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1. INTRODUCTION

In this paper structural properties and asymptotic behaviour of solutions
of the following linear stochastic infinite-dimensional equation:

(1) dz = Azrdt+Bdw,
2(0) =2,e H

are studied. In this equation 4 denotes the infinitesimal generator of a
C,-semigroup S(t), ¢ > 0, acting on a Hilbert space H, wis a Wiener process
with values in a Hilbert space U and with covariance operator R, and B is
a bounded linear operator from U into H. By a solution of equation (1)
we understand the so-called mild solution, see [3], given by the following
explicit formula:

[
(2) z(t) = 8(tyw,+ [ 8(t—s)Bdw(s), t>0.
. [1]

Our aim is to give some answers to the following questions:

Under what conditions process (2) is non-degenerate in the sense
that, for all initial conditions #, € H and any non-empty open set V <« H,
the probability of the fact that the process (2) will eventually hit V is
positive

Oharacterize those processes (2) for which all transition probabilities
are absolutely continuous with respect to a fixed probability distribution.

Under what conditions there exists a stationary measure for process
()1

Describe the set of all stationary measures and give conditions which
imply uniqueness.

[691]
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Characterize all recurrent processes (2). ‘
Characterize all positive recurrent processes (2).

For all the above-formulated questions there are satisfactory answers
if dim H < + oo, see papers [6], [8] and [19]. But to the best of our know-
ledge these questions have not been answered in the case of infinite dimen-
sions and in the genecrality proposed here. As we shall see, results obtained
in [6], [8] and [19] can be only partially extended to the case dimH
= 4 oo. Moreover, if dimH = 4 oo, then some new interesting questions
arise. For instance, an information that the closed support of a stationary
measure is the whole H is not very satisfactory as there can also be some
dense but not closed linear subspaces with the same property.

The connection of the results presented here with the control theory
is twofold. First of all, several probabilistic properties of system (1) are
closely related to controllability properties of the following deterministic
gystem:

(3) & = Az +BR"uy.

Secondly, results obtained in the paper can be applied to study stochastic
controllability of the controlled system of the form:

dr = Azdt+Cudt+ Bdw.

In particular, an extension of the finite-dimensional results of papers [7]
and [17] is possible. Such an extension will be treated in a subsequent
paper.

There following basic assumption will be valid throughout the paper
(although some results will be true in general):

There exists a right continuous version of the stochastic integral:

4
[ 8(t—8)Bdw(s), t>0.
0

It is still an open question whether the assumption is satisfied for all

C,-semigroups S(t), ¢t > 0. There are, however, several sufficient condi-

tions under which this is true; see [2], [11], [14], [4] and survey [12].
The present paper is a rewritten version of the report [18].

2. NON.DEGENERACY AND EQUIVALENCE

By y(m, @) we shall denote the Gaussian measure on the Hilbert space H
determined uniquely by its mean value m € H and the covariance operator Q.
The following fact is well known (see [16], p. 63, where a more general
fact was proved):
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ProprosITION 1. The smallest closed support of the measure (0, Q) 13
tdentical with the closure of the range of the operator @ (Range@).

It follows from representation (2) that the transition probabilities of (1)
are exactly:

(4) P(t, 25, *) = y(8(t)x0, Q)
where
t
(5) Q = f S(r)BREB*8"(r)dr, ¢>0.
0

If dimH < +o0c, dim U < + o0 and R = I, then the following char-
acterization can be found in [19]:

ProOPOSITION 2. Supports of all measures y(0,Q,) are identical with
the (A, B) controllable subspace of H. Moreover, process (2) t8 non-degenerate
if and only if
(6). Rank[B, AB,..., A" 'B] =n =dimH,

To prove an analogous result in the case dimH = + oo we need
the following lemma. In its formulation IL;: L*[0, {; U]—H is the control-
lability operator defined as

[
(1) L = [ 8(r)BR™u(r)dr, 1>0.

