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A survey is given on some properties of sequential probability ratio tests
when these are applied for hypotheses on a stochastic process. In particular
the termination property, the exponential boundedness of the sample size,
and optimality properties are discussed for both the cases of simple and of
composite hypotheses.

1. Introduction; Wald’s SPRT for simple hypotheses
in the iid. case

The basic idea of sequential analysis consists of the following: Instead of
choosing a fixed sample size for a statistical procedure one considers, at each
stage of the investigation, the informations already received, and examines
whether these are sufficient to terminate the experiment or whether another
observation should be taken leading to additional costs. A. Wald was the
first who systematically considered sequential decision procedures; in par-
ticular he developed the sequential probability ratio test (SPRT) which
subsequently played a key-role in sequential analysis:

Let X,, X,,... be a sequence of independent and identically distributed

(iid.) random variables. It is desired to decide between two simple
hypotheses

H: P'"=Q;; i=1,2, neN,

concerning the distribution of the X, where, of course, Q; # Q,. Denoting
the Radon-Nikodym derivatives of the hypothetical distributions with res-
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pect to a o-finite dominating measure by f;, we define the likelihood ratio by

_fZ(xl""7xn)_ . fz(xv)

g(Xy, ..., x,) = =] 7+, (1)
' Silxg, %)) o fi(xy)
where (x,,..., x,) denotes the sample values.
This statistic is used to define a sequential test 3, ,, — Wald’s SPRT —
using the stopping rule
N = Ny, =1inf {neN: g(xy,..., x,) ¢(ky; ko)} (2)

where k,, k, are (suitable) constants
O0<k, <1<k, <o

(inf@ := o), and by the decision rule ¢ = (@,),n Where

dl ]f q(xla'--’xn)gly

(Pn(xl""’xn):z{dz lf q(xla""xn)>l (3)

and d, denotes the decision in favour of H;, i =1, 2 (it would suffice to define
®, on {Ny ., =n} resp).

Since the sample size of SPRT is not fixed in advance but is, because of
its dependence on the observations, a random variable the following ques-
tions arise:

(i) Will the test J, ., terminate, with probability 1, in a finite time,
re.(!)

Pi(Nkl.k2<CD)=15 l=1,2?

(Tests which give rise to positive probability for infinite éamp]e sizes will
rarely be suitable for practice.)
(i) Do the expected sample sizes

Ei(Nkl.hz)’ i == ]., 2,

exist? (These values will, e.g., be of interest for comparisons with fixed sample
size tests.)
(i) Gamns the SPRT 4, ., advantages compared with other pro-
cedures, especially with classical tests?
For the iid. case the answers are:
(1; 1) ([36], p- 157) Every SPRT 4, ,, is closed, ie. terminates with
probability one in a finite time.

(') P;:=QF denotes the distribution of the sequence (X,),y under H;; the expectation
under P; is denoted by E;, i=1, 2
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(1; 1) ([32)) For every SPRT §,,,, the sample size N, ,, is ex-
ponentially bounded, i.c., there exist moments
Ei((Nkl,kz)k)s [ = 1, 2,

of arbitrary order ke N.

(1; m) ([37], [41], see also [17], p. 98, [5], [19], [22], [8], p. 365, [10],
p. 93, [31], [18]) Let 6,4, be an SPRT with error probabilities

ai(ékl.kz):=Pi((ka1_k2 =d3—i)’ i = 1’ 25
and &' =(N’, ¢’) another test with
%;(0):=Pi(¢'=d3_) < (6kl.k2)’ i=1,2. (4)
Then
E; (N, x,) < Ei(N), i=1, 2, (5)
and both inequalities in (5) are strict if

(ar (87, az(‘sl))r # (01 (Bicp k) %2 (0, k)

thus the SPRT’s are (uniformly) optimal with respect to the expected sample
size.

Moreover, an important step in the proof of (1; i) consists in showing
a further optimality property of the SPRT’s:

(1; iv) ([37], see also [17], p. 105) Let s; be the loss due to the false
decision d;_;, i = 1, 2, let the observation costs increase linearly (with slope
c¢), and let (m, 1 —=) be an a priori distribution on (H,, H,). Then the Bayes
risk

sy (8)+cE (N)]+(1—m)[s22,(0) +cE; (N)]

is either minimized by an SPRT or by a test which decides without any
observation (?).

2 SPRT’s for simple hypotheses on a stochastic process

Especially in bio-sciences and in social-sciences (where people can learn) the
assumptions of Section 1

independent observations, (6)
repetitions, i.e, same distribution in each step, (7)
unlimited observability, (8)

(?) These tests may formally be subsumed under the SPRT’s by defining ¢,:=1 and
admitting constants &k, > | and k, <1 respectively.
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are rather severe restrictions for the applicability of the model. One is
therefore led to consider time-discrete stochastic processes

(Qs ’Sp, P; X =(XH)FIGN)
or even more general processes
(2, &, P; X = (X, )er), T an ordered set;

— to avoid technicalities we formulate, in the sequel, several propositions
only for time-discrete stochastic processes though generalizations are
possible.

