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1. Introduction

In this paper we present some results related to eigenvalue problems for
variational inequalities. Without attempting to formulate any precise
definitions, let us discuss some examples.

Consider a beam clamped at its ends and compressed by a force P.
By v(z) we denote the deflection of the beam from the z-axis. The eritical
load of Euler P, is given by

i
f v'idzx

P;! = max—— .
vel

v EJ f "y
0

where L = {9} v(0) = v'(0) = v(l) = v'(}) =0}, EJ is the bending stiff-
ness. The critical load P, is the first eigenvalue of

EJu® = —Pu” in (0,1), u(0)=u'(0)=u(l)=u'(l)=0.

Now we consider the case where the deflections of the beam are constrained
by obstacles. Define

V = {v] velL, p(x)< ()< ya(a) on (0,1)},

a convex get of functions. y,, y; are given functions on (0,1) satisfying
¥1(2) < 0 < yu(2) on (0, ).

Also in this case it is possible to define a critical load. The “eigen-
functions” are solutions of a variational inequality. We shall consider
the same problem for the thin elastic plate. Let Q < R?® be a bounded
domain with boundary 2%2. Set

V = {u[ u =0, —z%" =0 on 092, y(2) < u(r) < ya(x) in .Q}
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for the admissible deflections of the plate, perpendicular to the z-plane,
@ = (2,, 7;), where y,(z) < 0 < y,(2) in 2. The boundary 912 is compres-
sed by a force Pn where n is the inner normal at 092, In the case without
constraints for the deflections the lowest critical value P, is given by

J (@, +0%)do

P! — max 2
’ D f(Av)’da: ’
Q

where D denotes the bending stiffness of the plate. The maximum is
o
taken over all » # 0 with v = = 0 on 012,
Problems with constraints of such type we shall study in Section 2.
In Section 3 we deal with local minima in connection with variational

inequalities. As an application of this theory, we consider the following

problem for a compressed beam, Link [6]. The admissible deflections o
are defined by

V= {e] v(0) =v(l) =0, [v(z) <d in (0,1)},

where 0 < d = const. For P > P, (here P, denotes the critical load of
Euler) the beam leans for example at the line ¥ = d (see Fig.).

y
d
e v .

x={ x

-d
7.

There exists a critical value P, for which a breakdown occurs.
I would like to thank Professor Klotzler for telling me this problem.

2. Eigenvalue problems for variational inequalities

Let H be a real Hilbert space with the inner product (u, v) and with the
corresponding norm |u|. Denote by V a closed convex subset of H with
0eV and by a(u,v), b(u,v) real, symmetric, bounded bilinear forms
defined on H. Suppose that the forms satisfy the following assumptions:

(21) a(u,u)>0 for all u e H,
(2.2) There exists ¢ > 0 such that a(v, v) > c¢|v|? for all ve V.

(2.3) The form b(u, v) is completely continuous on H.
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We look for solutions (2, u), A e B, u # 0, of the variational inequality
(2.4) ueV: alu,v—u)=> Ab(u,v—u) forall velV.
We do not treat the more general problem
2.5) ueV: (f'(u),o—u)>A(g'(v),v—u) forall veV

in this paper. Here f’, ¢’ denote the Fréchet derivatives of functionals,
which are defined on H. For problem (2.5) and applications to buckling
problems for the plate we refer to Miersemann [6]-[9] and Do [2], [3].
Let V be a cone with vertex at zero, i.e., 2 set such that tu € X for
all ¢t > 0 and for all ¥ € K. Furthermore, we assume that K is closed and
convex. Under assumptions (2.1)~(2.3) we have '

THEORLM 2.1 [6]. Suppose there exists a w € K with b(w, w) > 0. Then
the following maxtmum problem is solvable and A, defined by

b(v, v)
~1 — max !
& vex (7, ?)
o0

i8 the smallest positive eigenvalue of the variational inequality (2.4).

Remark. Under certain assumptions it was proved in Miersemann [6]
that the number 2, is the smallest point of bifurcation for an associated
nonlinear problem of type (2.5), where V = K. A different proof of this
result was given by Do [2].

Now we consider the general case. Denote by C(V) the tangential
cone of .V at zero, i.c., the closure of the set

{w = tv| for all v e ¥V, for all ¢ > 0}.

It is easy to see that C(V) is a closed convex cone with vertex at zero.