LemMmA 1. For all t > 0,
(8) Range L, = Range@;”.
Proof. We use the following well-known result (see [3], p. 55):

If X, Y, Z are Hilbert spaces and F: X—~Z,G: Y—Z are linear bounded
operators, then RangeF — Range@ tif and only if there exists ¢ > 0 suoh
that, for all 2* € 2°,

IF* 2% < o)l@*2°.

It is easy to sce that in our situation the element L« is given by the
formula

(L{z) (8) = RV*B*8*(s)2, sel0,t],
and therefore

i
IL¢2l® = [ (B B*8*(s)|ds
[1]

= IVQ2I* = IV Q] al.
Consequently, (8) holds.

38 — Banach Center t. 14
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If the set composed of all elements of the form
[
S(t)z,+ f S(t— 8) BRV*u(s)ds,
0
where ¢t > 0 and «( ‘) is any clement from L*[0, t; U], is dense in H, then

system (3) is called approximately controllable from z,.

THEOREM 1. The stochastic system (2) i8 non-degenerate if and only if
the controlled system (3) t8 approzimately controllable from all initial states
Ty € H.

Proof. 1t is clear that, for all { > 0,

RangeQ, = RangeQ)”.

Moréover, if #(t) is given by (2) and P(¢, #,, V) > 0 for an open set V c H-
then, by Proposition 1, the intersection of the set V with the affine hyper,
plane RangeQ}’® +8(t)x,is non-empty. By Lemma 1, Range L, — Range@}”,
and therefore the intersection of the set V with RangelL,-}8(¢)x, is non-
empty a8 well, and (3) is approximately controllable from @,. The con-
verse implication follows in a similar way.

Remark 1. Explicit conditions for approximate controllability which
generalize the rank condition (6) to infinite dimensions were studied by
several authors, in particular by R. Triggiani [15], see also [3] and refer-
ences there.

Although Theorem 1 is a natural extension of Proposition 2 to the
case dimH = -+ oo, nevertheless if dimH = + oo, the following new and
pathological situation can happen.

ProrosITION 3. If dimH = -} oo, then there exists a slochastic process
of the form (2) such that:

(1) For any non-empty open set V there exists 1 > 0 such that
P(t,0,V)>0;

(2) There exists an open set V = O and an initial condition xrye H
such that for all t > 0,

P(t, mo, V) = O.

Proof. An cquivalent formulation of Proposition 3 is that there exists
a controlled system of the form (3), with R > 0 a nuclear operator, which
is approximately controllable from ¢ but not from any other state. Let
Z = I*[0, + o) and define on Z the “left shift” semigroup S(i):

0 if 6<t,

S(t)z(a)={z(g_t) if 0>t
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and an element b eZ:
L 1 it 6<1,
bw)—{o it 6>1.
Ag the Hilbert space H we take
H =1lin{8(t)b; i>0}cZ

and define controlled system as

[
(9) 2(t) =8Oz + [ S(t—s)bu(s)ds, 1>0.

‘In this case
~ Rangel; = lin{8(r)b; r <1}

and therefore, by the very definition of the space H, system (9) is approxi-
mately controllable from z, = 0. 1f, however, the initial condition z,
equals S§(1)d, then S(t)z, = J(t+1)b and consequently, for any t> 0
and control u e L*[0, 1],

. .
|8(ze+ [ 8¢—a)bus)ds||> 18@)z0l = 11> 0.
¢

Therefore system (‘9)‘, is not approximately controllable from z, = S(1)b.

Remark 2. If there exists a universal time for the approximate control-
lability of (3) from 0, then system (3) is approximately controllable from
any initial condition and the situation described in Proposition 3 cannot
happen..

We proceed now to the main result of this section. Let us recall (see
[3], p. 68) that system (3) is exactly null controllable on the interval [0, t]
if, for any «, € H, there exists a control u e L*[0,t; U] which steers
to 0:

'
S(t) 3o+ fS(t—s)Bl/I_Bu(s)ds = 0.
0

THEOREM 2. The transition probabilities (4) are equivalent for all 1 > 1,
and all 2, € H if and only if the corresponding system (3) is exactly null
controllable on arbilrary time interval [0, 1], with t > t,.

