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1. Introduction

A well-known problem of Goldbach asks to prove that every even integer N
= 6 can be written as

N =p;+p,,

where p, and p, are odd primes. It is a well-known theorem of Vinogradoyv
that every sufficiently large odd integer N can be written as

N = p,+p,+ps,

where p,, p; and p; are odd primes. It is also a well-known theorem of Hua
[257] that every sufficiently large integer N = 5(24) can be written as

N = p?+pi+pi+pi+pi,

where p’s are primes. The representations of integers by the sums of the
higher powers of primes are also well known and can be seen in Hua’s book
[25]. Many investigations have been done concering these problems, some of
which are discussed in a survey article by Bredihin [3].

The additive problems with which we are concerned here can be stated,
in a less precise way, as follows:

ProsLeM 0. To represent an integer N using only the smaller primes.

More concretely, we have the following three problems in mind here.
Let g be an integer > 1 and let &,, d,, ..., §, be positive numbers satisfying
61+ cae +59 - 1.

ProsLeM 1. Can every sufficiently large even integer N be written as

N=p,1---PregtP21---Prg

[121]
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where p; /'s are odd primes satisfying p, ; < Néifori=1,2and j=1,..., g?
ProsLEM 2. Can every sufficiently large odd integer N be written as
N=py1--Prg+P21---PrgtPs,1--Prg
where p; /'s are odd primes satisfying p; ; < Nlifori=1,2andj=1,..., g7
ProsLeM 3. Can every sufficiently large integer N = 5(24) be written as

N=(py,..p1.0°+ ... +(Ps.1 ... Ds.g)%

where p;’s are primes and satisfy p;.JS_Ndflz for i=1,...,5 and j
=1,...,9?

The main purpose of the present article is to give a survey of the
author’s previous work concering these problems and add some new
theorems with proofs. In fact, Problem 1 is still open, Problem 2 for g > 2
has been solved in [14] and Problem 3 for g = 2 will be solved in this article.

In Section 2 we shall deal with some binary additive problems which
surround Problem 1. In Section 3 we shall give a survey on Problem 2 for g
> 2. In Section 4 we shall state our theorems on Problem 3, whose proofs
will be given in Section 5. In Section 6 we mention some related problems
and results as supplementary remarks since we restrict ourselves to giving an
exposition of the author’s own work in the rest of the present article.

We remark that the results in Section 4 and the proofs in Section 5 are
new.

2. The binary case — problems related to Problem 1

Although Problem 1 seems to be inaccessible, there are many problems
surrounding it. In fact, this kind of problem was originated by Barban in [1].
It is an analogue of Titchmarsh’s divisor problem. Titchmarsh [34] posed
and solved under the generalized Riemann Hypothesis the problem of an
asymptotic behaviour of the number of solutions of the equation

1 =p—nyny,

for a prime p < X and natural numbers n, and n,, namely an asymptotic
formula for the sum

Y t(p—1) as X - o0,

r<X

where we put 7(n) =) 1. Linnik [30] solved this unconditionally, using his
din
dispersion method. Later it was proved without using the dispersion method

by Rodriquez [33] and Elliott and Halberstam [9]. They used Bombieri’s
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mean value theorem, which states that, for any large A4, there exists a positive
constant B such that

1 .
Y max max| Y 1-——Liy| < X(logX)™4,
gsQ =1 ysX Py @(q)
p =a(modgq)

where ¢(g) is the Euler function and we put @ = X'/?(log X)~ 5. Barban [1]
posed the problem of an asymptotic behaviour of the sum

D t(ppy—1) as X o,

py $X8,pysxl—9é

where 0 <d <% and p, and p, run over the primes. Linnik’s dispersion
method works for 0 < < 1/6, but it does not work for other values of 4.
Barban [1] solved this for § = 3. The present author [13] has shown the
following

TueoreM 1. Suppose that J is in 0 <6 < % and élog X tends to oo as X
— o0, Then we have !