DEFINITION. We say that 4 is a point of bifurcation if there exists a se-
quence of solutions (4,,, u,) of (2.4) with %, # 0, i,—4 and u,—0 a8 n—oo.

THEOREM 2.2 [7]. Assume the existence of a w € C(V) such that b(w, w)
> 0. Then the positive number A, defined by

b(v, v
Ay! = max (v, 9)
vec(p) @(0, D)

o+#0

18 the smallest positive point of bifurcation for the inequality (2.4).

Remark. For any cigenvalue A of (2.4) we have A > A, since setting
v = 0 in (2.4), we have the inequality A~' < b(u, #)/a(u, u) for an eigen-
solution «. Since u € V < C(V), we have b(u, 4)/a(u, u) < iy’
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. THEOREM 2.3 [9]. We assume that for every weV, w = 0, ons can
find a v €V with b(w,v—w) > 0. Then for every 0 < 8 << oo there ewists
a solution u of the inequality (2.4) with a(u,u) =8.:

Sketched proof. We use a method due to Beckert [1], Krasnosel’skii
[4], which we generalize to inequalities. Write
M, ={veV| a(v,v) <8}, w_hére 0<s< o0,
We seek the vectors u e M , for which
(2.6) b(u, u) = max b(v, v).

valM,
-

By using a lemma of Miersemann [9] it follows that for each solution
of (2.6) we have a(u, u) = 8 and that there exists a v e ¥V such that
a(u,v—u)>0and b(u, v—u)> 0. Let v,z € ¥V be fixed with a(u, 2—u)+#
# 0 and 0 < e<< &, g sufficiently small. We calculate k(e) such that
we get a(w,w) = 8 for w = (1 —k) [u+e(v—u)]+ k2. We obtain
a(, v —u)
b(u,z—u)

k(e) = e+o{e).

Sct
Cf ={veV| a(u,v—u)>0} and C; ={veV| a(u,v—u)<0}.

If u is a solution of (2.6), then wehave C} # @, C; # @.From z e C} and

v € O, we conclude 0 < k(&) << 1 provided ¢, > 0 is small enough. Hence

we have w e V. Since b(w, w) < b(u, %), we deduce the inequality
b(u,z—wu)

(%, 7 —1) a(u,v—u)=b(u,v—u)
for all z € 0} and for all v e Cg, or

b(u,z—u) < b(u, v—wu)
a(u,z—u)  a(u, o—u)

Set

b — b —
a = sup M and ﬂ: inf __(_u_’_v_._u)_.
+ a(u,z—u) - a(u,v—u)
2eC,

OEC"
Then « is a solution of the variational inequality (2.4) for all A with A™?
€[a, 8] and for all v e C}uUC;. In the case a(u, v—u) =0 we set v,
= (L—1/n)v in the variational inequality (2.4). Since v, € C;, the ine-
quality follows for such v by letting n —> co. =

ExampLE 1. Set H =1.I,.z(0,l)n,H,'.z(0,l) — the usual Sobolev
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space over (0,7) with zero boundary conditions. Let
V = {v e H| ,(2) < 2(2) < p,() on (0,1},
where
P(@) <0<y (o) and  y,, p, e Hyo(0,1).

The variational inequality which describes the buckling problem for the
simply supported beam is given by

1 i .
ueV: fu”(v——u)”dm>l fu'(v—-u)’dw for all veV.
0 1]

The assumption of Theorem 2.3 is fulfilled if we have V # {0}, v, <0
and y, > 0 a.e. on {0, ). For if not, we conclude from

1
fu’(v—u)'da;go for all eV
(1]
that
o i (@) < u(@) < pa(2),
—u" =1y i u(e) = w(),
— ¥, if  u(z) = y(x).
Therefore we obtain

i
fu”dw= f.'—wi'%dw-i- f —v, ,dz <0,
0

U=y 'u-wz

which -is impossible because v € ¥V and u # 0.

