This work makes use of the theory of subanalytic sets. Due to the
length and the techmnical complexity of the proofs, a detailed account of
the results is not yet available. However, a long paper by Brunovsky and
this author, now in preparation, will, we hope, fill this gap.

References

[1] P. Brunovaky, Fvery normal linear system has & regqular time-optimal synthesss,
Math. Slovaca 28 (1978), 81-100.

(2] —, On the structure of optimal feedback systems, in; Proe. Int. Congress of Math-
ematicians, Helsinki 1978, 841-846.

[3] M. Fliess, Realizaltons of nonlinear systems and absiract transitive Lie algebras,
Bull. Amer. Math. Soc. 2, 3 (1980), 444-446.

[4] A. Krener, A generalization of Chow’'s theorem and the bang-bang theorem lo non-
linear oontrol problems, SIAM J. Control Optimixzation 12 (1974), 398-404.

(5] T. Nagano, Lincar differential sysiems with singularities and an applicalion
to lransélive Lie algebras, J. Math. Soc. Japan 18 (1966), 398—404.

(6] H. J. Sussmann, Orbits of families of vector fields and integrability of distri-
buttons, Trans. Amer. Math. Soc. 180 (1973), 171-188.

[71 —. Ezistence and uniqueness of minimal realizations of nonlinear systems, Math.
Systems Theory 10 (1977), 263-284.

[8] —, A generalization of the closed subgroup theorem to quotienis of arbitrary mani-
folds, J. Differential Geometry 10 (1875), 151-166.



542

H. J. BUSBMANN

[9] H. J. Sussmann, Single-input observability of continuous-time systems, Math.
Systems Theory 12 (1979), 371-393.

[10] —, A bang-bang theorem with bounds on the number of swilohings, SIAM J. Control
Optimiration 17, 5 (1979), 629-651.

[11] —, Formal ezponential Lie series and local controllability, to appear.

[12] —, Amnalytic stratifications and conirol theory, in: Proc. Int. Congress of Mathema-
ticians, Helsinki 1978, 865-871.