Z T(p1p2—1)
py X8, pysxl=9o
_ 315 {3 X
T 2rt* 5(1-6) logX
uniformly for &, where ((s) is the Riemann zeta function.
The main term on the left-hand side of the above theorem can be seen
to be equal to '

2% 5 LiX“"+2Z 5 ( ¥ 1_LiX1"’)’

250 p, <x%,(py.0=1 ?(9) 95Q p, < X%,(p;.q)=1 N pps x4 40
P =pi(modg)

+0 (X5 ' (log X)"2(loglog X +571))

where p¥ satisfies p* p, = 1(mod ¢) and we put Q = X'/?(log X)~? with some
positive constant B. To deal with the last sum we have to get an analogue of
Bombieri’s mean value theorem. This kind of sum was first treated by Chen

[6], who proved that every sufficiently large even integer N can be written as
N=p+pa or N=p3+pips

with primes p;'s. In fact, we have proved and used the following lemma,
where we put

Liy

E(y;a, q) = [——=.

ia 9 pzs:y e(q)

p=aimod )

LemMa 1. Suppose that ¥ |b(m)* < X(log X)° with some positive

m<X
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constant C. Then, for any positive constants A and b (< 1), there exists a
positive constant B such that

Y max| Y bn,E(X'7% am*, g)| < X(log X)~*
g€Q =1 1(5m)@{"
m,g)=

uniformly for & in 0 <8 <1—(log X)™*, where Q = X"*(log X)~® and mm*
= 1(mod g). '

We remark that the conclusion of Lemma 1 still holds even if we replace
E(X'~?; am*, q) by E(X/m; am*, g). In a similar manner we get an asympto-
tic formula for the sum

) (N —py p3),

pi<NépysN1—d

where 0 <9< 1/2 and N is an integer. Namely, we get an asymptotic
formula for the number of solutions of the equation

{

N =p,ps+mn

for primes p, (< N° and p, (< N'% and natural numbers m and n.

As is well known, Hardy-Littlewood’s problem belongs to the same
category as Titchmarsh’s divisor problem. It is to get an asymptotic formula
for the number of representations of a natural number N as N = p+m?+n?,
where p is a prime and m and » are natural numbers. Under the generalized
Riemann Hypothesis, Hooley [24] derived such a formula. Linnik [30]
succeeded in getting it without using any unproved hypothesis. He used his
dispersion method. Later Elliott and Halberstam [9] proved it without using
the dispersion method. They used instead Bombieri's mean value theorem.
Linnik [30] and Poljanskii [31] derived an asymptotic formula for the
number of representations of a natural number N as N = p, p,+m?+n?,
where p, and p, are primes and m and n are natural numbers. They used the
dispersion method. We remark here that we can derive that formula without
using the dispersion method (cf. [13]). Instead, we have used Lemma 1 above
and the following lemma:

LemMA 1'. For any positive constants A and b (<1), if Y |b(m)?
msX
< X (log X)°, b(m) < X* %72 for m< X%, B = (log X)/ with some fin b <f
< 1 and some positive constant C, then there exists a positive constant B such
that

1

) max max Y  bm——— ) b(m|<X(logX)™*
g<Q(aq)=11<y<sX mp-ﬁy.(msdx)a q’(q) mpS;;;
mp =a(mod q m<x

uniformly for 6 in 0 < 8 < 1—(log X)~%, where p runs over the primes and we
put Q = X' (log X) 8.
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3. The ternary case

Compared with the unsatisfactory results in the binary case, we can give a
more satisfactory result in the ternary case. In fact, we have proved in [14]
the following

THEOREM 2. Let g be an integer > 2. Then every sufficiently large odd
integer N can be written as is asked in Problem 2.

We have proved our theorem using the Hardy-Littlewood-Vinogradov
circle method. We have estimated the integral

1
{53 () e(— Net) dar,
0

where we put e(a) = exp(2mia),
Syl@) = > logp;...logp,e(p; ... p, )
pj-‘SNaj,j':l.....g

and p;’s run over the primes. The estimates of the minor arcs may be reduced
to the estimates of the sum

11

x Jj=1

y Aplogp

p1/2+i:

]

p<Ni
where x runs over all Dirichlet characters modg, g belongs to
(log N)®, N(log N)"?], B is a sufficiently large constant and ¢t is a real
number. The last sum can be treated by Lemma 2 of Gallagher [17]. The
major arcs can be treated by the Siegel-Walfisz theorem (cf. Satz 8.3 of [32])
on primes in arithmetic progressions. Thus we get the following quantitative
result.

