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1. Introduction

Let o/ be a finite integer sequence and £ a set of primes. Following the
notation of [2], |.##] denotes the cardinality of &, &, = {ae /; a = 0modd}
(so that o/, = .o/) and

P@)=[lr PE.2=P@PEz)= [] p Q@<z<2).
23 A

The classical sifting function

S(ot,2)=8(st, P,2)=|{aec o (a, P(2) =1} = 3 u(d)| ol

d|P{z)

has been intensively studied and much is known about it for a wide range of
sieve problems. Later, in Sections 3 and 4, we shall need to recall some of
this information and even to amplify it.

In these papers we shall study the weighted sifting function

(1.1) H(e,2,,2)=H(, 2,2, 2)= Y 7((a, P(2))

aes’
where the weight y(-) is defined as follows. Let
Ix}* =max(x, 0)
and let w(p) denote an arithmetic function on the primes p of & that satisfies

(1.2) oswip<l, wp=0il p<az;

[155]
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then
(13) yw=ﬂ—;0—mmf.
2L

It is clear that y(n) = 0 if n is divisible by a prime of & less than z,, so that
H may be written in what will be to some readers the more familiar form

(14)  H(o, z,,2)

= ¥ ePe.2)= ¥ {1- T (1-w0)"

aesd aeA Pla,pe?
(3, Pz )=1 (a,P(zy)=1 zy Sp<z

A weighted sifting function of this kind was first introduced by Heath-
Brown and the authors in [3). Inspection of (1.3) suggests that, with a
suitable choice of w(-), y(n) > 0 only when n has few prime factors in 2;
that is, y((a, P(z))) > 0 only when a has no prime factor from £ less than z,
and only a few prime factors from # between z; and z (cf. (1.4)). To show
that ¢ contains such integers a it suffices to show that H is positive.
Therefore our objective is to obtain a lower bound for H. In [3] we analysed
H in terms of S-functions and obtained a lower bound by bounding each §
with a positive sign from below, and each S with a negative sign from above,
using the classical upper and lower estimates of S. In his remarkable and
important memoir [1], Greaves was the first to show how one might avoid
this wasteful process by applying to H (actually Greaves used a somewhat
different sifting function) directly the combinatorial method that Rosser and
Iwaniec had applied so successfully to S. In these papers we approach H after
the manner of Greaves. However, we have learnt from his pioneering work to
give a much simplified account of his method (we sketched our new approach
in [4]), we have strengthened this method by introducing a more versatile
parameter system, and we have extended the scope and generality of the new
method to prepare it for applicability. Specifically, in I we establish a general
theory for all dimensions x, 1/2 < % < 1; Lemmas 1, 2, 5, 7 and 9 embody the
novelty of our approach. In II we concentrate on the linear sieve, the case x
= 1, and show how to incorporate the bilinear form of the remainder sum a la
Iwaniec (cf. [8]), and we sketch some applications, notably to the problem of
almost-primes in short intervals. There it will be useful to incorporate also the
improvement over [3] introduced by Iwaniec and Laborde [7].

2. Description of a class of sieve problems

Let # = #(#) denote the set of all positive squarefree integers all of whose
prime factors are in 2. We assume that ./ is well distributed over arithmetic
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progressions Omodd, de 4, in the following sense: there exists a convenient
approximation X to |./], and there exists also a multiplicative function (-)
on # satisfying

(Ao) O<w(p) <p, pe?,

such that
(i) the ‘remainders’
)
(2.1) R; = Iﬂdl——éﬂ)—X
are small on average over the divisors d of P(z) that are less than a certain
parameter y = y(X) (with the nature of this average left open for the present
but, for example, one might require that

Y IR < X(logz)~1%9);

d|P(z)
d<y

(ii) there exist constants A > 1 and », 1/2 <x < 1, such that

() 3y @logp—xlogZ—jsA, )<z, 2

z) $P<22
pe?

all constants implied by the use of the 0- and <- notations here and later to
depend at most on A and x. (There are applications where dependence on A
needs to be kept explicit, and this can easily be done where the need arises;
for the sake of simplicity we do not do so in this account.)

Condition Q(x) tells us that w(p) is about equal to » on average over the
primes of 2. In the Iwaniec method for § it suffices to know (in the above
sense) that @ (p) is at most x on average over £; but here there is one stage
where, at present, we require the full force of Q(x).

It is convenient to define w(p) =0 when p¢ 2. We write

Vi) =1 (1—“’—(-‘2)

p<z P

and quote from [2] several basic results that we shall need about V and w.
We have, by Lemma 5.3 of [2] (because £2(x) together with (Ao) imply
condition (£,) in [2]) that

V(z,) [logz, "{ ( 1 )} (logzz)"
2.2 = 1+0 <& , 22z <2,
(2.2) V(z,) (log Zy log z4 ) log z4 ! g

and in particular that

(2.3) 1/V(z,) €log*z,, 2<z,.
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Also, by Lemma 2.3 of [2],

(2.4) Y _aLp)s%loglogzz_*'_ A , 2<z; €1z,
2 <p<zy P logz, logz,
whence ([2], (2.3.8))
(2.5) w(p)/p < Aflog p.
Finally, by (2.2)
w(d) _V(z) (10822)"
2.6 < < , 2%z;<2,.
(26) d|P(§.z2) d V(zy) logz, ! 2

We end this section with some more notation that we shall require later.
Let v(d) denote the number of distinct prime divisors of an integer d. Also, if
d > 1 let g(d) and p(d) denote respectively the largest and least prime factors
of d; and, for the sake of completeness, write

g()=1, p(l)=o0.
When v(d) > 2, write
9:(d) =q(d/q(d), p.(d) = p(d/p(d))

for the second largest and second smallest prime factors of d:

3. Combinatorial sieves

In Lemma 2 below we give a Fundamental Identity, a generalized and
weighted form of the Inclusion-Exclusion Principle, that underlies all known
'small’ sieves, and to which the simple Lemma 1 gives surprisingly direct
access. Lemma 2 occurs for the first time, in relation to S(.7, 2, z), in [2],
(2.18), but is not fully exploited there; and it plays a more central rdle, still in
relation to S{s/, 2, z), as Lemma 1 of [6] and later as Theorem 6 of [8].