Firstly we note (see [35], p. 130) that the SPRT may be defined also in
the case of two simple hypotheses

H: PX=P, i=12

on a stochastic process in just the same way as before (see (2), (3)) — merely
the representability of

G(Xyyeooy Xy) = Sl %)

" fl(xlv--’xn)
as product of the single likelihood-ratios is lost. But again the questions (i)~
(iii) arise — and now the answers are not as gratifying as in the 1.1.d. case:
Simple examples (see, e.g., [24]) show that even the closedness of the
SPRT’s is lost in general — and therefore also question (i1) has a negative
answer. But it turns out that those testing problems where all SPRT’s are

closed may be characterized in a rather satisfactory way:

Tueorem 2.1 ([26]/[30))(°). The following statements are equivalent:
(a) Every SPRT &, ., is closed.

(b) For every (2, a3) > (0, 0) there exists a closed SPRT 6, ,, such that
o (Opy k,) S s i=1,2.

(c) For every (a,, a;) > (0, 0) there exists a closed test & such that
w(®) <o, i=1, 2.

(d) The measures P,, P, are orthogonal, i.c., there exists a set A such
thatr P,(A) =1, P,(A) =0.

Criterion (d) often yields rather simple conditions/proofs for the
closedness of SPRT’s (e.g., 0-1-laws, laws of large numbers etc.) — see, e.g.,
Remark (24).

Generalizing a result of Savage and Savage ([23]) one can, moreover,
derive sufficient conditions for the exponential boundedness of N, ,, — the

(}) This proposition may, in an obvious way, be generalized to multiple decision problems
{see [29]).
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most interesting of these leads to ensure the existence of E;(exp N ,,2) in a
neighbourhood of z = 0 (see [26]). One obtains therefore also a partial result
for question (1)). The answer to question (iii) differs essentially from that in
the 1.1.d. case; the following proposition which combines results of the papers
[24] and [27] shows that the SPRT’s will no longer have a uniform
optimality property:

Remark 2.2. 1If just one of the assumptions (6), (7), (8) is violated then
there does not exist, in general, any test which is uniformly optimal with
respect to the expected sample size.(“)

On the other hand, this remark shows that.the loss of the optimality
property is no real objection against the SPRT’s. Moreover, the following
weak “optimality” property can be shown to hold for every SPRT:

Remark 2.3 ([7]). Every SPRT ¢, ., is weakly admissible, ie. there
does not exist any test &' = (N, ¢') such that

N < N, x, Piras and 2 (6") < ;i (Oy n,)s i=1,2,

with at least one of these tnequalities (with positive probability) strict.
Beyond this, the next remark indicates that the SPRT’s may be of
practical interest also for certain stochastic processes:

Remark 2.4 ([24], [25]). Let (X,)..~ be a homogeneous Markov chain
with finite state space. Then each SPRT 4, ., is closed and N, ,, is
exponentially bounded iff there does not exist any achievable subchain where
both hypotheses coincide. In this case it may be expected that the SPRT’s
save about 70%, of the sample size of corresponding fixed sample size tests.

An examination of Wald’s original proof ([35], [36]) shows that his
approximations of the error probabilities are also valid in the general case
(see [35], p. 130-132, [38], p. 29):

Lemma (2.5). (a) If the SPRT & 4, is closed then
a1(5k1.k2) <k - az(ékl.kz)
1—12(6k1‘k2) = T l—al (6'(1,,‘2)

(b) Let for (a,, ay) > (0, 0) an SPRT be defined by

oy 1 —a,
k,:= , k,:= .
! l—az 2 %)

If 0y 4, is closed then

< Uk,

o (Op g kp) + 02 (O 1cy) S 2y + 013

(Y But it should be noted that the optimality property of the SPRT does not characterize
the ii.d. case (see [28]).
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Moreover, Ghosh ([11]) obtained as an auxilhary result:
Remark (2.6). Every SPRT is unbiased.

Some further justification for the use of the SPRT in the nonindepen-
dent case is given by Ghosh ([10], p. 99)..

On the other hand, Wald’s approximations (see [36], p. 56) of the
average sample number (ASN) will, in general, no longer be of real use —
the reason is that they are based on Wald’s equation (see [36], p. 53) which
is proved under the ii.d. assumption (but see also [40], [10], p. 70-82).
Instead only rather crude bounds for the ASN are known (see, e.g., [12], [25]).