Z lj ,lj[ 0g pi,j

N=p1_l...p1.g+p2'l...p2'9+p3_1... 3,9 i

«%”)—JG(N)?ANHO(NZaogm-A),

where
6(N)—H(1+ 1 )]_[(1———1——)
T\ =103 D)
_ N g—1 N g—1 N g—1
rg (M - N=h1+zh2+h3 (]08 E) (log hZ) (log h3) ,

p's run over the primes, k's are positive integers and A is a sufficiently large
constant. )
We may mention the following special case of Theorem 2.
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CoroLLARY 1. Every sufficiently large odd integer N can be written as

N=pi1...p1yg+Pa1--PrgtPsi--DPag
where p, s are odd primes < N'7.

4. Waring’s type of problem
Let k be an integer > 2. We put

2 for 2 k<11,
2k*(2logk+loglogk+2.5)—2 for k = 12.

Let p run over the primes. Let @ = 8(p, k) be an integer such that p®|| k. We
put

so(k) ={

8+2 if p=2 and p|k,

y=10, ")={9+1 otherwise

and K = [] p’. Our result concerning Problem 3 can be stated as follows.
p—1lk '

THEOREM 3. Let k be an integer = 2. Let s be an integer = s, (k), where
we can take sy (k) = so(k)+1. Let g be an integer > 1 and let é,, ..., 6, be
positive numbers satisfying 6,+ ... +3, = 1. Then every sufficiently large
integer N = s(mod K) can be written as

N=n4+r+. . +n4
where n's are of the form p, p,...p, with primes p;’s satisfying p; < N Jor j
=1,...,¢.
This gives, in particular, an affirmative answer to our Problem 3. We
mention the following corollaries as special cases of our Theorem 3.

COROLLARY 2. For any integer g = 1, every sufficiently large integer N
= 5(mod 24) can be written as
N=(py..p00°+ .. +(Ps,1..Ps,0)°
with primes p's < N'/%9,
CoroLLARY 3. For any integer g = 1, every sufficiently large odd integer
N can be written as
N=(p11. - p1’ + ... +(Po1 ... Ps,)
with primes p’s < N1/,

We remark here that if one uses the argument in Chapter IX of Hua
[25] and our Lemma 2 below, then one can take the better s, (k) in Theorem 3
for k 2 5. To prove our theorem we use the Hardy-Littlewood—Vinogradov
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circle method and the following lemma on the trigonometric sums over the
primes:

LemMMma 2. Let k be an integer > 2, let g be an integer >1 and let
ly, ..., |, be integers > 2. Let N be an integer > N, and let H, H,, ... and H,
be integers = 1. Suppose that a real u satisfies |a~a/q| < q~* with relatively
prime positive integers a and q. Then for an arbitrarily small positive v,
F=Y ¥ .. Y| elahhi...hIr*) An)

h<sHh) <H,y thHg n&N .
-

< HH,...H, N_Z’C(Q"zn"+N*1I2)2*"1sz(k) ,
where 55(2) =2 and s,(k) = 5o (K) for k> 3. & =log(HH'L... H N¥)
§ = min(H, q, HH}! ...H:’N"/q),

ﬁ_{min{Hi, Hi>1? i=13 "'!g}s
o fH<lforali=1,...,g,

g
n= Z k-1,
Hppt
A(n) is the von Mangaldt function, and C is some positive constant which may
depend on k, I, ..., I, and v.
We shall prove our Lemma 2 and Theorem 3 in Section 5.

5. Proofs of Lemma 2 and Theorem 3

5.1. Some notation. Here we shall list some of the symbols which will be
used in this section. We denote arbitrarily small positive numbers by ¢ or v,
arbitrarily large constants by 4 and some positive constants by C. u(n) is the

Mébius function, 7;(n) = ), 1 and we denote 7;(n) for some integer j by
n=dy..d;
1’ (n). The following notation1 will be used except in 5.6. k is an integer > 2,
2b=2¥"1 g is an integer =1, I, ..., |, are integers =2, N is an integer
> Ny, H, Hy, ..., H, are integers > 1.
a is a real number and |x—afg| < g~ * with relatively prime positive
integers a and g, § and n are the same as in Lemma 2 above, §

= 02", ¥ =log(N*HH'...Hf), #=Ilog(N*HH}...H?g, Y =17,
A h<H

Y=Y .Y, A=HH,..H, hk=hl.hs 2L,=2""" . 2L,

A h{<H| thHg

= 2% 2r is defined after Lemma 3 in 5.2 below.