LEMMA 1. Let n>1 have canonical prime decomposition

n=p1"'pl" pl>"‘>pl"

Then, for any arithmetic function g(-),

1 <d|n j=1
q(n/d) < p(d)

Progf. Either g(n/d) = 1, in which case d = n and so contributes the term

gny=g(p,...p,); or g(n/d)=p, for some i, 1 €i<r. In the latter case we
have necessarily that
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d=py...pi-1t,” tIPir1..-Dre

When t > 1, p(d) = p(t) < pi+1 < bt (= g(n/d)), and this contradicts the sec-
ond summation condition on the left. Hence t=1 and, since d> 1, i=1
is ruled out. Altogether then, the sum on the left is

g+ Y g(pr...pi-1) = 3, g(py--.p))
i=2 j=1
- LemMa 2 (Fundamental Identity). Let x(:) be an arithmetic function
satisfying y (1) = 1, and associate with y(-) the ‘conjugate’ function ¥ given by
(3.1) (1) =0, x(d) =x{d/p(d)—x(d) whend>1.
Then, for any arithmetic function @(*),

62 YT ude@d= Y udi@e@+ ¥ p@zd T a)eld).

dP(z) d|P(2) d|P(z) t P(p(d))
Proof. Apply Lemma 1 with g = . Then, by (3.1), we have
(3.3) >, X =1-x(n).

q(nldﬂ)‘l:p(d)
Let dt = n in the second sum on the right of (3.2), which now takes the form

Y oumem Y xd= Y unem(l-xm)

n| P(z) din nP(z)
qlnfd) < p(d)
by (3.3).
When we take ¢(d) = |.e/,| in (3.2) we obtain at once
(3.4) S(st,2)="Y pdy(d|od+ ¥ u(d(d)S(L p(d).
d|P(z) d| P(2)

Now let y; and x, be the basic upper and lower Buchstab—Rosser—Iwaniec
functions for a x-dimensional sieve with parameter y. We recall their
definition from [6]. We have yxf(1)=1, and for 1<d=p,...p,

P1>...> Dy

(3.5) @=1 if pipy_s..pr<y (1<i<3(v+1),
(3.6) Xy (=1 if P oy <y (LS < 3v),

and otherwise y;f(d) =0; here = f(x) is a function of x that satisfies
(3.7) Bh =1, 1<Bp)<2 G<x<l), pA)=2

Observe that (3.5) and (3.6) with (3.7) imply d < y whenever xf (d) = 1. With
x; and y,; thus defined it follows from (3.4) that

(3.8) Y udyy, @dd <SS, 2 < Y pldyy @l

d| P(z} d| P(z)
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replacing |2/, in these bounding sums by Xw(d)/d+R, and disregarding
(here) the remainder sums

(3.9) > w@dx DR,

d|P(z)

that then occur, the upper and lower estimates of S(.«, z) depend respective-
ly on XT.* (y,2) and XT, (y, z) where -

(3.0) Trm 0= ¥ p@rE@2.

dIPQ)

Here we are not at all interested in bounds for S, z) as such, but the sums
T2 (n, {) occur naturally in the Greaves approach and also in ours. We recall
from the pioneering work of Iwaniec [6] that, if 2 { = 2,

ANV My OB V(C){F,‘Gzig)waog 12 )} <V,

(3.12) T (1, 0) = V(C)%fx( )+0(10g_”3 )}« V(.

where, for some positive constant A,,

(3.13) F,5)=4,87% 0<s<f+1,

(3.14) (=0, s<8,

and otherwise F,, f, satisfy the simultaneous differential difference equations
(*Fo(s) = x5~ f,(s—1), 5>p+]1,

(s"f(8)) =us*"1F (s—1), s>8,

so that, by (3.13), (3.14) and (3.15), |

(3.15)

A+2
(3.16) (ﬂ+2m(ﬁ+2)=xA,,J (ﬁ) ?
A

The O-constants in (3.11) and (3.12) depend at most on A4, ¥ and on
s = logn/log{.

Curiously enough, we shall use these formulae only for the ‘small’ values s
=B, f+1 and f+2. We shall develop the properties of T,*(n, {) that we
require later, in Section 4.

We return to combinatorial considerations, and apply Lemma 2 — the
Fundamental Identity — to H. First define

(3.17) Wd) =3 u®)y(8), dlP(),

t|d
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(note that our W differs from Greaves’) so that by M&bius inversion,

Y =Y udW(d, nlP()

i
and, by (1.1),
(3.18) H(«, zl,z)=d[; w(d) W (d)| .
Also, let ?
(3.19) Ve () =§.u(d) Wigd), vy, (m=7y(n),
and
(3.20) H(o,2,,2)=Hy (oA, P, z,,2) = dl;m#(d) W(qd)| s,
(4, P(2) =1,
so that H, (&, z;, z) = H(&, z,, z). Then, by (3.19) and (3.20),
(3.21) H (o, 2,,2) = % ve((@ P@2), (g, P(2)) =1.

q
We now apply Lemma 2, with ¢(d) = W(d)|#,| and x =g, , to (3.18) and
obtain (cf. (3.4))

(322) H(, z,, z2)
' =y, uw@dy, @W@d|4+ Y, wdiy @) Hy(, 2z, p(d)).

" d|P(z) 4| P(z)

Comparison with the treatment of S(s/, z) suggests that (cf. (3.8))
(3.23) H(d,z,2)2 Y pld)y, (dW(d)|

d| P(z)
should be true, and we are encouraged toward that belief by the fact that, in
the second sum on the right of (3.22), u(d)x, (d) =1 if v(d) is even and
positive, and is otherwise zero. Thus (3.23) does hold it

(3.24) H,(o, z,, p(d)) =0 whenever d|P(z), 2Jv(d) >0, 7, (d)=1;

but in order to prove (3.24) we shall be forced to a choice of w(-) and to
place constraints on various parameters (yet to be introduced) that are less
advantageous than one might have hoped for. Moreover, even with (3.24)
established and (3.23) true, we are not sure that retention of some of the
terms in the second sum on the right of (3.22) might not lead to better results
than (3.23) yields. Indeed, it could well be that xy =y, is not the right choice
in Lemma 2 when applied to H. We shall set these doubts aside in the
present study, and deal with (3.24) in Section 5.

