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1. Introduction

Let I be a congruence subgroup of the full modular group SL(2, Z) and let
4 = —y*(9*/0x*+ 0*/0y*) denote the non-euclidean Laplacian acting on
L*(I'\H) — the space-of I'-automorphic functions on the upper half-plane H
= {z: z = x+iy, y > 0}, square-integrable on the fundamental domain F
= I'\ H with respect to the invariant measure dz = y~?dxdy. In the spectral
theory of Maass and Selberg it is known that 4 has a point spectrum

O0=Ag<i <4, €..., 4o wasj—oow

and has continuous spectrum consisting of points in [1/4, o0} with finite
multtplicity equal to the maximal number of I'-inequivalent cusps. The
celebrated conjecture of A. Selberg [10] asserts that positive eigenvalues lie
on the continuous spectrum. The conjecture has been proved only for the full
modular group and for its few subgroups with a small index, ¢f. [4]), [6] and
[7].

Here the situation looks like the one familiar in the theory of Dirichlet’s
L-series L(s, x), for which the non-existence of zeros on the segment [1/2, 1]
can be established for any character y with a small modulus g by means of
numerical computations. We should emphasize, however, that the problem
concerning eigenvalues 0 < A; < 1/4, called exceptional, is much more in-
volved. The approaches of Roelcke, Maass and especially of Huxley are
essentially geometrical, to mention just one argument, for example the
isoperimetric inequality on the hyperbolic plane.

There have been various unsuccessful attempts to prove Selberg’s
eigenvalue conjecture by different ideas. The methods of exponential sums
seem to be quite promising.

[317]
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Yet, it was known to Selberg [10] that the problem can be reduced to
bounding certain sums of Kloosterman sums associated with cusp of the
group I'. Estimates of A. Weil for individual terms led Selberg to the lower
bound

(0 Ay = 3/16,

and any sharper result means that there exists a regular variation of sign of
Kloosterman sums. Although that variation is difficult to establish in general,
Selberg’s observation gives at least convenient objects for numerical compu-
tations. Such ideas have already been materialized by N. V. Kuznetsov [5],
who found an arithmetic form of Selberg’s trace formula in which the
traditional weighted sum of norms of primitive hyperbolic classes is replaced
by a certain sum of L-series at s = 1 with real characters. As an application,
V. V. Golovtchanskii and M. N. Smitrov [3] calculated with high precision a
few eigenvalues for the modular group.

Apparently, as the level of the group I' gets large there may exist a
great number of exceptional eigenvalues. J.-M. Deshouillers and H. Iwaniec
[2] have studied the case of Hecke congruence group

I'=T,(g) = %(f z)ESL(2, Z); ¢ =0 (mod q)}

and established various results of statistical nature which suggest that the
exceptional eigenvalues occur very rarely. The results of [2] resemble
weighted large sieve inequalities for Dirichlet’s characters, the réle of charac-
ters being played by Fourier coefficients of cusp forms.

In this paper we refine the methods of [2] to prove density theorems for
exceptional eigenvalues alone, that is, not weighted by Fourier coefficients
whose order of magnitude is not known precisely.

2. Statement of results
Before stating the theorems let us recall the Weyl-Selberg formula, cf. [11],
which gives us an insight into the topics.

ProrosiTioN 1. Let N (4, I') denote the number of all eigenvalues Ay <A
counted with their multiplicites. Then as A— oo, we have

|F|
N(4, 1“)’*'4—/1

where |F| is the volume of a fundamental domain; in case of the Hecke group I’
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= I'o(q) we have, say

Fi=3all(145) =t

pla N

wiA

This formula has the defect of being not uniform in g as it grows with 4.
Nevertheless, it indicates that intervals of a fixed length & might contain
> |F} eigenvalues, as g — co. We believe this is indeed true whenever the
interval is contained in the continuous spectrum [1/4, o).

Let ;= 1/4—1} with 0 <t; < 1/4 be exceptional eigenvalues of I'y(g).
For any ¢ with 0 <6 < 1/2 denote

Nio,q) = # 4;: 21, > o).
Our first result 'is

THEOREM 1. For any & >0 we have
(2) N(o, q) <q' "™,

the constant implied in < depending on ¢ alone.
This theorem is equivalent to (by partial summation)

THEOREM 1*. For any ¢ >0 we have

(3) Y gt <gtte,

. A j~ excepl

Professor M. N. Huxley has informed us (on the telephone) that he has
proved the same inequality independently by an appeal to Selberg’s trace
formula. Our arguments are based on the Kuznetsov trace formula and
A. Weil's estimate for Kloosterman sums in the spirit of [2].