5.2. Some lemmas. Here we shall list some of the lemmas which will be
used for the proof of Lemma 2.

-2

1
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LemMMma 3. We put 2r =2* for 2< k<11 and let r be the least integer
such that

r>k%*(2logk+loglogk+25)—2 for k> 12
Then

¥ du < N¥* ¥(log NS,

jI 3 el

0 n<N

where C and the implied constant in < may depend on k.
(Cf. Theorem 4 and Lemma 7.13 of Hua [25])

Hereafter, except in 5.6, let 2r = 2 for k = 2 and let 2r be as in Lemma 3
for k = 3.
Let a, and b, be any complex numbers which satisfy

Y la? < X(logX)° and Y [bF < X (log X)F,
m<X m<X
where X > Xy, E> 1 and C may depend on E.
LeEMMA 4. Let M,, M,, N, and N, be positive integers such that M,
<M2 SN, Nl < NzSN and MlNl -SN. If N/N2\<,M2 then, for any
positive £ <1 and v <1, '

R=YY| ¥ a4, Y b,e(ahh m".n")l
h hy My <ms M,y Ny <n€Ny
mn<N

— k .01 TE - — ~ -~ - 1__.”.
<HN1‘E?“""0’M§’(1 O FCLANGC (02" +N,/Nysr,
where gg = 1/2 when k =2 and 2r =2 and e, = € when k 2 3. If N/N, =2 M,,

then for any positive e <1 and v <1,

k
_ 1-5-(1—¢eq) ~
R<HN, ¥ "M,%+

_ ~ 1 N k7o N, \LTY\1l/4br
+HM, N, ¢ maTny 2 ,
2 (s () (€7

where &y is the same as above.
If b, < D, then ¢ may be taken to be 0 and we multiply the corresponding
terms by D.

We shall prove Lemma 4 in 5.3, We need also the following

LemMMa 5. Suppose that b,=1 in Lemma 4. Then, under the same
notations as Lemma 4, for any positive v < 1,

AN Z* Mg‘-1>/2b((§-2‘"+M JNYE b if NIN; < M,

A, N, (L g Ma) )
' >

R<<{
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We shall prove Lemma 5 in 5.4.

LeMMa 6. Suppose that X 21, Y 2 1, (a, ) = 1 and |« —a/q| < g~ 2. Then

>, min(Y, [laxl| ™) €« XYq™'+(X +4) log 29,

x€X

Y min(XY/x, llex]|™') < (XYg™ '+ X +4g)log(2XYg).
xS X

(Cf. Vinogradov [40].)

5.3. Proof of Lemma 4. We may suppose that either H,

=H,=...=H
=1 or Hl,..

a
., H;» 1. We decompose R into sums of the type

RV, WM=Y>| ¥ a, Y b,,e(ahﬁ,m"n")L

h by V<mxy- W<n<W’
mn<N

where 1< V<V <2V, LS W< W 2W and VW < N.
By Holder’s inequality,

R(V, W) < Hl‘('lllr)(ZIaMIZr/(Zr— 1))1-(112r) N

x (ZZ ): | Z b, e (ahl; m* nk)IZr)lll’r
"heom mas<N

— ﬁl—(l/Zr)R{.—'(UZr) R%ﬁr, Say,

where m runs over V<m< V' and n runs over W <n< W'. We have

R, < V5,

R=TIF 3 by +IL Y

n2r
h; m n;, mn,<N

b,, e (ahh, m* F)
hi m mmmy<N r

= R3 + R4, say,

where the dash indicates that we sum over all n,,
W<n<W and nd+ ... +nf=nf,  +

that we sum over all n, ..., n, such that W<n,< W' and n¥+... +
+nf£nk,  +...4+nk and we denote ni4 ... +nf—
If 2r =2, then

., h3, such that
... +n%,, the double dash indicates

My — ... =Ny by F.

R, < AVYW Z*.

If 2r > 2 and b, < D, then by Lemma 3
R, <« D* HAVW?¥—k g€,

9 — Banach Center, t. 17
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Generally, for 2r > 2 and for any positive ¢ < 1,
R3 <<HVw2r—(1—a)k_(?C
R, <Z E Z by, | | ¥ elahh m* F)|

h; nl\N/V mEN/W

< -ty Ibnlzb/(zb—1))2'(1*(1/2”)) %

(LY X | T elahhmt R

h B MENV mENIW
= Hl—‘(ll2b) R%r(l —(1/2b)) R%/Zb’ Say,

Ry < WZ°
By Weyl's method (cf. pp. 10~12 of Davenport [8]),
RG < VZb—le2r+
+VEUEY E” Y min(N/W, lahhik!y; ...y FlI )

h WPk —~1SNW

= 2" 1HWZ"+R-,, say.
R, = y#-ky ) ¢ (d) min (N/W, ||ledh] ™),

hy 1<|d|<HN 1w .