11 ~ Banach Center, t, 17
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4. The sums T,* (n, {)
We define
4.1) o () =T, "), o, =T @, n'") n>1)
and summarize the only results we require from formulae (3.11) to (3.16) in

LEMMA 3. For n > 1 we have

(4.2) T, M) 2 Vi {(B+2) £, (B+2)+0(log™ 2 p)},
4.3) af () <1, oy (n) <V(n)log™ "y,
and

A log™n -1 |
@4 ol ) =V Az (1+0(og™ P @/}, 2<L<in.

Proof. Of these, (4.2) follows from (3.12) and (2.2) (even with asymptotic
equality), as also does, after use of (3.13),

4.5) o (n) = V(n) A, {1+0(log™'"* n)}

and hence the first part of (4.3), and (4.4). The second part of (4.3) follows
from (3.12), (3.14) and (2.2).

(Note. It would be of interest to give an independent ‘ab initio’ proof of
(4.5).)

Our main tool in the treatment of the sum T, (n, {) leading to Lemma $
below — the Reduction Lemma — is a form of the ever useful Buchstab identity.

LeMMA 4 (Buchstab). For 2 <{, <{, we have

4.6) Tt =T t)— “’—(‘i’n-(-'l,p)
L1€p<{y 4 14
iy

and

- - w(p) ..

47) T i) =T )~ ¥ (1, p).

{1sp<iy P
Proof. By (3.10)
T )-TE = Y @@,

[y €9y <{y

Put g(d) = p and d = pt and observe that, from the definitions of y,",

48  7"dydy) =" @Gy i q(dy) < pldy)
v =0, 1),
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so that, in particular (taking d, =p, d, =1), ¥ (pt) = 3,5 (p) xo,(t). Hence

TEM L) -, l)=—- ¥ —p)xn*(P) 2 M )X’z”(t)_wt(t)
C1$p<;2 qun) <p
_ o) s T*(ﬁ )
§1<§<Cz p X () T p’p .

Since y, (p) =1, and x, (p) =1 if and only if pP*? <y, both results follow.
Let us record here also the Buchstab formula ([2], Lemma 7.1)

(4.9) > 2() Vipp=V{{)-V({) 2< <0,
[y$p<ly P

We come now to the principal result of this section, the Reduction
Lemma. This result does not in itself represent any significant improvement
over (3.11) and (3.12), but its form proves singularly convenient when, later
on, the sums T, (n, {) occur inside some dauntingly complicated expressions
(see (6.5) below). The Reduction Lemma in continuous form, and with » = 1,
was first known to us from a paper of Siebert [9] and occurs also in Greaves

[1).

LeMMA 5 (Reduction Lemma). Let

(4.10) lognflog¢ <1
Then
0= ¥ #()mt(t) (n)+0(V(C)log“”C)
‘fﬂ)c'

where
(4.11) 2<t, 1<y if v=0, and 2<l{<n'® if v=1.

Proof. We begin with Lemma 4. By (4.6) with {; ={ and {, = y!/#*D
(so that the conditions p < {, and p#*' < # in (4.6) coincide) and by (4.7)
with {; ={ and {, = n'/? respectively, we have

@12 T o=+ 3 2Pr- (” p), 2 [ < ntiory),

r<p<ngl/B+D) I3
and

413) T (=0, M+ X MT (g P), 2 (<

t<p<nllf
Actually, the condition { < #*/®*1) in (4.12) may be dropped and replaced by
the minimal requirement > 1. For if { > n'/%* % the sum in (4.12) is empty
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and (4.12) reads
(4.14 Lr =0l n), {3 n0ey,

which is correct. To see this note, in the definition (3.10) of T, (5, {), that
Xr (@) =1 implies (cf. (3.5)) that the prime factors of d satisfy certain
inequalities of which the first (i =1 in (3.5) with 5 in place of y) reads
q(d**! < n. This means that d|P(n'/#*1), and this renders the summation
condition d|P({) in (3.10) redundant if { > n'/#*1), Thus

@12) Tr o, O =of + ¥ “’(p)n"(g,p), 1<t 1<

r<penti+1y P

We now modify (4.12') and (4.13) in one respect — in the sum on the right of
each we prefer to have the summation condition { <p and we merely

estimate the contribution from the possible term T,* (g, { )CD_’;C_) In (4.12) —
(4.12) really, with {#*! < 5, otherwise the sum is empty — we have n/{ > (#
= (> 2, so that (3.12) and (2.5) together give

(1 V20 i L
(7)< Vo

The estimation is a little more complicated in the case of (4.13), although
(2.5) applies again and we have to deal with T.* (n/{, {)/logl. If n/{ = { >2
we apply (3.11) and obtain at once the estimate < V ({)/log{ as before. But if
n/C < ¢, or pt/2 < {, then (y/{)He+1 < yfB*1) < 412 < and (4.14) applies;
we have therefore to estimate

o5 (n/Dflog{.

Suppose first that x» > 1/2. Here f = f(x) > 1 and therefore n/{ > {#~?!
together with 5 < {* allows us to deduce from (4.4) that o] (5/0)
< V(n < V() and we obtain once more the estimate V({)/log{. Now take
the case % = 1/2, when f = 1. Here n > { and therefore, by (4.3), o], (n/0)
< 1. Also, (2.3) with z, ={ and x» = 1/2 tells us that

1<V ()log'?¢,

so that we obtain this time the estimate V({)/log!/?{. To summarize, we have
proved that

@19 T 0=olm+ T )5"_1‘3&)1;,-(%,;;)+0(V(c)1og-15),
f<p<pl/B+l

2, 1<,
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and

(416) T, (n, =0 M+ £"--(f’—)'.r; (—g,p)+0(V(C)log'”2C),

{<p <ql/ﬂ
2K <ttt
We proceed, on the basis of these formulae, to a proof by induction on
k =1 of the two statements

w(t
@417 L' = p(z)‘:c ul(t)—t(—)a: (1:)+0(V(€) log™ '),
1>
2P~ Lty <o
2|v(r)
C; "1/(ﬁ+2k-1), n > 1’
and

am 0= 3 L0% (g)w(v(c)log—uac),
q"‘ln(;iulr
240

”ll(ﬂ"'lk) Ll < ﬂllﬂ_

The summation conditions { < p(t), tg? !(t) < n together imply {*"*+#-!
< 5. Hence { 2 n*/®*2~1 and y(1) even give

v(t) < 2k—2 in (4.17),,
while { > yt/®*20 and v(t) odd give
v < 2%k—1  in (4.18),.

