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Given an arbitrarily large integer A4, is there an n such that all the numbers
in the nth row of the Pascal triangle (except the 1's) have at least A distinct

prime factors? That is, can we find an n such that w((n))> A for
r

1 €r<n-17 This question arose in connexion with a problem in group
theory being studied by two colleagues in Cardiff, and they wondered
whether n could be chosen to be the product of the first A primes. This turns
out to be the case: trivially it is necessary to chose n with w(n) = A, and this
is also sufficient, as follows.

THEOREM 1. w((”)); w(n) for I<r<n—1.

,
Proof. The basis of the proof is Legendre’s result that if p” is a prime
power dividing (:) then p* < n. Because of the symmetry of the Pascal triangle

we can assume that r < 4n from now on.
Case 1: r is large. By Legendre’s result

()

>r (1 _log r) (using the fact that (n) Z (f))

log n r r

>w(n)—1 for large r.

In fact it is not hard to show that the last inequality holds whenever r
> log n. '

[431]
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Case 2: r is small. This case is dealt with similarly, but giving special
treatment to the prime factors of n that ate bigger than r. There are

Zzon)—n(r

of these prime factors (where m(r) is the number of primes < r) and, since

(n) _ nn—1)...(n—r+ 1),

1:2-...r

r

n

each of them divides ( ) to the same power that it divides n. (It divides the first

"
term of the numerator and no other, and divides no term of the denominator.)
n

The contribution of these prime powers to log(
,

) is thus at most log n.

Applying Legendre’s result to the remaining prime factors of ("

> (log (n)—log n)/log n
r
of them, and hence

w((:)) > r(l —:Z: ;)—1+w(n)—n(r).

) now shows
r

that there are

Thus

and it is not hard to show that the right hand side is greater than —1 for
4<r<logn

The cases r =2 and 3 are easily dealt with separately, completing the
proof of the theorem.

This result can be expressed as

w (C)) >0 ((':)) for 1<r<n/2,

which suggests the question whether w ((n

,
r in this range. Erdds pointed out that the answer is ‘no’, since

n n . .-
w((s))> w((6)) for n=p+5, where p is any prime congruent to 1 or

)) is an increasing function of r for
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65 (mod 72). More generally, for every r there are infinitely many n with

o((2)-e(g)- e

This follows {rom the identity -
( n )_ nR-r (n .
r+1)  r+1 r)’
which shows that if n is chosen to satisfy certain congruences modulo powers

) but not

of prime factors of r+1 then every such prime factor divides ("
: r

n . . . . .
( 1). These congruences are consistent with making n—r prime, which
r+

n : . . .
ensures that ( 1) contains only one prime factor that does not divide (n)
r+ r

n

r

Erdds then asked whether w(( )) is an ‘almost increasing’ function of r in

the range 1 < r < 4n, in the sense that for every r there is an f(r) (depending
only on r) such that

(1) w((r:!))zw((:')) Visf), Ynz20+.

Similarly, one could ask for a g(r) such that

(2) w((r:t))?:w((j))—g(r) V=0, Vnz2(r+r).

We show that such functions f(r) and g(i) do exist and are o(r), although the
bounds we obtain for their sizes are probably a long way short of the truth.
We also find the smallest possible values for these functions for r < 10. These
results depend on three lemmas that are similar in form but differ markedly
in their proofs. They overlap considerably, but none of them is a conse-
quence of the others.

LEmMmMa 1. m((rir))—w(c))zt—l—w((r:r)) for 120 and n suf-

ficiently large as a function of r and t.
Proof. We use the identity

()0-C)

A result of Thue ([5], Satz 12) (a consequence of his well known theorem on
Diophantine approximation) says that there is only a finite number of pairs

28 — Banach Center, 1. {7
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of integers whose difference is bounded and all of whose prime factors are
bounded in size. Hence, for large enough n, with at most one exception the
numbers n—r, n—r—1,...,n—r—t+1 (that occur in the numerator of

(n_r)) each have a prime factor greater than r+t. This gives at least r—1
r

n

primes that do not divide () but do divide (:t) (since they divide the
’

r
numerator on the right of the abgve identity but not the denominator). On

) : r+t :
the other hand, the identity shows that there are at most w(( t )) primes

that divide (n) but not ( " )
r+t

r
Although the remaining two lemmas are similar in form to Lemma 1,
their proofs are entirely elementary and do not use Thue’s theorem or
anything similar.
In what follows, s =r+t.

oo 2 a(2))-o (1)) 2 108 {0 (|2, ) ()} g n=nr o

where

is the square-free kernel of s!. _
The first term on the right hand side tends to ¢t as n — o0, so we have

L]
h

COROLLARY. @ (
r+t

))—w ((n)) Zt—mn(r+t) for t 20 and n sufficiently

large as a function of v and t.

For most r and ¢ this corollary is weaker than Lemma 1, but for some r
and ¢ the right hand side is larger by 1 than the right hand side of Lemma 1,
and this is occasionally useful.