To prove Theorem 2 we shall need the following lemmas whose proofs
are given, for instanee, in [9].

LEMMA 2. Let R, and R, be self-adjoint non-negative operators defined
on H such that:

RangeRY* = RangeR)* =H, and H,=H.
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Then
(i) The operator C, = RTV2RY? s bounded;
(ii) The operator C, = BRY*R ' has continuous extension C, to H;
(iii) CF =0, and C, = C;.
LEMMA 3. Two non-degenerate Gaussian measures y (m,, B,) and y (m,, R,;)
are equivalent if and only if: '
(i) Range R}* = Range R}*;
(ii) my—m, € Range R}'*;
(iii) The operator 0,0} —I, where C, = R7'*RY* ¢s Hilbert—Schmidt
with all eigenvalues greater than —1.

Proof of Theorem 2, Bince the distribution. P(t,,,) is exactly
»{8(t)2,, @), therefore from Lemma 3 the equivalence

?(s(t)“’o’ Qt) ~ y(0, @)

holds if and only if S(f)s, € RangeQ}. Consequently, for a fixed it > 0
and all initial states o, € H, the measures y (3 (1) x,, @) are equivalent if and
only if

(10) RangeS(t) c Range@}”.

Taking into account Lemma 1 we see that inclusion (10) is equivalent to the
exact null controllability of system (3) on the interval [0, t]. The the-
orem is thus proved in onc direction. Let us new assume that condi-
tion (10) holds for all ¢ > ¢, and let us remark that, for all € L*{0, t; U]
and ¢ > s8> 1,,

[
Lyw = [ 8(r)BR™u(r)dr
0

s t—s .
= [ 8(r)BRu(r)dr + 8(s) f S(r)BR"u (s +r)dr.
0 Q

Therefore
Rangel, < RangelL, U RangeS(s),

and thus from (10) and Lemma 1,
RangeL; = Rangel,.
Consequently, for all t > & > t,,
Range@}? = Range@}2

Let H, = RangeQ)? for some > {, and therefore for all t > {,. It follows
from definition (5) that

(11) Q—Q, = S(s)Q,_,S'(s), 1> 8> 1.
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Applying the operator @' to both sides of (11) and using Lemma 2 with
the space H replaced by H,, one obtains, for all # € H,,

Clqzlza‘._q‘:ﬁw = (Q:llaS(s))Qt—aS'(s)w;
where C, = @Q;'*QV%. Take z = Q@ "2y, where y e RangeQl?; then
(12) C,Ciy—y = DQ,_,D°y.

In (12) D = @;'*8(s) is a bounded operator such that D* is the unique
extension of §*(8)Q, ", Consequently, (12) holds for all y € H,:

c,0'—I = DQ,_,D".

Since @,_, is a nuclear operator, DQ,_,D* is also nuclear and hence Hil-
bert-Schmidt. Moreover, D@Q,_, D* is a non-negative operator, consequently
all its eigenvalues are non-negative, thus greater than —1. In this way we
have shown that all conditions of Lemma 3 are satisfied and the proof
of Theorem 2 is complete.

Remark 3. Processes (2) for which the assumptions of Theorem 2 are
satisfied will be called regular processes. Proposition 4 below shows that
there are non-trivial regular processes also if dimH = -+ oo, On the other
hand, the regularity assumption imposes severe restrictions on the semi-
group S(t). For instance, if process (2) is regular, then all operators S(i),
t > t,, are necessarily Hilbert—Schmidt. To see this, let us notice that
from (10), for some d > 0 and all z e H,

(13) I8* (1) || < 811Qi ]

If (A, ¢;) is the sequence of cigenvalues and eigenvectors of the nuclear
operator @,, then, from (13),

+oo +o0
D I8@Welt = D I8* (1)el
k] k=]

+oo +00
< ¢ 2 ”Qt”zekllz < 52211; < +oo.

k=1 k=l
Therefore S(?) is a Hilbert—Schmidt operator.
PrOPOSITION 4. Let (a;) and (4,) be positive sequences such that:
(i):i? A< + o005
(ii) ;,:—>+oo and there exists C > 0 such that

(14) lna, ;' <aq+C, k=1,2,..