THEOREM 2. For any ¢ >0 we have

A 14
C) Y q7<qt
lj—excepl

with A = 24/11, the constant implied in < depending on ¢ alone.

Our proof is a continuation of that of Theorem 1*; the extra arguments
are: ! '

A. Weil's estimate for hybrid sums involving a real multiplicative
character, an additive character and a quadratic polynomial; precisely, we
need the following

LEmMa 1. Let d = 3 be an even square-free number, [ (x) = (ax)*+px+7
with (2, B, d) =1, f(x) (mod p) not being a square for any pld. We then have

5, (1) 3) <o

x(madd) )

(5)
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The proof will be given in Appendix.
Moreover, we need the famous estimate of D. Burgess [1] for incom-
plete character sums.

LeMMA 2. If D is not a perfect square, then

(6) Z (2) < R1/2|D|3116+E,
1<r<R \T

the constant implied in <€ depending on & alone.

It is conjectured that Lemma 2 is true with exponent O in place of 3/16.
This, indeed, is equivalent to the Lindeldf conjecture for Dirichlet’s L-series
in D aspect, namely that

|L3+it, x)| < D*

for any character y (mod D), where the constant implied in < may depend
on ¢ and t. From the Lindelof conjecture Theorem 2 would follow with 4
= 3. Further improvement on the .constant A requires sharper estimates for
character sums of the type

) (" — 4)<(A+R)(AR)*,

1sr€R 1 Sa54

which might be true due to variation of sign of a single sum. From an
estimate essentially like the one above we could infer the following

DEensity CoNIecTURE. Theorem 2 holds with A = 4,

It will be seen later that the quality of our density theorems depends on
the order of magnitude of the Fourier coefficients of Maass ‘cusp forms. Let
I' = I'y(q) and u;(z) be a normalized Maass cusp form whose 4-eigenvalue is
A;=1/4—1t} and whose Fourier expansion at the.cusp o is

@ =y ¥ emK,@ninyen).
n#0
It is very likely that most g;(n) are of order of magnitude |F|~!/2. For the
purpose of this paper a lower bound for |g,(n)| is needed. This problem is
rather difficult and interesting in itself. By Rankin’s method one can prove
that

Z IQJ(")IZ ~ ¢ v (g N

nEN
as N — oo where ¢; = (12/n?) cos (nt;) > 4/5, and one can deduce the lower
bound

(7) Y lei(m> > v (g N

nsEN
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if N2 Ny(q), the constant implied in < being absolute. The smaller N is
admitted the sharper density theorems follow. In this paper we have suc-
ceeded to show (7) for N> N, = O(v(q)), which yields Theorem 2 with A
= 2. Any result of the kind of Ny(g) = 0(g% with 0 <8 < 1 seems to be
difficult, and it would yield the constant A = 2(2—8). Therefore, the density
conjecture is a consequence of another conjecture that (7) holds for N = ¢°.

For simplicity only, in this paper we deal with ¢-prime; the general case
needs an elementary modification.

3. An application of the Kuznetsov trace formula

The crucial point in what follows is the application of the Kuznetsov trace
formula, cf. [2], for the diagonal terms

m=n, a=D

-and for a test function ¢(X) whose graph is

1——

/ AN

2x!

Fig. 1

with X = 2 to be chosen later. We shall appeal to several estimates given in
[2], so it is convenient to adopt the same notation. Let us put

(B(xj) 2
Vo(a, n) = le;.(n)I*,
o(a, m) OQJZ(lMch me
_~ x.
han= 3 284 mp,
y=1/4C€ i
1 X~ (k—1)! Lo
V , = — k k_l T L — 1 Illl'(a: n)} ]
Z(G n) 2n kEO(ZmodZ)' qp( )(47'”1)“ . ISJZSBk #

an

Vi, m) =% f@mwm@+mvmh

<
-

4rtn

S(a, n) = Z% Sw(n, n59) @ (T)

The trace formula of Kuznetsov says that

3
(8) Y Vi(a, n)=S(a, n).
=0

21 — Banach Center, t. 17
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Recall that S, (n, n;y) is the Kloosterman sum associated with the cusp a
= b of I' = I'y(g) and modulus y > 0. According to our assumption that ¢ is
prime, there are two inequivalent cusps a=o0 and a=0, and the
Kloosterman sums reduce to the classical one,

S,.(n,ny=8nnq, y=qcc=123,..