where d = hk!y,...y,_; F <« HN*"' W, N/W < N*H/|d| and

cd< Y () Z 1) €« War—ky'(d)) Z°<.
d=dldz.d1 >0
dy= n +. +nk r+l . —n’ér
We first treat the case H, =... = H, = 1. Then by Hélder’s inequality,

Lemma 6 and Lemma 1.1.2 of Linnik [30], for any positive v < 1,
R, < V2 -kw2r=k ZC% o' (|d) min (HNY/|d|, ||lad|| ~*)
d
< VW ZE(NEHY (L 7 () ld))” (3 min (HNY/|d], |lad)|=*)" ™"
d d

V2R Wr Tk PC(NHY (HN*/g+ HN* "' W g)' =
< y2b-k W2r—kaﬁ§C(QA_l +W/N)l—v,

where d runs over 1< |d| <« HN* ' W,
Now suppose that Hy, ..., H,» 1. Then for any positive v < 1,

R < V2b szr kgC(HNk (szln N/W Hadﬁ;ll“))

hi d

= 2k ek gC(gNk)vRé—v, say.
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We suppose first that g = 1. Then
Y min(N/W, |ladh]|™ 1)
hy $H;

~ N ) R N
LYy Y min(N/W) LY T eladht)|+H, £
11| SN2 hy $Hy
(N/w)?2

< PPy ((N/W))WIN — Z8,(1)+(N/W) £ J ®,(y)y"2dy+H, 2,

NIW
where we put

@, (y) = | ¥ e(udhy)
1L|j|€y hy $Hy

and have used the Fourier expansion of min(N/W, ||a]| ') as in pp. 265-266
of Ghosh [19].
Now

‘;D (y) < (HN*"' W 1 “/21‘1’ E(jddhll)ZLl 1/2L,
— (HNk—i W )1 (1/21-1)R1/2L1 say,

>

where 1 < |j| < y. Then as before for any positive v < 1,
Ry < HV ' HN'Wwy+H " x

X2 2. min(Hla”jadl1!.)’1---)’11—1||_1)

d 7 yl""'yll—lSHl
< HM T HNStwy+ HEUT W HNS WHY ) 2C
x 5 min (H,, [lat| ™)' ™
1<l <HNE twHL T

I q 1—v
< H" HN*- 1Wy.<fC( et ) .
' TH, Ty WH' y

Thus we get

Y &,(y) < HN*"* Wy H .?C(l . q )“'”"“1
@ - _+—+ ]
T Yo\ TH, TN T wHY

~(f1 1 q (=wzky W
Ry <« HN*H f(( +—+ ) +—
: : q H, HN<H} N

and

1/2L{\1—v
R7 & V?.b—k WZr—k:?CHHl Nk(ﬁf (1+L+_&q—’) / 1) .
N \¢g H, HN*H!
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For g = 2, we repeat the above procedure and get

-1/2L,

o (W
R, < V2r—kyyar—k ZC g Nk (-ﬁ+ H,

+H-—1/29L1...Lg+(1+ ? | )—1/291,1 ...Lg)l-v
’ 9 HN'HY. H"

< y2b—k Wz’—”,S?CﬁNk(Q_1+W/M1'V.

Combining all these estimates, we get the following

e 1/4141 L2

+H,; ot

Lemma 7.
1/4br

R(V, W) < HVW Z€ (W~ 1= L V=L (N/VIWF(WIN+ Q™ D)),

where &, is defined in Lemma 4.
From this we immediately deduce Lemma 4.

5.4. Proof of Lemma 5. We decompose R into sums of the type
RV, W)=Y ¥ an Y elahhmn

h by Vimsy' W<n<sW’
mns<N

where 1< V<V K2V, 1S W< W £2W and VW< N. Then
R'(V, W) Q(EV)I_(”M):?C(ZZZ| Z e(dhﬁ,m"n")|2b)”2b
h iy m mpm<N
— (ﬁV)l—(lfzb) gCR}IOZb, say.
R, « W 1HV+
TWEAYYY Y min(N/V, lahRmtyy g R
A oA

i m ¥y, ... ¥—1 SNV

<WHRTLAVEWRRY Y 2 (dymin(N/V, llek di|™Y).

b 1gdqg Nt~ 1y

The last sum can be treated as R, and we get
Rio « W 1AV W=k ZCAN*(VIN+0 1)
Thus we get the following

LeMMA 8.
k

- N . 1/2b
RV, W) < HVW.?C(W"‘+ Vwk(V/N+Q-1)1"") :

This immediately gives our Lemma 3.