Proof of Lemma 2. The proof is on the same lines as Case 2 of Theorem
I, in that the prime factors of (") and (n) are divided into classes which are

r L)
treated differently and Legendre’s result is used.

n

For each prime p we denote the largest powers of p that divide ( ) and

r
(”), respectively, by p? and p° and we put 1 =cog—g. We need an upper
8

bound for p° for each p. We divide the primes into classes as follows:
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S = {pl p divides ) but not ( )}, for these we have p* = p* < n,
r
by Legendre;

R = <p| p divides (") but not (")}, for these p* < 1/p;
r S

U= {Pl p divides (") and () and p>s} for these p*=1;

= {Pl p divides (n) and ( ) } for these p*< n/p,

by Legendre.
We now have

(") ,/ (n) = [] p<nst*M™ l—[

S.R, U,V RYVD

and so

o () 120 1

The lemma follows on taking logarithms.
THEOREM 2. The numbers f(r) and g(r) exist for all r and satisfy
f(r)=0(rflog"?r) and g(r) = O(r/log?r).

Proof. The right hand side of Lemma 2 increases with n, and the
smallest relevant value of n is 2s. So replacing n by 2s in the right hand side
gives

(a) (C))—a) (C)))Iog 2 > log (is)—log (r) Es(log p—log 2)
> 5+(ir3 )

using Stirling’s formula and the prime number theorem. This is positive for
t > C, r/log"?r and is > —C,r/log r for all t, where C; and C, are certain

constants.
The third lemma is proved in the same way as Lemma 2 except that the

class V' 1s subdivided and a different estimate for p* is used for the primes in
one of the parts. (We omit the details.)

w5 of( )0 (O
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+1)!
— (0 +r) )+ n, where n is 1 if t is a prime that divides s exactly once and is
r!

0 otherwise.

On letting n — o0 we have the following corollary, which is always at
least as strong as the corollary to Lemma 2.

o)) 1-o( 5521 i

ficiently large as a function of r and t.

Using these three lemmas (the third in a slightly more general form than
that given here) and a Commodore Pet microcomputer the smallest possible
values of f(r) and g(r) for r € 10 were calculated. That it was possible to do
this for so many r was a matter of luck in the way the figures turned out:
there is no algorithm for calculating the minimal values of f(r) and g(r) for
an arbitrarily given r, even in principle. The results were as follows.

r | 1-3 |4]5]6]7]8]9]10

11412(1(|3]|5|4
Ljryr(rj1y1|2

improving on Theorem 1. The same is true for r £ 4 with the single

exception that
@ ((10)) =3<w ((10)) = 4.
5 4

As an illustration, the value f(10) =4 is caused by the fact that

(f§)=2-3-5-7-11-13-19-23

has eight distinct prime factors but

(28) =23.33.52.17-19-23
14
has only six.

To remove the effect of isolated exceptional binomial coefficients we can
ask for functions f (r) and g, () that satisfy (1) and (2) not necessarily for
all n = 2(r+1) but for all n that are sufficiently large in terms of r (¢ being
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constrained not to exceed 3n—r). In other words, for each r finitely many
exceptional pairs (f, n) are allowed. Clearly f,(r) and g.(r) are bounded
above by f(r) and g(r), and, in view of Lemma 1, f_(r) is bounded above

by the largest ¢ for which w((rth))? t. Erdss and Selfridge [1] have given

t
a simple proof that this largest 1 is O((r/log r)'/?) and pointed ouf that this
estimate could be improved by using ideas introduced by Ramachandra in
[3]. When this improvement is put into effect it gives the estimate O (+**%) for
t (and hence for f_(r) and g.(r)), where

¢ =(4/e—3)/(10,/e —9) = 04801 ...

We have used our lemmas to compute the minimal values of f_ (r) and g, (r)
for r £ 10 with the following results.

r | 1-4 |15 68 | 9 | 10
fo| 0 1] O ‘ lor2|0, 2or3
gw(r) 0 1 O 1 001’1

The probable value of f(9) is 2, but this depends on a hypothesis similar to
the existence of infinitely many Mersenne primes. (Explicitly, that there are
infinitely many primes p =7 (mod 1980) for which (27+1)/3 is also prime.)
On Schinzel’s Hypothesis H (see [4]) g, (10) = 1; and with a further plaus-
ible hypothesis f,(10) = 2. The fact that these individual values of f, and
do depend on deep hypotheses shows that there is no algorithm for
computing these functions in general.

As regards the true order of magnitude of these functions, it is a
consequence of Schinzel's Hypothesis that f, (r) is Q(r'/9) and g,(r) is
Q(r'*flog r). (Without hypothesis I have only succeeded in showing that
these functions are Q(log r/log log r).) It seems probable that r'/¢ is about the
right maximum order of magnitude for each of the functions f, g, f, and
Io-

Finally, it is possible to obtain results corresponding to all those we

h

have mentioned for the function Q(( )) (the total number of prime factors

F

of ("), counting multiplicities ~ not the @ of the previous paragraph!). In

,
particular,

Q((")); Q(ry for 1<r<n—r.

r

A full account of this work and other related results is given in [2].
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