Hence (4.17), is true by (4.14). To see that (4.18), is true (note that, from
above, the sum in (4.18); extends over primes p only with { < p < n'#) we
invoke (4.16); since { > n'/***2 we have for each term in the sum on the
right of (4.16) that p = (5/p)"* 1) and hence T,* (n/p, p) = o, (n/p) by (4.14).
Also, o, () in (4.16) can be estimated by (4.3). This proves (4.18),.

Suppose now that (4.17); and (4.18), have been proved for some k = |,
and consider the case k+ 1. Take (4.17), ., -first. Here it is legitimate to apply
(4.18), to each term in the sum on the right of (4.15) because { 2 n/#+2k+1
implies that p = (/p)/**?% whenever p >{ and p < (1/p)*'* follows from p
< yt/B+1) Hence by (4.15) and (4.18),,

T (n, ) = o (n)+

+ Y 2@{ )) #2(t)m_(t)_a: (i)+O(V(p)log"”3p)}+

(<p<nl/Bt1) P P> p t pt
2= Ly <nipn)
2h¥(1)

+0(V(Qlog™"¢)
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and, writing n = pt on the right,

w(n -
Trm =i+ ) 4 (n)% o (g)+0(V(C) log™'*{)

P >¢

2P~ L <njn

2|v(ny >0
after an application of (4.9) (with {, = {) to handle the accumulation of error
terms O(V (p)log™ '/ p). This proves (4.17),,, since o, (1) can be put into
the sum over n as corresponding to v(n) =0.

We deal with (4.18),. , in similar fashion. Apply (4.17),+, to each term in

the sum on the right of (4.16), as is permitted since p = (r/p)/?*2* 1 follows
from p > (> n'/f*2k*2) Then, by the same procedure,

_ _ w(p) w(t) n
T (D=0 M+ Y ——{ Y #z(t)-—r Ox — )
(<p<qlit P plo)>p p
e~ 1w <nf(p)
2|v(®)

+0(V(p)log™'7 p)}+0(V(C) log™12¢)

w(n)

2
= ) un
p(m >
af = 1(m) <yyn
2.k v(n}

ot (g)-i—O(V(C) log™/3 ()

after disposing of o, (1) by means of (4.3). This completes the proof of the
inductive step, and hence of Lemma 5, since the number of steps in our
induction argument is bounded, by (4.10).

We conclude this section with a, by now standard, result for transform-
ing sums over primes to integrals.

LemMA 6 (cf. Iwaniec [5], Lemma 8). Let B(t) be a positive, continuous
and monotonic function in the range (2 <)z, <1< z,. Then
zZ2

7 20 p0- | 20

2y €p<zg

dt
tlogt

z]

< ABlog™!z,

where

B = max(B(z,), B(z,)).

5. The inequalities (3.23) and (3.24)

As we mentioned earlier, towards the end of Section 3, we cannot prove
these inequalities without defining w(-) suvitably and being more specific
about the parameters in use. We have already indicated that y is our basic
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parameter. We shall assume y to be sufficiently large and indicate this
formally by

(5.1) Y 2 Yo.
We write
(5.2) zp=), z=)' (O<K<V<U)

in (3.22) (0 < V; < V says merely that we require ¥ to be bounded away
from 0) and introduce two new parameters E and T, with E< Vand UL T
< 1; also, we write

1/ 4
5.3 E, = - —— _
(5.3) 0 max(E, 3(2+ﬁ' T))
We impose on E, V, U and T the conditions
(5.4) E;<V<(B+2), 12U<LT<]1,
and
(5.5) U+(B+1) V21,
and we then define
(1 (logp 1/(B+2)
- < v
T_E(logy E) y P<y,pe?,
(5.6) wip=1y 1 [logp v
2 E g LB+ 2) ,
T_E\logy Do) V SP<Y »PEZP
| 0, p<), pe?.

Note that (1.2) with z;, = y¥ is satisfied, and that w(p) is defined only for p
< yY, pe?. When x =1, this function w is close to the corresponding
function in Greaves [1], but we have introduced two new parameters which
will turn out, eventually (in paper II), to make our method more flexible in
applications. For convenience write

(5.7 Wo(d) = I—ZIZW(p), d|P(y").
pld

We are now in a position to prove (3.24) (with z, = y¥ and z = y") and
hence to derive (3.23) from (3.22). Indeed, it will transpire in the process that
(3.23) takes the simpler form

(5.8) H(o, )", y) 2 Y ud)yy (@W(d)] A

d|PyY)

The key result is Lemma 7 below which, together with Lemmas 5, 8, and 9,
characterize our approach.
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LemMa 7. Suppose that d|P(y") and that n|P(p(d)). Then

(5.9) u@W=0 i v =2
On the other hand, if v(d) > 2 and if also
(510 A Dad <y,
then
Wold), n=1,
(5.11) Yaln) =< wip), n=p,
0, v(n) = 2.

Finally, we have

(5.12) Wo(d) =0 when T (d)=1 and v(d) > 2.

Proof. The proof of (5.9) does not depend on the precise choice of w. Let
d=p,...p, with p, > ... > p, and s > 2, so that n|P(p,). By (3.19) and (3.17)
we obtain easily that
(5.13) Ya(n) = Y. p(m)y(mn).

m|d
Begin with s =2, so that y;(n) =y(m)—y(py W)—y(p21)+7y(p; p21). By (1.3)
and (1.2) it is clear that y(mn) < y(n) for each divisor m of d. Hence y,;(n) =0
if y(m) =0; ya(m)=y(m)—y(pyn) > 0 if y(n) >0 but y(p,m) =0 and y,(n)
=y(m)—y(p2n) 20 if y(n) >0 but y(p, n) = 0; and if y(n), y(py n), y(pz 1) are
all three positive, then .

va(m) =y pam—{1— Y (1-w(p)}=0

plpypan

by (1.3), since {x}* —x > 0. This proves (5.9).
Now suppose that v(d) > 2 and that

(514) d=p,...p, (py>...>p) 523, pPi'p<y, nlPp)

in accordance with (5.10). Since d|P(y") we have p; < y". It is evident from
(1.3) that

(5.15) y)=1 and (P =wp) (PeP p<y’).
We begin by proving that
(5.16) P(Pyp2) =0

in the equivalent form w(p,)+w(p;) < 1. Since p§*1p, <y we have p, <...

o< py <yYD and only p; may exceed yY“¥*?; also we have p, p,
1+8U

< y1+8, Hence, by (5.6) and (5.3),
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1 1 - —
w(p,)+w(p,) < (ng‘pz—E—Eo)< L (l idd E,,—E)

T-E\ logy ST-E\ 1+
1 [BU+T
< —~E|<
T—E( B+1 E) !

since U < T by (5.4). We have assumed that p, > y¥ in this argument when
quoting (5.6); otherwise w(p,) = 0 and the result is trivial simply by virtue of
(L.2).