Moreover, also the Bayesian optimality property (1; iv) of the SPRT’s is
lost in general (see [24]); instead the stopping rule and the terminal decision
have to take into account the *“state” of the observed system ([24]). So the
SPRT’s do not play, in the general case, such a dominating role as in the
11.d. case; nevertheless they are still of practical importance — in particular
since a commonly accepted “scale” for comparing different tests seems to be
missing. )

Finally it should be noted that for the “canonical” extension of the i.id.
case to time-continuous stochastic processes, the properties (1; i}«(1; iv) can
also be extended:

Remark 2.7 ([6]), [13]). Let T =[0; co} be the time set, (.o/,), . a right-
continuous filtration, and assume that the log-likelihood process (with res-
pect to &) is (unde'r P;) an integrable stochastic process with stationary
independent increments which is continuous in Pi-probability. If &, .,
= (1, @) is an SPRT(®) with error probabilities «; (Ox,.k,) and & = (7', @) is a
(sequential) test such that

; (') < ai(ékl.kz)» i=1,2,

then
Ei(t’) 2 Ei (T)’ i = 1, 2’ (9)

and both inequalities in (9) are strict if

(al (5’)7 ] (6,)) :'é (al (5*.1,,!2)7 o2 (5k1.k2))'

In particular this optimality property of the SPRT’s holds if the prob-
ability measures P; belong to a family of the exponential class (see [9],
[16], 2.2).

3. The SPRT for composite hypotheses in the ii.d. case

The SPRT (2), (3) is constructed as a sequential test of one simple hypothesis
against another. On the other hand, from a practical point of view the

(°) The stopping rule t and the decision rule ¢ are defined analogously to (2), (3).
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problem of testing two simple hypotheses seems to be rather artificial — in
most real problems it is desired to decide between two composite hypotheses

H": PXEQI-, l=1, 2, (10)

where @, = {P,: §€0;} are disjoint fahilies of possible distributions of the
observations. But as in the “classical” theory (comp. e.g., the Neyman-
Pearson lemma) one hopes that the consideration of simple hypotheses will be
a first step for a successful treatment of the more complicated problem (10).

There is no unique way to construct an SPRT for composite hy-
potheses; the following three proposals seem to be the most important ones:

(@) Two special distributions P,e &, i = 1, 2, are selected and used to
define an SPRT according to (2), (3). Since this method can also be used in
the general case we will discuss it in sonfe detail.

(b) The composite hypotheses are reduced to simple ones by using the
principle of invariance, if applicable, and then an invariant SPRT is defined
in an obvious way. For the problems arising with this method we refer to the
excellent review article [39] of Wisman.

(c) Already Wald ([35]) proposed the so-called method of weight
functions: For each 2, a prior distribution is chosen and the families %; are
“replaced” by the according “mixture” of the distributions in &, i =1, 2.
Thus the composite hypotheses are reduced to simple ones and an SPRT can
be defined in the previous way (2), (3). For the choice of the prior “mixtures”
certain guidelines were suggested by Wald.

For a short discussion of proposal (a) let us firstly remark that in this
case analogous questions as (i}iii) arise — but now more complicated since
one has to take into account all possible P,, €@ := 8, U 0,.

Again the answers to questions (1) and (ii) are satisfactory:

TueoreM 3.1 ([36], [32], see also [10], p. 118). Suppose that for all

0e@
1,(X)
=1 1; 11

Fs <f1 (X1) ) < (an

then every SPRT Ok, .k, Satisfies

(i) i, is closed, ie.,

hm PO(N*D"Z >n)=0 for all 06@;

(i) Nya, is exponentially bounded, ie¢.,
Eg(Ny,x)) <0  for all keN and 6e®.

Condition (11) may easily be checked; it is, e.g., fulfilled if f5(X,)/f;(X})
has positive variance.
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But the answer to question (iii) ytelds at the same time one of the main
objections against the SPRT: Though every SPRT minimizes the ASN for
the special distributions P;, i =1, 2, it may have rather unsatisfactory
properties for “intermediate” distributions Pg. For the time-continuous case
of a Wiener process with known variance g, hypotheses

Hi:p<p;, Hy pzp=p+0o/fs,
and error bounds
o, =a, = 0.01,

Ghosh ([10], p. 238) gives, e.g., the average sample time for seven rival tests
at y; and 3 := (uy +u,)/2; he obtains in particular:

Procedure E, (1) = E;(1) Eq(7)
Fixed sample 541.2 541.2
SPRT 2252 5279
Special truncated test 2428 437.7
Special “Anderson” ([1]) test 2494 402.2

A uniformly optimal test will therefore not exist in general. It is even possible
that an SPRT needs, at an intermediate Py, an ASN which exceeds that of a
competitive fixed sample size test (see [1], [10], p. 141).