598 J. ZADCZYK

If H =1, and the operators A, B and R are defined as
Az = (—aqi &), B =1, Rr=(NL§&), z=(§)el,,
then process (1) ts regular.

Proof. In the present situation condition (10) is equivalent to the
existence, for all ¢ > 0, of constants C(t) > 0 such that

(15) 8(2t) < C(1)Q,-
Taking into account that the eigenvalycs of the operators 8(2¢t) and @, are
respectively e~2°¢ and —;—"- (L—e 2%, £ =1,2,..., we see that (14) im-

ay
plies (15).

3. INVARIANT MEASURES

3.1. Existence

The following theorem extends to infinite dimensions a similar result,
valid for finite-dimensional spaces, contained in paper [12].

THEOREM 3. The following conditions are equivalent:
(i) There exists a stattonary distribuiion for process (2);
(ii) There exists a non-negative nuclear operator Q satisfying the equation
(16) 2(QA*z,z)>+(RB*z,B*2) =0 for xeD(4A");

(iii) supTrace@, < + oo.
>0

If one of the conditions (i)-(iii) holds, then any invariant probability
measure u for (2) i8 of the form

17 u=vrey(0,Q),

where v i8 an invariant measure for the semigroup 8(t): v8(t) =v, £t >0,
and Q is8 the smallest non-negative solution of (16).

Proof. Let us assume that x is an invariant measure for process (2)
and let 2 denote its characteristic functional:

i) = [expii, zdu(dr), AicH.
H

Stationarity implies that
A(d) = A(S*(t)A)exp (—1/2¢QiA, &), t>0, icH.
Let us fix A € H; then, for an & > 0, u(eA) # 0 and therefore exp ( —1/2¢*
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{@,A, 1>)—0 as t—+ oo, Consequently, sup (¢,1, A) < + o for all 4, and
>0

the limit lim @, = Q is a bounded, non-negative operator. It is a standard
{—++00

procedure to show that @ satisfies equation (16), see [3] and [6]. Since

4(8*(1)A) = p(A)exp(1/2<(Qi, 4)),
therefore
{18) ¥(4) = ‘lim (S'(t)l) = p(A)exp(1/2{Q4, )).

Also, since characteristic functional x4 is an §-continuous function (see
[13], p. 160), there exists a nuclear non-negative operator § such that
if (84, i) <1, then |u(Z)| > 1/2. Consequently, if (82, 2> <1, then

(QA, 2> < 21n2

and {(Qi, 1> <2In2{84, 4> for all 1 € H. We see that @ is also a nuclear
operator. In this way we have shown that (i) implies (ii) and (iii). It follows
from (18) that » is necessarily an §-continuous function and since it is
also positive definite, ¥ is a characteristic functional of a probability
measure v. But #(8*(t)A) =(2) for all t>0 and ieH, and so » is an
invariant measure for the semigroup S(?), ¢ > 0. Thus necessarily, any
invariant measure for (2) is of the form (17). It is easy to show that, con-
versely, if one of the conditions (i)—(iii) is satisfied, »is an invariant measure
for S(t), t = 0 and @ = lim @,, then the measure y = v+y(0, @) is inva-

§—++o0o

riant for (2).
Let us consider, as an illustration, the equation

(19) dr = Azdi+bdg,

where b e H and g is a 1-dimensional Brownian motion. The following
proposition is a simple consequence of Theorem 3.

PROPOSITION 5. A stationary probability distribution for (19) exists if
and only if

+a0

(20) [ 1I8wbitdt< + oo,
[}

If, in addition to (20),

(21) lin{8()b; t >0} = H,

then H is the smallest closed support of any invariant measure for (19).