ExampLE 2. Buckling problems for the clamped plate are described
by the inequality, Miersemann [6], [7]:

ueV: fAuA(v—u)da:; A fa,,(a;)uz‘(v—u)zjdw for all veV,
32 2

where

V ={veH,,(2) v:(2) < v(x) < py(c) in 2}
with

@) <0<y(o) in 2, v,y EHz;z(Q)-

Here Q2 is 2 bounded open subset of R? with sufficiently regular boundary

~ é o

09Q. For a;; = a, we assume a;; € C1(Q). Set L = — Ew_(a“ - ) Then the
. 1 s

hypothesis of Theorem 2.3 is fulfilled if V # {0}, Ly, <0 and Ly, >0

a.e. in 9, i.e., y, is a subsolution and ‘p, a supersolution with respect to .L.
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The argument is the same as in Example 1 and will be omitted.
In this example we must assume that there exists a w e V such that

fa‘,wz‘wzjdm >0,
2

3. Stability problems

Now we suppose that the bilinear form a(v, v) is coercive on H, i.e., there
exists ¢ > 0 such that a(v, ») > ¢|jv||* for all v e H. Set

(3.1) I,(v) = ta(v, v) —}Ab(v, v).

DEFINITION. A Vector (4, %,), %o € V, 4, € R, is a strong local minimum
of (3.1) if there exist positive numbers g, ¢ such that

I,o(v)—Ilo(u,,) Zclilv—u, 2 for all veV, where [v—u,l<op.
The constant ¢ does not depend on ».

Remark. Local extrema in connection with nonlinear variational
cquations were studied in Beckert [1].

Let (i, #) be a solution of the variational inequality (2.4). We shall
give a criterion for (4, #) to define a strong local minimum of functional
(3.1). For t > 0 set

Viu) ={weH| a(w,w) =1,u+tweV}.
Denote by K,, the closure of the set
{h =t(v—u) t>0,F,, (v—u) =0,veV},
where F,,(w) = a(u, w)—ib(u, w). We assume that K,, # {0} and for
B = maxb(h, h)/a(h, h)

h?éu
we have the inequality
(3.2) | pie>0.
HyroTrESIS H,. For every sequence ¢, 0, ¢, > 0, and for every weakly
convergent sequence w,—w, w,€V, (u), from 'I:Elo ﬂ';'(‘ﬂ'l < 00

follows the inequality 1 —4b(w, w} > 0.

THEOREM 3.1 [10]. Under hypothesis H, a solution (1, u) of the varia-
tional inequality defines a strong local minimum of (3.1).
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Now let (4, ), 4, < A< 4;, 4, < 4;, be a continuous branch £ of
solutions (2.4). (We call a branch continuous if u,—u, as A—4,, where
Ay Ay € (44, 4,).)

HyrotHESIS H,. Let (1,, u,) € ® be a sequence, where A, —1y, A, 4,
€ (A1, 43). For every sequence t,—0, t, > 0, and for every weakly convergent

o F J.,,.u,'(wn)
sequence w,—w, w, €V, (v,) from lim — < oo follows the

n—roo n

inequalily 1 —4,b(w, w) > 0.

THEOREM 3.2. Under the assumplion ui, > ¢, > 0, where ¢, does not
depend on A € [A,, A;], and under hypothesis H,, there is no bifurcation from
L. This means that there i8 no sequence (A,,u,) of solutions of (2.4) such
that A,—>A, A, Ay, € (Mg, As), and (2,, u,) ¢ L.

An application to the beam [10]. The energy of the compressed beam
according to the linear theory, is given by

(3.3) I,(v) = }EJ ( flv”’dw—ﬂ. f'v”dm),

where A = P/EJ, I is the length of the beam, EJ is the bending stiffness.
Suppose that the beam is simply supported at the ends, i.e., the boundary
conditions v(0) = v(I) = 0 are prescribed. Set

H=H,,(0,)nH,,(0,]) and 7V ={voecH| |v(z)l<d on (0,1},

where 0 < d = const.
The family of functions

d
(— 1w+sin£w H 0Le<k,
n\k k

u‘=* d if k<o<l-—k,

\—%(%(l—w)+sin%(l—w)) if I-k<az<l,

2
where 0 < k< 4 and 1 = (%) , defines solutions of the variational ine-
quality
i i
(34) ueV: fu"(v—u)"da:}ln fu’(v—u)'d:v for all ve V.
0 0

In Miersemann [10] it was proved:

(a) The solution (4, %,) of inequality (3.4) is a strong local minimum
of (3.3) if A satisfies the inequalities (2n/l)2 < A << (4% [l)%
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(b) There is no bifurcation from the branch
£ ={A,w)] 2= <2< (4n)3}.
(¢) The solution (4,, %y,), Where A, = (4n/l)? is a point of bifurcaiion.
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