The result (5.16) seems rather modest, but (1.3) tells us at once not only
that then y(d) =0, but even that y(dn) =0 (n|P(p,)). More is true. The
argument used to prove (5.16) shows that y(p'p”) = 0 for any two distinct
prime divisors p’, p” of dn, so that our preceding remarks show that

(5.17) y(mn) =0  whenever m|d, v(mn) 2> 2.
Hence, by (5.13),
(5.18) Ya(n) = Zl p(m) y (mn).
m|d
vimm) &1

When n =1 we get immediately the first -part of (5.11), using (5.7). When n
= p, only m = 1 makes a contribution and y,(p) = y(p) = w(p) by (5.15). This
is the second part of (5.11). As for the third part, this follows at once from
(5.17) since the sum on the right of (5.18) is now empty.
It remains to prove (5.12). With the notation (5.14),
51

Wod=1-3 wip)=1- 121 w(p:)
. i=1 =
Yy

where 0 <5, <sand p, <y¥(i=s;+1, ..., 5). The result is obvious when &,
=0 and 1. In proving (5.16) we have already shown that the result is true
also when s; = 2. Consider s; = 3 next. Here.

1 (logpypaps
T-E log y

vV

w(p)+w(p2)+w(ps) < 2E0“E),

and pA*!p, <y implies that

B-1HU+2
Py PaPs < PiPE < pi(y/p )Y = yHE+D g~ DB < 3T

Hence, by (5.3) and (5.4),

' 1 ~1)U+2
w(p,)+w(p,)+w(p3)<T_E(‘ﬁ e —2EO—E)
<1—2(Eo-;:f)<1.

Hence W,{d) >0 when s; = 3.
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Suppose finally that s, > 4. Then ¥, (d) = 1 tells us that p§;'...p, <y
G=1,...,4s~-1) and

) 5—2 pl < y PB+1
We have to consider

d 1 {logp;...p, '
) < L—(s;,—1)E,—E}.

If 5; < s the foregoing inequalities imply that p;...p,, <y and therefore —
remember s, =4 —

51 1

Y wip) < —(1 3Eo—-E)< 1

I=1
The last stem is valid by virtue of (5.3) and because f < 2 by (3.7). This
leaves the case s; =s. Here p#~2(p,...p,) <y, implying in particular that
PP 2% <y, and therefore

5

zw(p.)<—‘——(1+(2 ) g’j-(—nEo )

i=1
1 2-8 1 4
<= (1 Y53y (s—l)ED—E) (ﬁ+2 3E,— E) 1

by (5.3). This completes the proof of (5.12) and hence of Lemma 7.
We are now in a position to prove (3.24); specifically, to show that

(519 Hy(at, )", p@) = T ((a, P(p@))) = 0

i dPGY), 2vd >0 and §; (@) = 1.
We write n = {(a, P(p(d))), so that n| P(p(d)). Then (5.19) follows at once from
(5.9) when v(d) = 2. When v(d) > 4, ¥, (d) = 1 implies that y, (d/p(d)) = 1 (cf.

(3.1)) and hence that (5.10) is true (cl. (3.6), the inequality corresponding to i
=1). We may therefore invoke (5.11) and obtain

H,(s, ", p(d)

= Y W@+ X Y w)

aedy p < p(d) aedy
(@ P(p(dy) = 1 Pe?  (a,P(pd))=p
= Wo(d)S(y, 2, pd))+ 3, w(p)|{aeﬂ,,: (a, P(p(d))) =‘-p}‘.
P < pld)
pe?

The second sum evidently contains only non-negative terms because w(p) >
when pe# and the first expression is non-negative by (5.12). We have now
proved (5.19). It follows by (3.22) and (3.23) that

(5.20) H(, )",y 2 Y pday (W),

apiyY)
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We complete the combinatorial preparation for a lower bound of H with

LeMMa 8. We have, subject to (5.3) and (5.4) and with the choice (5.6) of
w(*), that
H(a, ', yW)yz Y uldy, (d)Wold)l L.
dpeY)
Proof. The result follows at once from (5.20) if we can show that W(d)
= W, (d) when d|P(yY), and y, (d) = 1. This is in any case obvious when v(d)
=0 and 1, so we may suppose that v(d) > 2. Here, by (3.17) and (5.15),

Wd) = Wo(d)+ 3 n()r(0),
v(r')’dzz
and it suffices to prove that

y() =0 whenever v(r) =2, t|d|P(y") and x, (d) = 1.

But by (1.3) this amounts to no more than showing that, in these
circumstances,

Ywip) <v()-1,
pit

and this has already been proved in the course of demonstrating the truth of
(5.12). Indeed, this inequality is trivial il p(t}) < y¥ and otherwise follows at
once from w(q(t))+w(q,(t)) <1 (cf. the proof of (5.16)).

We shall analyse the expression on the right in Lemma 8 in the next
section; but to make the exposition there flow smoothly we establish here
one more combinatorial identity that will be required and that is, perhaps,
the most distinctive feature of our method.

LemMA 9. Let n > 1 be a squarefree integer with v(n) even and p(n) = p.
Then

- o mie) <
% Hd)yy (@) = { 0 otherwise.

din
a8~ L(njd) <y/(pm)
Proof. The proof resembles the argument of Lemma 1. Let

n=p...p, pL>...>p. =D 2|r,

and define
I, x>1,

0, x<l.