Proof. Let us remark that in the present situation

[
@z, @y = [ [<8(r)b, a)|dr.
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Therefore if (¢,) is a fixed orthonormal basis in H, then
<+ 00 $ 400
Trace @ = D' (Quex, 6> = [ (D) 1<8(r)D, ey} dr
kel 0 k=l

¢
= [ 18(r)blFdr.
0

Consequently, Theorem 3 (iii) irnplies (20). The second part of the thcorem
follows from an easy to check identity

RangeL, = lin{8(r)b; r <t} = Range@Q}"”.

3.2. Uniqueness

As for the uniqueness of stationary measure we have the following result.

ProrosITION 6. If for any © € H either ||IS(t)x||—0 or (|S(t)z— 4+ oo
as t— + oo, then there exists at most one stalionary measure for (2).

Proof. 1t is sufficient to deduce from the assumption of the proposition
that if » is an invariant probability measure for the semigroup (S§(t)),
then » is concentrated at 0. Let, for instance, i « H be a compact set
such that 0 ¢ K, »(K)> 0, and

Kc {r: 0<|[8(t)s|—>0 as t— 4 oo}.
There exists a sequence f,—+ oo such that the sets K, = §(f,)K are
mutually disjoint. But

»(Kp) = #8(t,) (Kp) = »{2: Stz e S(t)K} > »(K), n=1,2,...

+o0
and v(H)> ) »(K,) = + oo, a contradiction.
nm=]1
In a similar way one can consider the case of a compact set

K < {z: |[S(t)z| >+ o0 a8 t>+o0}, »(H)>0,

+00
CoROLLARY 1. If, for all z ¢ H, S(t)z—0 a8 t—+ oo and [ [8(1)b]*dt
0

< + oo, then there exists exaclly one stationary measure for (19).
If dimH < + o and process (2) i8 mon-degenerate, then there exisis
at most 1 stationary measure. This is no longer true if dimH = + oo.

PROPOSITION 7. Take H = L*[0, -+ oo) and define for 2> 0 and x> 0
a semigroup S(t), t >0 and an element b € H as follows:

S(t)x(0) = expAtz(6+1), 2eH,

(22)
b(6) =exp(—xb%), 0>0,1>0.
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Then, for any A= 0, system (19) i8 non-degenerate and there exists
at least one stationary distribution for (19). There exists exactly one stationary
measure for (19) if and only ¢f 4 = 0.

Proof. The proof easily follows from Theorem 1, Theorem 3, Proposi-
tion 5 and the following lemma:

LEMMA 4. Any periodic trajectory of the equation
& = Az,
where A is the infinitesimal generaior of the semigroup (22) with A > 0, corres-
ponds to the following imitial condilions x,:
(i) @o(8) = ¢, 6> 0;
or

(i) 2,(0) = e~**y(0—r) for Belkr,(k+1)r), k =0,1,2,..., where

r 8 an arbitrary, positive number and y arbitrary element from L*[0,r].

From Lemma 4 it follows that if A > 0, then there are many periodic
trajectories of the form t—8(t)o, and therefore there arc many invariant
measures for the semigroup S(1).

3.3. Stationary distributions and stability

If dim H < + oo and process (2) i8 non-degenerate, then the existence of a
stationary distribution (2) implies the stability of the semigroup S(f):

(23) for all x e H, S{(t)z—0 as t—>+ o0
or, equivalently,
(24) sup{Red: Aed(4)} < o0,

Proposition 7 shows that this is no longer true if dimH = + oo, because if
A> 0, |8(t)]| = e*—+ oco. Even if the stationary measure is unique, (24)
may fail as Proposition 7 shows for A = 0. If 4 = 0, then the spectrum
of the operator A is exactly the imaginary axis.

3.4. Non-closed supports of stationary distributions

If the distribution z = (0, @) is invariant for (2) and dimH < + oo, then
the distribution y is concentrated on the subspace H, = {z: S(t)z—>0 as
1—+ oo}. Although we conjecture that this is true in general if dimH
= + oo, we are able to prove only the following proposition.