In the sequel we shall write S(n) instead of S(a, n) because S(a, n) happens
to be independent of the cusp:

© _ 4
©) S0 = 3 - S(n, qc)go(%).

c=1

We have @(r) <(r?+1)"! log X and &(k—1) < k™2, therefore the series
Vi{a, n), i =1, 2, 3 converges, and by Theorem 2 of Deshouillers and Iwaniec

[2]

Vi(a,n) €(1+q 'n'*%log X.
Hence, by (8), we get
(10) Vola, ) =S(m)+0((1+4q~'n'*%)log X).

Let us remark that, using more elaborate methods, one can reduce the error
term in (10) to O ((L+q~*2(n, g)*/*n)log X), but this has no significance for
our applications.

4. Proof of Theorem 1*

By A. Weil's estimate
S (n, n; go)l < (n, ge)’? (ge}' v (qc)

one easily gets

(11) S <q t(n, '?(nX) 21 (n)log nX.
On the other hand, we have ¢(r)) » X for 0< t; < 1/2; thus
(12) Vola, > Y XY|g; (2.
lj—cxccpl.
Combining (10), (11) and (12), we conclude that
(13) Y X (m)* < g7 g+n+/nX)(nX).
Aj—cxcepl

Now, in order to get a density theorem involving the exceptional
eig_envalues A; alone one must get rid of the Fourier coefficients 2,.(n). To
this end we sum up (13) over n < N = Ny (¢q) and we appeal to (7), giving (4)
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with A = 2(2—0) after taking X = ¢>~% provided Ny(q) =0(¢%, 0 <0< 1,
is admissible. We are only able to show that § = 1 is admissible.

Actually we shall give here a proof of the following lemma, which is as
useful as (7) for 6 = 1.

Lemma 3. Let g be a prime and let 9,4(n), gju(n) be the n-th Fourier
coefficients of the Maass form u;(z) (normalized) at the cusps a = 0 and a = o0
respectively. Denote

w(x) =x"!exp(—2rn./3x),

1)

Coj = ilw(g)léjo(")lza Coj= Z w(")lem(")lz-

n=1
We then have C; = Co;+Cy; 2 \/3
Proof. Let P(Y) stand for the euclidean strip
P(Y)=z=x+iy, =1/2<x<1/2,y> YL

For any cusp a of I take ¢, SL(2, R) such that (cf. [2]) 0,00 = a, ¢, 'T, 0,
= I",. One can find Y(a) > 0 such that

U o, P(Y(a)) 2

a—inequivalent cusps

Hence
= J]uj(z)lzdz <) J luy (2)|% dz
F * ey Plrm
. 2 2 2 dy
-y J e, Pd =3 T Lo | K2
n a n#0
P(Y{a)) i 2ln|¥(a)
But
—yché . 1 -y
K.y=|e chvédl < Ky (y) = 2ye ;
0
dy = _ dy T
20 2 e —24 _ K2 (4
j‘KV(}’)y <2J3 7S 24 172(4)
A A
and |gj,(—n)| = Iejq(n)l; thus
l 2
(14) Z — - exp( 4nnY ()|, (n)? = 2

Y(ﬂ) n=1
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Now, since g is a prime, we find that

a=00, 04= ((1) (1)) Y (0) = \/3/2,
0o 1
a=0, op= (f 0/\[), Y(0) = \/3/24,

see Figures 2 and 3 below.

Y (oo}

z
<
=
o
o
2
g
=
<
a]
z
=]
o

G, (Y(0))

Fig. 3

This completes the proof of Lemma 3.

In order to complete the proof of Theorem 1*, sum up (13) over the
cusps a=0 and a=o0, and over n> 1 with weights w(n/g) and w(n)
respectively. Then, it turns out that the optimal value for X is X = g, proving
Theorem 1* by Lemma 3.

S. Proof of Theorem 2

The crucial idea is to improve (11) on average over n. By (10) and Lemma 3
we deduce that

15 @ ()
) ¢, 9= Z € chnx

—excepl.

( ( )+w(n))S(n)+0( 1*2 log X).
)S(n) by (11) is <gq~ ' X2 log X, whence

uMgk-

The sum of the terms a)(n

(16) &(X, q) = Z Z ——qa(4n")exp( 211:\/32)S(n,n;qc)wL

¢=1 n=1 qc

+0((g~* X2 +4**") log X).
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Let o(y, a) stand for the number of sohitiéms of
d*—ad+1 =0 (mod ¥).

We then rearrange the Kloosterman sums as follows:

S(ryn;y) = Y oy, a)e(an/y).

a(mody)

For y =qc with g prime, (g, ¢) =1, we have

e(qge, a) = o(q) o(c, a) = (1+(a ;4))9(6, a).