5(x)={

In our sum, g(n/d) = 1 when d = n and the contribution at d = n to the sum

18
5 (1) 5 (n);
pn
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otherwise g(n/d) = p; for some j, 1 <j<r, and those d&’s in the sum having
q(n/d) = p; contribute to it

Y Z -
= 5 -—_—-‘ -
g (P"FJ-I) o p.#(d)b “

But if d|n and q(n/d) = p;, then necessarily
d=pi...pj—1t; t|Pjry-.-Pr

and therefore

—5( - )( y=t ¥ u®x (py...pj-1).

l']pj+l...pr

By (4.8)

- - —J
Xy (P4 v P f) = Xy (P ~fle—1)X§/(;):1...pj_1)(t)

and so

z,—a(pn e )( Wy Greepien) Y ROL 0@,

r]pj+1...p,.
If 8(y/(pnpf~1)) =0, X, =0. Suppose &(yApnp!~')) =1. Then
PPr'--Pj+1Pij—1 P <Y,

or

PPr-- Py 1 P < VAP -..Pj-1),
and this implies

Pf+lPs+1-~Pj+1 <yfpy...p;-y) for each s=j+1,...,r;

hence xg,‘(},i__.pj_l)(r) =1 for every t|pj+1...p,, so that

Ej=5(pn—;€_—l)(—l)j'lx;(p1...pj_1) Y, u)

I‘IF’_)F+1-"J"’J'
y _fn . .
~o(=Z )i (Z) i=n
e
0,

j=1,..,r—1.

The sum in the lemma therefore equals

v\ _ y _{ n
sl ~5l—ZL —
(Pn) % (n)=0 (pnp(n)"‘l)x’ (p(n)) '

Il np(n)* ="' < y/p, both &s here equal 1 and we obtain the first result of the
£
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lemma. Suppose then that pnp(nf’~' > y, when the sum equals
Y\ -
5(;)13' (n).
But since p < p(n) we now have p(nfn=> y; whence, by (3.6), r, (1 =0
(remember that v(n) is even). The proof of the lemma is now complete.
6. A lower bound for H: preparation

By Lemma 8§ and (2.1),

(6.1) H(s, ¥y, )= XG+R

where

(62 G=Gat, s, = T udzy @Wo(@) 2D
d|PeyY)

= ¥ w5 @223 wi)
4Pl pld

by (5.7), and

(6.3) R=R(«, ", yW)= ¥ uld)y, (dWo(d)R;;
dI;((.va)

the summation condition d < y here is implicit in x, (d) = 1, but is stressed
here to clarify the nature of R. For example, by the proof of Lemma 7, (5.12),

(6.4 Ri< ¥ IRJ.

dPpY)
d<y

Our main business is with G. By (6.2) and (3.10)

G=T7 0.~ T v T g @22,
p<y¥ d|P1yU)
pe? pld

The inner sums over d, on the right, Jook beguilingly like T-functions but the

connection is actually rather complicated. We write d uniquely in the form d

=d, pd, where d,|P(p) and d,|P(p*, y"), here p* denotes the successor of p

in 2, so that p(d,) > p. By two successive applications of (4.8) we have that
(—)vdy)+1 —yvid)+1 (—)¥id1)

Xy (d) = xy (d) X55d) (pda) = xy (dy) 237 (P) Xyjioayy (@2),

and accordingly we obtain with the help of (3.10) (replacing notation d; by d
at the end)
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65 G=T7(@, )+

) - (D(d) —yvi(d
+Lw 20y gy @ (22 TR d p
p<yl P gt .0 p

We apply (4.7) to the first term on the right, with n =y, {, = y¥ and ¢,
= y!#*2 (remember that U > 1/(f+2)), and obtain

66 T, ) =T 0,y Y @T@p)

B+ gpeyU P

In the double sum on the right of (6.5) consider first the terms with p
> yM8+ D We claim for these that only d = 1 can occur. For suppose there
does occur a d with v(d) > 1; if v(d) is even y, (d) =1 implies that p(d)y’d
< y, by (the last inequality of) (3.6), so that p” Y4 <y and therefore pf*?
<y contrary to hypothesis, and if v(d) is odd x(m’"( )H( ) = xa(p) =1
implies p#*! < y/d and therefore p#*% <y again, the same contradiction,
Hence, by (6.5) and (6.6) '

67) G=T (y,y¥+*m—- ¥ (I—W(p))w(p)T+( )+Go,
yll(ﬂ+-2)$p<yu p p
where

68) Go= w(p)“’;‘”

W <p<ylB+2)

s, 0d) .,
. z #(d)xy'(d)x;,]’ ) l(p) ‘S)T( )(d)(:d,p).

diP(p* .Y

We attack this complicated expression by means of Lemma 5 — the
Reduction Lemma — with v = v(d), n = y/(pd) and { = p. Requirement (4.10)
of that lemma is satisfied because here log#n/log{ < logy/logp—1<1/V—-1
and V is bounded away from the origin (see (5.2)). Also (4.11) is satisfied. For
{ = p>2 always; when: v(d) is even and positive, = y/(pd) > p(d)f~! > 1
from x,; (d) =1, when v(d)=0 then n=y/p>p**! > 1, and when v(d) is
odd xg.(p) =1 implies that y/(pd) > p’, which translates into # > (¥, as
required. Thus Lemma 5 may indeed be applied to each term on the right in
(6.8). We may as well dispose right away of the error terms arising from the
term O(V(p)log™'/?p) in the lemma. The total contribution is

< 3 ypeeing

WY €p<yllift2) 4 dPp*.Y)

V(v (log VW)~ 1/3 C’-’(P)( ())2
() (logy") u,,zqm > 7o)

y w (d)

<V(ylog™ Py
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by (2.6), (24) and (5.2) (V = V; > Q). Hence

69 G= Y w2 @ ¥ L@@ o«

yWsp<ylB+2) d|Pp )

q0P ~ 1 <y/(pd)
(1) = w(d)mod 2

This expression for G, looks more complicated than ever, so let us say right
away that the main contribution to G, comes from d =t =1 and from the
terms with (d, ) = 1, and that, under the circumstances, it is surprisingly
simple. All the other terms will be absorbed into the error term.