PROPOSITION 8. If measure u = y(0,Q) i3 a stationary distribution
Jor (2), then there exists a sequence t,— -+ oo such that

u{z: S(t,)z—-0} =1,
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+o0
If, in addition, [ Trace(Q —@,)dt < + oo, then
0

uH, = 1.

Proof. Let { be a random variable with distribution (0, @), then
E(llS(t)Cll’) = TraceS(¢)Q8*(¢). But §(t)QS*({) = @ —Q, and since @,19Q,
therefore E|8(t)¢|*—0 as t—+ oo. Consequently, there exists a sequence
t,— -+ oo such that ||S(¢,){||-0 almost everywhere. In a similar way we
check that

+o00

+o
B([ 18()¢at) = [ Trace(@—Qods.

4+

Therefore if f Trace (@ —@;)dt < -+ oo, then the measure x is concentrated
0

on the set H,:

H, = {m: T NS (t) 2l dt < +oo].

0

Since H, c.H., (see [B5]), pu(H,) =1.

+00
CoroLLARY 2. If [ tlIS(¢)bi*dt < + oo, then the stationary measure
0
y(0, Q) corresponding to (19) i8 concentrated on H,.

4. RECURRENCE

A process defined by (2) is called recurrent if and only if for any initial condi-
tion z, € H and any non-empty open set ¥V c H the probability that the
process will eventually hit ¥V is 1. It is therefore clear that recurrence
implies non-degeneracy. If dimH < 4 oo, then a non-degenerate process
(2) is recurrent if and only if (see [6] and [8]) there exists a decomposition
of H into the direct product of two §(¢)-invariant subspaces H,, H, such
that: '

(1) For all € H,, [[S(t)o||>0 a8 {— + o0;

(2) dimH, < 2 and for all » € H,, sup|S(t)a|| < + <.

>0

From the above characterization one can deduce the following suffi-
cient conditions for recurrence:

If dimH < + oo, process (2) is non-degenerate and
(1) For all x e H, S(t)x—>0 a8 t— + o0; or

(2) There exists a stationary measure for (2).

Then process (2) is recurrent.
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As we shall see later, if dimH = + oo, neither of those conditions
implies recurrence. The following theorem gives some sufficient and
some necessary conditions for recurrence.

THEOREM 4. Let us assume that there exists a stationary measure for
a non-degenerate process z(-) of the form (2). If
(i) For all x € H, S(1)x—0 as t— -+ oco;

(ii) Process 18 regular,
then the process x(-) t8 recurreni. On the other hand, ¢f

(iti) For some x, € H, ]lS(t)molll/l_n_taoo as t—»oo,
then the process x(-) i8 mot recurrent.

Proof. Let us assume first that (i) holds and let g = y(0, @) be the
unique invariant measure for the process under consideration. If K
={reH: j[v—y|<r}, then u{dK} =0 and consequently it follows
from the weak convergence: y(S (t)m,Q,) —>u (see [13], p. 40) that, for
every r € H,

P(t,z, K) = V(S(t)‘vr K) —pu(K) = po > 0.
We shall need the following lemma.

LEMMA 5. For arbitrary sequence of positive numbers (u.), i < phoy
k=1,2,..., there erists an increasing sequence 1, < 1, < ... such that, for
0‘081"?] k == 1’ 2’ ceey

P*(z(t)¢ K and ... andz(?) ¢ K and 2(f,,,) € K)
>Po(z(t) ¢ K and ... and (1) ¢ K)pyy,.

Proof. Let u, be a measure concentrated on the complement K° of
the set K and defined, for Borel sets I' = K° by the formula

() = Po(x(t) ¢ K and ... and z(,_,) ¢ K and «(1,) e I').