On the other hand for special one-parameter families of distributions a
restricted optimality property of the SPRT’s can be proven (see [10], p. 105).

Therefore another “scale” for comparing different (sequential) tests is
needed. Two main proposals, beside the decision-theoretical concepts (Bayes
and minimax procedures), consist of the following:

() Construct a (sequential) test which minimizes sup E,(N) out of all
0c@ )

closed tests of strength (a,, ;) (see [14]) — this concept leads, for certain
families of distributions, to truncated generalized SPRT’s.

(i) Construct a (sequential) test which has a local optimality property
— e.g., maximizes the slope of the OC function at a “boundary” point 6,.

4. Remarks on the SPRT for composite hypotheses on a stochastic process
Also in the case of composite hypotheses
Hi: Pxe{/?‘., i=1;25

on a stochastic process it makes sense to select two special distributions
P,e?,i=1,2, and to use these to define an SPRT.
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But in order to show what may happen here in connection with our
question (i) we consider a simple example which essentially goes back to

[33]:

ExaMpLE 4.1. Let two distributions concerning a homogeneous
Markov chain with 3 states be given by the initial distributions

10/31 87/248
'p=( 9/31 }, 2p—(81/243
12/31 80/248

and the transition matrices

3/10 3/10 2/5 1/6 1/2 173
1p = (1/3 1/6 172 ) 2p = (1/2 1/6 173 )
1/3 3/8 7/24 2/5 3/10 3/10

— the initial distributions ‘p are just the stationary distributions correspond-
ing to the ‘P. The ‘P are irreducible and aperiodic; the P; are orthogonal (see
(2.1)). But let now the “true” distribution P be given by the transition matrix

0 01
P= (3/4 1/4 o)
1/3 2/3 0

— this P is irreducible and aperiodic, too; P is orthogonal to both P;.
On the other hand, one easily verifies by direct calculations that for
xo=1: 2, e{5/6, 1, 2/3}
xo=2: [] —1’—_1'1?6 13/2, 1, 5/4} for all (x,,...,x,), neN, P-as.
xo=3: /71 Pr-tricters, 45, 1)

This yields that every SPRT §,, ,, with

ki <23, ky>27/16

will never terminate (with probability 1). Therefore, to ensure even the
termination property of the SPRT’s rather strong assumptions have, in
general, to be made.

Remarks 4.2. (a) Example 4.1 turns out to be a counterexample as
well against Lemma 2 (the reference to [34] seems to be erroneous) as
against Lemmas 3 and 4 of [21].

(b) Condition V.2 of [15] avoids the difficulties arising in Example 4.1;
but to verify that condition it seems necessary to know the “true” distri-
bution (then in fact no longer a statistical problem exists).

{c) Using a concept of degeneracy due to [20] it is moreover, possible
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to rectify the results of Phatarfod ([21]), but then the same difficulties arise
as in the case treated by Kiichler ([15]).

Observing that a nonincreasing sequence (a,),.y With

0<ag, <1, VneN,
fulfills

a0
lima,=0 iff Y (1—a,.,/a,) = oo,
n—x n=1
one obtains a simple characterization of the termination property (but which
seems not to be of any practical importance):

Remark 4.3 (see [10], p. 161). Let o = (N, ¢) be a sequential test with
Py(N >n) >0 for all(®) neN. Then & is closed iff for each 6@

a

Y. [1=Py(N > n+1)/Py(N > n)] = .
1

The fact that
lim Py(k; < q(X,,...,X,) <k;)=0,VleO,
is a sufficient condition for the termination property of the SPRT &, 4, is
used by Ghosh ([10], p. 121, 161) to derive several sufficient conditions for
SPRT’s to be closed. But it seems, from a practical point of view, to be more
fruitful to consider special classes of stochastic processes and to prove
conditions for the termination property by using their special structure:

Remarks 44. (a) Stochastic processes whose log-likelihood process
has stationary independent increments allow conditions analogous to those
of Theorem 3.1.

(b) For independent but not identically distributed X; the condition
inf Vary (/5 (X)/fi (X)) > 0 foreach 0e®
ieN
is sufficient for the termination property of the SPRT’s (see [10], p. 161).

(c) Conditions for homogeneous Markov chains with finite state space
were already mentioned in Remark 4.2.

(d) The termination property of SPRT’s for timecontinuous Markov
processes was considered by Andrieu ([2]).

Moreover, for some special cases also conditions for the exponential
boundedness of N, ., are derived (see e.g. [15]). But even a partial answer
to question (ii) seems, as far as we know, to be missing — Ghosh ([10],
146-148) gives some arguments that the SPRT’s in the general case will be
expected not to have any optimality property (see also 2.2).

(5) Po(N > ng) =0 yields no problem of closedness.
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