Let us prepare the ground. First, we may add the summation condition
t|P(p*, y") since p(t) > p and, for t > 1, q(t¥ < (yg(0))/(pdt) < y/p*> < y'~ %
implies g(f) <y’ by (54) and (5.5). Next, we may omit the factor
x‘,,‘d’"(d’ﬂ (p); for this is 1 if v(d) is even, or if v(d) is odd and p’*'d < y. But
if v(d) is odd so is v(t) and then the summation condition q(t))~! < y/(pd)
implies that pP*! < pq(t)f~ 't < y/d. Now separate the terms in G, into the
singleton corresponding to d =t = 1, the group of terms with (d, t) =1 and
the group with (d, t) > 1; and in the group with (d, ) = 1 write dt = n and
note that then v(n) is even since v(d) = v(t)mod 2. Then, by (6.9),

w(p)
Gy = Y w(p)—— x
Wp<y/B+2) p
w(n v -
e I ) B RO @+ap}+
p l<n|P(p+.}'U) n pn din
2|v(m a(wd)f =1 <yJipm)

+0(V(y)log™*?y)

where, for each p,

_, o w(t)
610 GP= ¥ pdy@— ¥ —= a:(—pfh).
d|P(pt yU) i(Ppt .Y
awy? ~ 1 <y/(pdr)
v(t) S v(d)mod 2
d,)>1

Before estimating G we record at once that, by Lemma 9,

w(p)
>, w(p)—— X
WspeylB+2) P

+ X — 7 ﬂ + _}_)_ G(P)} Vivlog~ 173 y):
AN T n—

pmf =1 <yfpn)
the conditions n> 1 and v(n) even are implicit in ¥, (n) = 1. .

(611) G, =
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We turn to (6.10). Here let (d, f) =r and write d =d,r, t =1, ¥ — so
that (d,, t;)=1 — and n=d, t,. Since v(d) = v(t) mod 2 we have v(n) even
again. Thus

R R

1<ripp pY) "“"5+ yoyr pron

X Yy u(dy)x, (rdy).

dyln
g(nrid)P = 1 <yj(prZnm)

Let 7(-) denote the divisor function. Then, since g(nr/d\) 2 q(r) (d|n),

o?(r w(n '
612 6P Y 2() > —r(z )t(n)ai( r); )
1 <r|P(pt .y¥) nPpt yYyr p
a(n? ;.llv f;)zn <y

We prove next that in each term of this double sum

(6.13) o*( Y )< V(y)log'?y.

prin
For x =1/2, so that f =1 and pr?n < y, this follows at once from (4.3) —
of (v(pr?n) <1 — and (2.3). When » > 1/2 and therefore > 1 we have
g(r) > p and therefore y/(pr’n) > p’~'. Hence (4.4) (with =y, { = pr’n)
applies and &, (y/(pr?n)) < V(y). It follows that (6.13) is true in any case and
so, by (6.12), and then by (2.5),

2
ng) - V(Y) logllzyl |P(Z+ U wrz(r) Z+ v ‘aif;’ﬂr(n)
<r[P(p™.y") n|P(p™.¥Y)
<vilog-iry ¥ 20y 2t o,

rlkipy) T nlP(pyy T

3
<V(y)log‘”2y( > 9,@) < V(ylog™'?y

r|P(p.»)

after invoking (2.6) at the last step. When we substitute this estimate of G{f’
in {6.11) and then apply (1.2) and (2.4) we see that the total contribution
arising from all the sums G¥ in (6.11) is still < V(y)log™"?y so that

614 Go= ¥ ()9@{ (;)—

yV$ﬂ<y”(ﬂ+2)

— - ae(n) pa V(y)
,,|,.(,,2::‘,,U) Ty () n o (pn)}+0(log1/3y)

pimA =1 <y/(pn)
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We may now substitute this formula in (6.7). Before we do so we
observe that if y'*2 < p, T*(y/p, p) = a7 (y/p) by (4.14). Hence, by (6.7)
and (6.14),

619 G=T 0= T (w22 (V)

yHE+2 g p <yl

el 5, s
i Ve Zl/(ﬁ+2)W(p) P i p Z+:u, y() pn *

yhsp<y aP(p™ .,y
pmf =1 <yjipm)

+0(V(y)log™'?y).

7. A lower bound for H: completion

It remains for us to transform (6.15) to an applicable condition. We begin
with the first expression on the right of (6.15). By (4.2) of Lemma 3, and by
(3.16),

A+2

(7.1) T (y, yMEr ) 2 V(y)xAx%J (F—LT) d:+0(10g_1,3 )}

B

Next, by (4.4) of Lemma 3 and by (5.6),

w(p) y
y 1— - L A
(1=w(p) p o (p)

ylf(ﬁ+ Z)Sp-:yU

* lo
YWy 5 b (T_ gp)log-’ff+o(V@)1og-1/3y)
T-E JUB+Dg ey P logy p

where, as usual, we have used (1.2) and (2.4) to estimate the contribution
from the error terms(®) in (4.4). We apply Lemma 6 to the sum on the right,
with B < log™*y, so that the error introduced by moving from a sum to an
integral is <log™!7*y.

The integral itself is

yU 103T B+2
logy dt. % T—l t \*dt
log*(y/r) tlogt  log*y t—1/) ¢’
yUE+2) 1jv

(') From now on our O- and <-constants may depend also on U.

12 — Banach Center, t. 17
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so that
3 Y (-2 (X)
yUB+ g p<yU P P
p+2
1 “d
V) ;fE{ J (T—?) (?—LT) T[+O(log‘”3y)}.
1/U

Exactly the same procedure applies to the first (the positive) part of the third
expression on the right of (6.15) and we obtain

@p) .+ (2
(13 Lo wiD=" (p)

WV < p<yll(B+2)
v

*d
— V() ;fE{ J G—Eo) (t—_’f) = +0(1og™ " y)}.

g+2

This brings us to the second (negative) part of that same expression. In the
end it makes the smallest (but negative) contribution, but it gives the most
technical trouble. In the sum over n we have v(n} positive and even, p(n) > p
and p(n)*~! < y/(pn); the condition g(n) < y¥ may be omitted since v(n) > 2
and np(nf~lp<y together imply q(mp(fp<y whence g(n)
< y/pPHl <yt B < yU by (5.5). The condition p(n)f ! < y/(pn) implies
also that y > p*™*8 > 0w +AV cq that

(7.4) vin) < 1/V-3,
where by (5.4), (5.3) and (5.5)
1 e 4 1B+l

. C<min(=, 3{>—-T) , 2.
(7.3) v ""“(E 3(2+ﬁ ) I—U)
Since T <1 we have, in particular, that