Since for all » € H, P(t, z, K)—>u,, therefore, for arbitrary 4 > 0, one
can find a compact set K, c K° and a positive number #,, such that

(K = p(K°)—8 and P, —~t4,9,K)>u—8 forall szekK,.
Consequently,
Po(z(t)) ¢ £ and ... and =(f) ¢ K and z(t,,) € K)

= [Pl —t ¥y K) p(dy) > (o — 8) (1(E°) — 9)
Ky

and therefore the proof of the lemma is complete.
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It follows from Lemma 5 and from a simple induction argument
that

Po(z(t,) e K or x(t,) e K or ... or z(f) € K)
21—(1—u) ... (1—pu)PoE,) e K).
Taking u, =34, ¥ =1,2,..., we see that our process is recurrent.
Let us now assume that the regularity assumption (ii) holds. Let us

fix t > 0 and consider the Markov chain Z, = z(in), n =0,1,... For
arbitrary 8 € (0,1) and a Borel set I' <« H such that u(I') > 0 let

={zel: gr(z)< 8},
where
or(v) = P*{Z, eI for some n =1,2,...}.

A simple geometric estimate shows that the potential VI,

+oo +oo
VIp,(@) = B ,,2 Ip,(Z) = 2 Pulry(@)
-0 -0

is a bounded function on I, and therefore uniformly bounded on the
whole H., But

oo > [ VIr (@ nds) = S u(Ty).
k=0

Therefore u(I'y) = 0 and, for p-almostallz e I'y g (2) =1.IED = {we I'°:
¢r(z) < 1}, then u(D) = 0 for if x4(D) > 0 and = is an element such that
or(2) =1, then P*(Z, € D) > 0 and the Markov property implies ¢p(2)
< 1, a contradiction. In an analogical way, if z, ¢ C = {r: ¢r(z) =1},
then 1 = u(¢) = P(x,,t, C) = P™(Z, € C) and by the Markov property,
w,€C.

Before passing to the last part of the theorem we formulate the
following lemma whose proof requires a standard application of the strong
Markov property and therefore will be omitted.

LEMMA 6. If a process x(-) of the form (2) satisfies the basic assumption

from Section 1 and, for some t; > 0 and B > 0,
+ o0
{ P(t,0, {z: o) < RPdt < +oo,
t

then a (') ¢8 not recurrent.

Assume now that (iii) holds. If A > 0 is an arbitrary number larger
than the largest eigenvalue of the covariance matrix ¢, then (see [16],
Pp. 87) there exist positive constants C, #, such that, for all ¢ > ¢, and all
r>r,>0,

4
(25) P,0,{m:r=z] =>r})<c fexp(—%)ds.

Fo
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If [S(t)ell > R and

(26) ry = R—|8(t)a,ll, r =R+IS)z,l,
then
(27) P(t, z,, {o: |2 < R}) =P(, 0, {x: |v—8(t)x,/l < B})

<P(t, 0, {z: ro< 2l < 7y)).
Taking into account (iii), (25), (26) and (27) one easily obtains that

+00

f P(t, 2o, {2: [l < B})dl < + o0.

CoROLLARY 3. The stoohastic system defined in Proposition 7 is recurrent
tf and only if A = 0, although 4t has stationary non-degenerate distributions
for all 2> 0.

- Proposition 9 below shows that non-degeneracy and stability pro-
perty: S(¢)z—0 as t—+ oo for all z, do not imply recurrence (although
the exponential convergence does, see Theorem 4).

ProrosrTioN 9. Let (4,.), (%) and (a,) by positive sequences with the
Jollowing properties:

+00 - )

(l)kZ: e < 100, Aapn = Aypy = A
+ o

(2) X (B P (A) P < oo, <y < o
k=1

t
(3) | exp(—2apr)dr =4t for te(l, t,), k=1,2,...
]

Moreover, let H =1, S(i)z =(exp(—ayt)&), w(t) = (VAB*()),
where x = (&) e H and B, % ... are independent mormalized Brownian
motions. Then the process x(-) given by (2) i8 non-degenerate,

S)zr—>0 as t—>+oo for all zeH,
but nevertheless the process z(-) is not recurrent.
Proof. et B = {z e H: |z <1} and
B, ={weH: ;] <1 and |&,—,|<1 and [&,|<1}.