This leads us to the introduction of a new exponential sum
at—4 an
T(n,q,0)= Y ( )Q(C a)e( )
a(modge) q qc

S(n, n; gc)—qS (n/g, n/q; c) if gn,
S(n, n; qc) if gkn.

In particular, by A. Weil's estimate, it follows that
(17) IT(n, g, c)l < 4(n, gc)*”* ge'* < (c).

We find that

T(n’ gq,¢) = {

Replacing S(n, n; gc) by T(n, g, c) in (16), we get, say,

sX, 9= ¥ §i¢(ﬂ)exp( 2nf) (n, g, ¢

ea=1n=1C1 A\ 4C

Z i i ¢(4nn)exp(—2n\/§n)3(n, n;c)+

(e.g)=1 n= lcn
<1 4nn
+ Z Z——qp( )exp( 211\/—) (n, n; ge)+
+O((q—lxl/2+q1+s) log X)
=&(X, 9)—&:(X, +&3(X, 9+ 0((g" "*+47 ' X'7?) log X).

From A. Weil's estimate for Kloosterman sums we get

E,(X) <X log X, &3(X,q) <q '? X" log X.

Let us remark that it is possible (but not necessary) to show that &,(X)
< log X by reversing the above arguments for the full modular group, which
is known to have no exceptional eigenvalues.

Next split up &, (X, g) into its partial sums &4(X, q) and &, (X, g), say,
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over ¢ < g and ¢ > g respectively. For &,(X, q) we get by (17)
8o(X,q)<q" " log X.
Putting together the results obtained above, we may write
(18) E(X,q) =E,(X,q)+0((X?+4q'"") log X),
where
8w ="y - ! E (4nn)exp( m./3 ) n, g, c).

e>q Cp=1N
{e.)=1

Now we intend to sum over n by means of Poisson’s formula. By the
definition of T'(n, g, ¢) the following sum arises:

© 1 (4 n
R(a, q,¢) = Z qo(ﬂ)e""ﬁ"%(%)

gc

with —1/2 < a/ge < 1/2. Assume that
(19) g X <g*™"
Then by Poissons’s formula

¢

R(a, gq,¢)= J‘(p(4nf)eﬁz“ﬁ'§‘e(a§) ?+O(X_‘).

Moreover, if |a| > g® X, the integral is < X~ ! by partial integration. From
this we conclude that

(200 &,(X,q)
=J¢(4EC) 2 e(aé)(a q—4> Z %e—znﬁgcg(c’ a)_+_0(q1+z)

5 £ g8 c>q
la| S 2°X (c,g)=1

< ¢° max max C™*|F (A, C)|+4'**
A'Al C.Cl

by partial summation over a and ¢, where

a*—4
F4,0= ¥ % o(c, a)
A<a<d; C<cgcy \ 49

=1

and the maximum is taken over A4, 4;, C,C, with g< A4, C<¢X,
1 <A/A,, C/C, €2, because the terms with A < g or C > ¢* X contribute
trivially to the error term g'*®
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6. Estimation of F (A4, C)
Now our nearest aim is to express o(c, a) by means of Jacobi’s symbol. To
this end write
Ad=a*-4, c=26,6}d, (4,6,82d)=6,62, D =A852
where 4, 624 is an odd number and d, is a square-free number. Also denote
(S = 2“51 5%, 50 = 51 5%.
LEMMA 4. In the above notation we have

o(c, @) =0(2% @), #*(r) (‘?)

r|d
provided (d, Dy=1 and ¢(c, a) =0 otherwise.
Proof. Write ¢ = 2%*¢;, ¢, odd, (4, c¢,) =6, =86,5%. Since ¢(c, a) is
multiplicative in ¢, we obtain g(c, @) = ¢(2%, a)e(c,, a), and g(cy, a) is the
number of solutions of

x? =4 (mod ¢;), x(mod c,).

The solutions are x =48;6,), where y runs over the residue classes
(mod &, d) satisfying

8, ¥y} =654 (mod d).

Since (65'4,d) =1, it follows that (5,,d)=1, (D,d)=1 and the last
congruence is equivalent to

y? = D (mod d).

Hence the number of solutions y (mod J,d) is equal to

olcy, a) = 52 l_l (1+(2)) = 522ﬂ2 (n (’1—))
pld P rld r

This completes the proof of Lemma 4.
By Lemma 4 we deduce that

ey F40= 3Y & ¥ £ I Q(Z‘.a)(;)—r),

1<8s<Cy R<r<R; A<asdy
ds,q)=(81.5)=1 rn2q¢)=1 a% =4(mod dp)
(6s,9) = (81,5} 2 4mod 0

where for brevity we have denoted 6 = 28, 62, 6, = 8, 63 =1 (mod 2), 6, —
square-free, R = C/8s, R, = C,/6s and D = 83 *(a*—4).
Notice that the variables r and a of the last two summations are
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independent. Denote

U A= Y o2, a)(q’ir) and UR,a)= Y uzm(q’%).