5.5. Proof of Lemma 2. We may suppose that g < N*H. Let Z be a
positive number < N'/?, which will be chosen later. By Vaughan’s lemma (cf.
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Vaughan [35] and Ghosh [19]), we get

2 Ame@hhn)=[ 5 pld F  elehh(d))

n<N 1 d<min(Z,N}y) y<I<Njd

dy
y
LI+ T ¥+ ¥ ¥

ISZPASN Z<ig<VNr<Z 2Z<ISVNZ<r<vyN

+ X X+ ¥ Y )ghelahh(r))-

VN<ISZ2AEN Z<ISVN NSrEN

-2 L+ ¥ Y o+

Z<m&VN Z<nsvN Z<m<JsNN<n<N/m

+ ¥ Y )t(m)A(n)ye(ahhm* n¥)+ 0 (N'?)

VN<mSN/ZZ<n<N/m
5 3

=S,— ) 8- Y SY+0(N'?), say,
i=1 =1
where
gih= 3} pldA) (<log)
dn=1d<Z
and

tm)= 3, pd (<7'(m).

dmd<Zz

We observe that, if Z2 < N, then we suppose that g(}) =0 for > Z2
and the estimates below hold also in this case. We denote } Y IS,| by &,
h b

and ) ) |SY| by &Y.
h
By Lemma 5, we get
'901’ I5/2(21) @HNgCZ(k_I)IZb(QA-l+Z/N')“_v)/2b.
By Lemma 4, we: get

ok _ « 1y
SN < ANV 3 20 S+ ANSC(Q™ 1+ Z/NY 5,
A 1=y
PG < ANT-20 20 25020 @€ 4 GN O (O~ +1/+/N) 7,
N _ « 1=y
PP <« ANZ 310 € ANSC (01 +1//N) o,
_ k _ ~ 1-v
PP ¢ AN Z 0 g€ 4 ANSC(Q ! +1//N) %r,
k < 1-v
PP < ANZ- 1205 ZC+ ANSC(Q~ ' +1//N) %,
k _ ~ 1-v
PP €« ANZ- G5 €+ ANSC(Q™ " +1/ /Ny,
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where &, =1/2 iff k=2 and 2r =2 and ¢; =0 if k > 3 and ¢, is the same as
before.
Trivially, we get

9P <z /NAL.
Thus we get

k—1 - _1_-_-_\: _ k
¥ <ANYCZ D (0 1+Z/NYZ +HNZ -0z ¥4

. 1-v
+HNZC(Q ™'+ N~ V3yaer,

Here we take
2y

Z = (min(Q, N9k,

where K = 2r(k—1)+k{(1—¢g)2b and K' =2r(k—a)+k(l—gs)2b. Then
Z<NY3 for k=2
Hence, we get

1—-v
S <ANLC(Q ' + N~ V¥ @r,
By our choice of 2r we get our Lemma 2.

5.6. Proof of Theorem 3. Let A be an arbitrarily large constant, let B be
a sufficiently large constant and Q = N(log N)™%. We put X, = N%/* for j
=1,...,9 and & =logN. Let

a 1l a 1 1 1\
- 224 d IL=|-=,1—=|-1,.
L 2, [q Q’q+Q] o [ 0 Q) :

1
(a,q) f,lsasq

[LIF7Y

We put
T@= Y logp,...logp,e((p;...p)*a).
py<X;j
We shall estimate

t
r(N) = st(a)e(—Na)da = (f + _f)T’(a)e(—Na)da =r; (N)+ry(N), say.
0

Iy I
We shall estimate r,(N) first. Let 2r be defined as in Lemma 3 and
suppose that s > 2r+1. We have
i
r2(N) < (max T@) > [T (0)? da.

