SOME PROBLEMS CONCERNING ROOTS OF POLYNOMIALS WITH DIRICHLET CHARACTERS AS COEFFICIENTS

J. KACZOROWSKI

Institute of Mathematics, Adam Mickiewicz University
Poznań, Poland

For a given Dirichlet character $\chi \pmod{q}$ let us denote

$$\Phi_{\chi}(z) = \sum_{m=1}^{q-1} \chi(m) z^m.$$

Let the field k_{χ} be the extension of Q generated by the numbers $\chi(m)$, m = 1, 2, ..., q-1. It is evident that $k_{\chi} \subset Q(\zeta_q)$ and that $\Phi_{\chi}(z)$ is a polynomial over the ring of integers of the field k_{χ} . Let us denote by K_{χ} the splitting field of $\Phi_{\chi}(z)$. Obviously $k_{\chi} \subset K_{\chi}$. The most interesting case for us will be $k_{\chi} = Q$.

The polynomials $\Phi_{\chi}(z)$ appear in a natural way in the theory of Dirichlet L-series. In fact it is easy to see that for $s = \sigma + i\tau$, $\sigma > 0$

$$L(s, \chi) \Gamma(s) = \int_{0}^{\infty} \frac{\Phi_{\chi}(e^{-t})}{1 - e^{-qt}} t^{s-1} dt.$$

From this formula it follows that there should exist close relations between the zeros of $\Phi_{\chi}(z)$ and the behaviour of $L(s, \chi)$. One of them can be seen at once: if $\chi = \overline{\chi}$ and $\Phi_{\chi}(z)$ has no roots in the interval (0, 1) then $L(s, \chi)$ has no real roots in the critical strip, in particular Siegel's zero does not exist. Thus we have

PROBLEM 1. Are there infinitely many primitive real characters χ such that $\Phi_{\chi}(z)$ has no roots in the interval (0, 1)?

From the theory of Gaussian sums it follows that many zeros of $\Phi_{\chi}(z)$ are roots of unity.

Some information about the roots of $\Phi_{\chi}(z)$ can be deduced from the structure of K_{χ} . We have the following

THEOREM. (i) If the extension K_{χ}/Q is abelian, $\chi = \bar{\chi}$, 2|q then all zeros of $\Phi_{\nu}(z)$ are roots of unity.

(ii) Let K_{χ}^{0} denote the maximal real subfield of K_{χ} . If the extension K_{χ}^{0}/Q is totally real then $\Phi_{\chi}(z)$ has no roots in the interval (0, 1).

The proof of this theorem follows from the well-known Kronecker-Weber theorem, the Kronecker theorem ([1], th. 2.1) and a result of R. Robinson [2].

PROBLEM 2. For a given Dirichlet character χ give an explicit construction of the field K_{χ} .

It is easily seen that K_{χ} cannot be quite arbitrary. For example, if χ is a primitive character mod q, $q = 2^a q_1$, $2 \nmid q_1$, $q_1 > 1$, $a \ge 2$, then

$$Q(\zeta_q) \subset K_{\chi}$$
.

It can also be proved that there exists a function ψ such that

$$|\Delta_{\mathbf{x}}| < \psi(n_{\mathbf{x}})$$

where n_{χ} and Δ_{χ} denote the degree and the discriminant of K_{χ} resp.

Note that in general the discriminant of an algebraic number field cannot be estimated from above in terms of degree only. This means that the last inequality gives a strong restriction upon the field K_x .

Let us give some examples of K_{χ} . Let us look at the fields K_{χ} where χ are the characters of the first six fields $Q(\sqrt{-D})$ (note that there exists one-to-one correspondence between primitive real Dirichlet characters and quadratic extensions of rationals). If D>0 is any square-free number and χ_D is the character of the field $Q(\sqrt{-D})$, then we shall write K_D instead of K_{χ_D} . We have:

D	K_D
1	Q $Q(\zeta_4)$ Q
2	$Q(\zeta_4)$
3	Q
5	$Q(\zeta_{60})$
6	$Q(\zeta_{24})$
7	$Q(\zeta_{60}) Q(\zeta_{24}) Q(\sqrt{2}, \sqrt{2\sqrt{2}-1}, i \sqrt{2\sqrt{2}+1})$

Thus in the first five cases the corresponding L-functions have no real roots in the half-plane $\sigma > 0$.

Here the case D = 7 is interesting. Namely K_7 is a non-abelian extension

of rationals of degree 8. But if χ' (mod 14) denotes the Dirichlet character induced by χ_7 , then

$$K_{\chi'}=Q(\zeta_{12}),$$

and again we have $L(\sigma, \chi) \neq 0$ for $\sigma > 0$.

PROBLEM 3. Let $\chi' \pmod{q'}$ be the Dirichlet character induced by $\chi \pmod{q}$, $q \mid q'$. Find the relations between K_{χ} and $K_{\chi'}$.

PROBLEM 4. Is it true that if $L(s, \chi) \neq 0$, $\chi \pmod{q}$ for 0 < s < 1 then there exists a natural number q', $q \mid q'$ such that, for the induced character $\chi' \pmod{q'}$, the extension $K_{\chi'}/Q$ is abelian?

References

- [1] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Warszawa 1974.
- [2] R. Robinson, Some conjectures about cyclotomic fields, Math. Comput. 19 (1965), pp. 210-217.

Presented to the Semester

Elementary and Analytic Theory of Numbers

September 1-November 13, 1982