Then B< B, for all k =1,2,... and
+oolk41
fp(z 0,B)@t< ) [ P(t,0,B,)dt.
k=1 1.
Morcover,

P(t,0, By) < 2°(Agpmg(?) Agps (2) Aap (1) ™2,
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where
, ¢
In(t) = Ay, f exp(—2a,r)dr.
0

Therefore, taking into account the properties of the sequences (4,), (1), (a),
we see that, for t € [#;,1,,,),

P(t, 0, B,) < 2Y2~33 35302,

Consequently,
+oo +m‘k+1
[P, 0,BYat<2” Y f t7Rata < +oo.
‘1 k=] ‘k

Lemma 6 now completes the proof.

CoROLLARY 4. It follows from Theorem 4, Proposition 5 and Proposi-
tion 9 that there exists an infinitesimal generator A, and bounded operators
B, and B, such that the solutions of both the equations

dr = Azdt+B,dw,
dr = Azdt+B,dw

are non-degenerate and the former equation defines a recurrent process whereas
the latter equation defines a mon-recurrent one.

Such situation is impossible in the finite-dimensional case.

5. POSITIVE RECURRENCE

A recurrent process x(:) is called positive recurrent if and only if, for any
initial eondition z, € H and any non-empty set ¥V « H, we have

E*(Tp) < + o0,
where
Ty =inf{t > 0: z(t) e V}.

We conjecture that if the semigroup S(¢) is exponentially stable: §(1)—0
exponentially as t— + co,and the process z(-) given by (2) is non-degenerate,
then this process is positive recurrent. However, at present we can prove
this statement under some additional conditions.

THEOREM 5. If the process z(-) given by (2) i8 non-degenerate in finite time
and the semigroup 8(t) has the following two properties:

(1) 8(t)x—>0 exponentially as t—+ oo for all z € H;

(2) There exists t > 0 such that S(t) t8 a compact operator,
then the process x(-) i8 positive recurrent.
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Proof. The proof given here is a modification of a proof of positive
recurrence for non-degenerate diffusion which can be found in [10]. Let t,be
a positive number such that the operator 8, = 8(t,) is a compact contra-

4
ction: [|S,)l < 1, and, moreover, the random variable { = f S(t,—s8)Bdw
[}
has non-degenerate Gaussian distribution ux = y(0,@). To prove the
theorem it is enough to show that the Markov chain (Z,):

Zn = Sozn—l + cm
Z, = 2,

where {,, {;, {;, ... are independent random variables with the distri-
bution g, is positive recurrent. We divide the proof into several steps.

Firstly, it is easy to see that there exists a number R > 0 such that,
for all , € H, |@,]| > E, we have

(28) E7(T) < C,+Cy iyl
where
T =int{n>1: |Z,| < R}

and C,, C, are some constants. Estimate (28) follows, for example, from
the observation that there exists & non-negative solution W > 0 of the
equation

WS, +I =W
and from the martingale property of the sequence (Y,): "
n—1
Yo = Wy, Zo)+ D) (120 - );
k=0

here 4 = E|W¥¢,)* and » = 0,1, 2, ...
Secondly, if R > 0, r > 0 and y € H, then
(29) inf {P(IZ, — y) < 7): [lool < B} = a> 0.
To prove (29), let us remark that
Z,~y = (8oTy—y) +&o-
Since {, has non-degenerate distribution, for any fixed «, (see Proposi-
tion 1),
(30) Po(l1Z,—yl<r) > 0.

But 8, transforms the set {x,: |z /| < R} into a compact set and therefore
(30) easily follows.

Thirdly, one shows easily by induction that, for a constant ¢ > 0
and k¥ =1,2,..,,

(31) sup{E=(T,): |zl < B} < ke,
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where
T, =inf{n>1: |Z,|< R}
and
Ty =inf{n>=>T,+1: |Z, < R}.

The final step is the observation that the probability of the fact that
the ball {»: [z —yl < r} will not be hit by the process x(-) at one of the
moments T, +1, T,+1,..., T, +1 is not greater than (1—a)*. Strong
Markov property and estimate (31) imply positive recurrence.
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