A <a$4d; R<r<Ry
=4(moddg) {r,2q)=1
(s,.D)=1
Then the innermost double sum is equal to
(22) U(ds, R, A=Y U(r, 4) = Y U(R, a).

We are going to estimate U(ds, R, A) in two ways.
In the first way we estimate U (r, A) by an appeal to Weil's Lemma 1.
The condition that (s, D) =1 can be relaxed by means of the M&bius

formula

1 if (s, D) r=,

v .
vl s):‘;l p Ho) = otherwise.

(vr)=
Then we split up the variable of summation a into arithmetic progressions a
= vdm+a, where 0 < a, <vé and a =4 (mod vd,). Put
f(m) =852 [(vém+ap)®> —4] = (' m)* + fm+y
say, where o’ = 2°v8,8,, B =22"'v6,a, and y =65 *(aj—4). We then get
. J(m)
U= T a0 T e v (1

Vs 0<ag <v3 M<msM; \ 97
(=1 a%E4(mod v3p)

whete for brevity we have denoted M = (4 —a,)/vé and M, = (A, —a,)/vé. It
is clear that f(m) satisfies the hypothesis of Lemma 1. Hence, on using
standard Fourier technique for completing incomplete exponential sums, it

follows that
Y (f(_m)) < (1 +%)(qr)”zr(qr) log gr.

M<msmy \ 97

This yields

A
Ulr, A) 2 (1+—)( r)!/21(3qrs) log q
ogr

and, on summing over r in (R, R,], we finally obtain
/ A 1/2
(23)  Uds, R,A)<2“(R+* 4R)* g < — : C+A (qC q.
- og Oy \ S o

Now we proceed to the second way of estimating U (Js, R, A) via
U(R, a). To this end we appeal to the Burgess Lemma 2. The condition that
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r is square-free can be relaxed by the well-known formula

Y u() =),

er

. , . : 4
and the condition that r is even by introducing a redundant factor (—) We
r

)+
2<R1 R<y2 r<R1
172 kI
< le2 D3[16qa & (__) (_) z‘
o ()

And, summing over a in (A4, A;], a*=4(mod §,) with weights
0(2%, @) < 4-2°%, we finally obtain

A C \112 /4 \3/8 !
(24) U(Ss, R, A)<(1+ 50)%0—8-) (5—1) g

By (21), (23) and (24) we obtain

then infer

IU(R, a)| < 9 'R,

(25) F,(4,C) <Y Y 5,U(bs, R, 4)
5 B

1/2 1/2
< 3 m{Cra) ) A
1<s<2C s 4 S §
C /2 C 1/2} (C)IIZ‘
£ : 172 2 ’Alllﬁ _ +A|—
<4 1s§2c[mln{q (S) (5) qs

<qe(q1/4A11/16+q—1/2 A)C

7. Completion of the proof of Theorem 2

y (20) and (25) we get
Eu(X, q) <(@'* X+ Xq™ 2+ g)q".
Then by (18)
E(X, q) < (g X " 1184 Xq~ 1124 X124 q)g".

On the other hand, by (15), Lemma 3 and the lower bound @(x)) » X ) we
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have ”
sX, 9> T XU

A j—ExcepL.

On taking X = g'?/', we complete the proof of Theorem 2.

8. Appendix

Here we shall give an elementary proof of Lemma 1. The sums

, h
Sk @)= (rfv;dd) (%)e(_%)

are multiplicative in d in the following sense
S;(h, dydy) = S, (hdy, d)) S, (hdy, d)
whenever (d,, d,) = 1. Therefore it suffices to show that
1Sy (h, P)I < 2p'2.

We infer this inequality from some results of W. Schmidt [9]. To this end
notice that f(x) considered as a polynomial over a finite field F, has deg f
=m=1 or 2 and has exactly m distinct roots. Moreover, Y*—f(X) is
absolutely irreducible.

If p| h then the assertion of Lemma 1 follows from Theorem 2C of [9],
and if p 4 h then the polynomial Z?—Z — h(X) is absolutely irreducible and
the assertion of Lemma 2 follows from Theorem 2G of [9].

Added in proof. The result of Theorem 2 was recently improved by the
first named author replacing the exponent A4 = 24/11 by A =12/5, cf.
Character sums and small eigenvalues of I'y(p), to appear in the Glasgow
Mathematical Journal.
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