GEIZ 4]

If ael,, then there exist integers a and ¢ such that

e—a/ql <1/9Q, #*<q<Q, (a,¢9=1 and O<a<gq.
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Hence, by Lemma 2, we get

max | T (a)) < NY*(log N)~4.

aelg
The last integral is
< ¥ Y c(ny)...c(ny,) € ¥
,qullk niéNllh
LR L L Y RN LY Y

1
=ZCJ] ¥ efant)” du < Nrbi g€

0 ngN1/k
where
c(n) = Y 1 <1.
ijXj,n=p1...pg

Hence, we get

s—2r 2r_

ra(N) < N % (log N)"“N¥ " (log NI < N¥~ " (log N)™*.

135

Next we shall treat r, (N). Suppose that ael,, a = a/qg+p,1 < qg< ¥

(¢, g) =1 and |f| < 1/Q.
We shall prove the following

LEMMA 9. Let k and g be integers > 1. Then we have

_ Sag 1

@(q) K(g— 1!y

Te)

where (log N/h)""1 is replaced by 1 for g =1 and we put

4 a
Seq= 3, € (b"—).
b=1,bq)=1 q

Proof. We suppose that g = 2.
Ta)y= Y A (e(hf)—e((h+1)8))+A(N)e(NB),

hsN-—-1
where we put
' a
A(h)= Z logpl"'logpge((pl"‘pg)k—):
pl...pgshlﬂ‘ q

and the dash indicates that p; < X, for j=1, ..., g.

g—1
Y, ptid (log%r—) +O(N'™*(log N)~4),
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Now,
q
A= Y e (b"g) ' logp,...logp,+O(N'*(log N)~4)
b=1(bg)=1 posnl/k
,f;’,_b(q)

1 1 a '
—_ Y e(b*a)f(b) > logp,...logp,x(pi-..p)+
14

- ?(Dp=1.60=1 Py By 1K
O (N'*(log N)~4)
S :
=24 logp,...logp,+
(9) L oh ’

P ...pgshllk

R Cr I ) LU M
()ﬁzo b=1 py - py<hllk

(bg)=1 !
... log p, x(py .--pg)l)+0(N”/‘(Iog N)=4)
=M, +M,+O(N'"*(log N)~4), say,

where y runs over Dirichlet characters modgq and y, is the principal

character mod q.
By p. 46 of [14], we get for h< N—

S I e | N
M, =24 pik ( log )+O Nk (log N)~4).

1t ,,Zou' k" h (N (log N)™)
For h = N,

S
M, =L N4 O(NY*(lo —4),

As in p. 45 of [14], we get for h< N
M, < qgh'*(X,... X )"*(log N)~* < N (log N)~4.

Thus we get
‘“I lk ‘- 1 N 1/k -4
A(h= /E logh +O(NY™(logN)~4) for h<N-1
u= Ol‘l'
and

A(h) = S‘E;)N""+O(N”"(log N)™4),
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Thus we get
T@= 2t ¥ (h”* Z-:—, G log%)")(e(hﬁ)—e(u: +1 )+
+0(N'(log Ny N|1 —e(ﬁ)l)+§2—;—) N e(NB)+0 (N (log N)~4)
~ein I (e -
— (h—1)'" :);:i % (i logh—fi)ﬂ)e(hﬁ) +
+%h§‘v(h”"—(h-—l)”")e(hﬁ)-l-O(N‘”‘(logN)*")
Sea |

NV-1
) pla) K (g—1 h;v W (log—h—) e(hf)+O0(N'*(log N)~4).

Thus we get our conclusion for g = 2. With obvious modifications we get
our conclusion for g=1. m
Now, with obvious modification for g =1,

d a Saq \ 1 >
N) = AN (2o
) ,_,szi,a‘,:l,g,.,,:le( q )(qo(q)) (k"(g—l)!) 8

1/Q
g—1 s
X J (Z h”"“‘(logﬂ) e(hﬁ)) e(—NB)df+
g N h

+0( ) i N¥*(log N)™4Q™1)

g wBa=1l@g=1

) Bt b el )
Klg—D!/) op®@) a=1@p=1 e q

1k—1 N Ny~ sk~ 1 -4
x Y (b kY log-’-q...log— +O(N**~1(log N)™4)