1 2+

(7.6) 'I_/< ﬂa

which is no restriction at all when $ =2 (x = 1) but when =1 (x = 1/2)
gives 1/V < 9 and hence, by (74), v(n) <8 or v(n) =2, 4 or 6. Thus, in the
half-dimensional sieve the summation over n has at most three terms.
Next, we certainly want to apply (4.4) from Lemma 3, with # = y and {
= pn, so as to substitute for o, (v/pn). The condition { =2 in (44) is
obviously [ulfilled; and the condition 5/{ = 4 (requiring n/{ to be bounded
away from 1) translates into y/(pn) > 4 and is certainly satisfied when f > 1
(ie. » > 1/2) in view of the summation condition y/(pn) > p(n)’~'. When f
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=1 the terms with y/4 < pn < y require special attention. For each of these
terms we invoke (4.3) and (2.3) to yield

o (ﬁ) <1< V(y)log'?y,

and together their contribution after summation over p is

Vpogry ¥ 20y 2P

n
n PV ,yU) max (¥ yjam<p<yin P

The inner sum is empty unless y/n > y¥; and if y/n > y¥ it is, by (24) (with
= 1/2),

log4
<1og(1+ 8 ) L =

+ < .
log(y/dn)/ log(y/4n) " logy

Hence when § =1 the terms with y/4 < pn < y make altogether a contribu-
tion, by (2.6). < V(x)}log~!/2y. It follows that we may substitute from (4.4) in
the sum over n on the right of (6.15), where the p(n)-condition should now
be altered to max (p(n)’~*, 4) < y/(pn). Of course, (4.4) brings with it an error
term, involving a negative power of log(y/pn). For f > 1 we have at once
log(y/pn) > log y, but when B = 1, we have to interchange summation over p
and n as above and then use Lemma 6 with B(r) = (log(y/n1))™%/¢ <1 to
- obtain again for the error term the estimate < V(y)log™y. To sum up, we
have by (6.15), (7.1), (7.2), (7.3) and the preceding discussion that

p+2 p+2

! ' o Vde 1 1 toVdt

g 1/U
1

1 1 e Vdr 1 o (p)
b= | (F=E ) [ ) £-2 w(p 22
T-E J(f 0) (t—l) t "",.Vsp<§l(ﬂ+2) 7 p

A+2

¥ 7= (n) w(n log*y

)( A

Pl P2 n log*(y/(pm)
max (ptmf —1,4) <y/(pn)

+O(]og"”3y)}.

Remember that in the summation over n, v(n) is even and positive and
satisfies (7.4).
We simplify the exposition from here on by imposing the requirement

(7.8) V = 1(B+4).

Then (7.4) implies v(n) < 4 so that the summation over n has just the one
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term corresponding to v(n) = 2, namely

(7.9) 5 w(p;) w(p,) xlog y 12 <x<1)
p<pz<py Py P2 log*(y/ppspy)
prhpy <y<p* 1py
and

) 5 o(p) @(py)  log'?y . =1/2.

p<ir<p.  P1 P2 log'(y/ppypy)’
2 1

4ppary <y<p3p;
A two-fold application of Lemma 6 is indicated, with B < log™y when 1/2
<x<1 and B <1 when » = 1/2. After some straightforward calculation,
and writing

dxl dX2 1 _ logp
(710) hZ (K, x) - J‘j Xy X3 (l_x—xl —xz)“’ *= logy’

X <Xy <X
fxp+tx; <1-x
(B+1xy+x121

we find for 1/2 < % <1 that either of th-e sums (7.9), (7.9°) is equal to
w2 hy (%, X)+0(log™ 17 y).

It follows from (7.7) that

p+2 p+2
A *d 1 *d
(7.11) G>V(y);f_’;5{(T—E) f (ﬁ) £ f (T—;)(t—_‘—l) .
B U !

1V

1 t \*dt 1 1
t t—-1) t 3V sp<yliB+2) log y logy/ p

B+2
+0(log™1? y))(.

The function logp—Eo)h2 (x, lo_ge) of p is piecewise monotonic for
logy logy

¥ < p < p'*2 (actually, one can show that xh,(x, x) has a unique maxi-

mum in the interval V < x < 1/(f+2) and also that —h, (%, x) is increasing)

so that Lemma 6 applies to the sum over p on the right of (7.11), with B < 1,

and gives for it (with the factor x included)

yUB+2)

logt logt\ dr
2 —F h -1
% J (]ogy 0) 2 (x, log y) tlogt +0(log™"y)

yV

13

1 1\ dt
= %2 f (?—Eo)hz(x,;)—t-%-O(log"y)

p+2
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by means of the substitution r = y!. Now the double integral h,(x, 1/t) can
be integrated once, giving

1 X
(7.12) h, (x, ?) - (t—_’—l) Ky (x, 1)

where

(7.13)  ky(x, 1)
t—§

_ j % B(t—1) _(B=1' }log(w—l)dw
w+B (e~ Dp=w) (B—1+w) [ w '
2
With these remarks we finally derive from (7.11) the inequality
g+2 A+2
xA, t Ydt 1 t \dt
8 /v
13yv
+ J‘ G—Eo) (ﬁ) (1 =352 kg (2, t))%+0(log"”3y)}.

F+2

A combination of (6.1), (7.14) and (6.4) yields the following

THEOREM. Given a x-dimensional sieve problem (1/2 < » < 1) that involves
the integer sequence .o/ and the sifting set P of primes, we assume that o/ and
P satisfy the conditions (A,) and (2(x)) and that the numerical constants T, U,
V and E satisfy (5.3), (5.4) and (5.5). Then the weighted sifting-function H
defined in (1.1), (1.3) and (5.6) is estimated from below by

H(st, 2, 5", )= XV (») g (T, U, V, E)+0(log"*y»)}— ¥ |R4,

a|;(<yy”)
where for V = 1/(f+4)
A+2
xA, t \dt
(715 g(TU, ¥, E)= T_E{(T—E) f (;_—1) -
p
f+2 Y 4
1 t \dt 1 t Y 5 dt
- [ (1) )T | (o) omeneg)
14U p+2

In this formula k, is as given by (7.13) and B = B(x) is the function
associated with x (cf. (3.7)). The O-constant depends at most on x and A (from
condition (L2(x))).
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