’I]+...+hs=N hs

_ 1 : sfk— 1 -4
_(_—kg(g_l)!) S(N) M(N)+O (N~ (log N)~4),

where we put

SM=Y — ¥ S:.qe(—f-;N)

g=1 (p(Q)s a=1,(a,q)=1
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and

N N1
M(N) = Yoo (b R (logh—...logh—) .
1 S

h1+...+hs=N

Thus we get

1Y . _
r(N) = (m) S(N) M (N)+ O (N~ (log N)=4),

Here we remark, by Lemma 8.12 of Hua [25], that if 5 > 3k,
SN)=C>0

-1 ) . ) —1
and that, if k # PepT, this is valid for s = 2k and, if k = p"p——
valid with N = +5, +(s—2), ..., +(s—2[4s])(mod p") for any s, where & and
y are the same as in the introduction. Since M(N)>» N¥*"!  we get

r(N) > CN**~1 under the above circumstances and get our Theorem 3.
g

, this is

6. Some other problems related to our problems

We shall mention as supplements to our problems and results, some related
results, which may suggest future studies in the additive theory of numbers.
We only state the results without mentioning the methods (e.g., the Rosser—
Iwaniec sieve method [26] for 6.6 below) or conjectures (e.g., Car’s problem
for 6.1 below (cf. [23])). We remark again that there are many other results
and problems, some of which can be seen in Bredihin’s article [3].

6.1. Heath-Brown [23] has shown that, if 8 > 3/4, then there exist
ng =ny(6) and 6 =3d(8) >0 such that every »n > ny is representable as n
= p+ab with p prime and integers g and b satisfying 1 < a, b < n'/27? and
ab € n’. '

6.2, Fouvry (cf. Cor. 1 and Cor. 3 of [10-I] and Cor. 1 of [10-II]) has
shown that if N is sufficiently large, the equation 2N = p, p, + P, with the
conditions p, ~ N'921 p, ~ N'!'/2} apnd p, = 1(mod 100) is solvable, where
p; and p, are primes and P, has at most two prime factors; that, if N is
sufficiently large, the equation 2N = p, p, p; + P, with the conditions p,
~ N3, p, ~ N"'* and p, ~ N'/* is solvable, where p;'s are primes; and also
that, if N is sufficiently large, the equation 2N = p, p,+ P, with the condi-
tions p, ~ NV p, ~ N'¥!'% and p, = 1(mod 1000) is solvable, where p, and
p; are primes.
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6.3. The author has shown in [12] that, if N is a sufficiently large even
integer, then

{p < N;N—p=p;p;, N'* < p; £ p, < NV}

<(16+e)NCy(logN)~*  for any a > 2
and

H{p<N;N—p=p, p), N <p, <NV < p,]
< 8(1+e)log{la—1)/(B—1))NCy({log N)~2 for any a2 =2

where p's are primes, € is any small positive number and

p—1 | )
Cy = — 1— .
N pLsz*zpl:IZ( (p—1)?

He has also shown that, if we assume the Halberstam-Richert's type of
conjecture, then 8 in the last inequality may be replaced by 4 and

{p<N;N—p is a prime or N—p=p,p, with primes p, and p,
satisfying p; ¢(1, N'27°] and p, < p,}| = ANCy(log N)72,

where p runs over the primes, ¢ is any positive small number and A4 is some
positive constant.

6.4. After Statlevicius (cf. [230] of References of Bredihin [3]), Haselgro-
ve and Pan Cheng-tung, Chen [7] has shown that, if N is a large odd
integer, then N =p,+p,+p, with primes p’s satisfying p, =iN+
+O(N23)+8) where ¢ is any positive small number.

6.5. In [5], Bredihin and Linnik have proposed to express N as N
= p+m¥p, +n*p,, where k is a given integer > 1 p’s are primes, m and n are
natural numbers and m* < N°, p, S N'7% n* < N¥ and p, < N'7?% with
given positive numbers § and &’ < 1.

Bredihin [4] has solved this with primes mand nif 0 <§ =¢' < 1/4 and
k> 1.

Our method of the proof of Theorem 2 in Section 3 solves this with
primes m and n if k=1 and 0<4, § < !. Our method of the proof of
Theorem 3 in Section 4 solves the equation

N=pi1...P1gtP21---Pryg + 04 ps

if k is an integer > 1, g and ¢’ are integers > 1, p’s are primes P < N,
Pa SN'9 p ;< N'forj=1,...,gand p; S N* for j=1,..., g with
given positive &’s which satisfy d <1, 6, +...4+d;,=1 and d,,+ ...
e +52,g' = 1.
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6.6. Greaves [20] has shown that every sufficiently large integer N which
is #£0,1, 5mod8 is representable as

N = p? +pi+m?+n?

where p, and p, are odd primes and m and n are natural numbers.
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