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Progress towards a conjecture on the
mean value of Titchmarsh series, TII
by
R. BALASUBRAMANIAN and K. RAMACHANDRA (Bombay)

1. Endroduction. In the paper 1 of this series the second author defined
Titchmarsh series and formulated a coniecture. We recall these first and state
what he proved in that paper.

Titchmarsh series. Let A= 1 be a constant, Let 1 =14, <1, <i5<...
where 1/4 <A, —4, € A. Let ay, a,, as,... be a sequence of complex
numbers, possibly depending on a parameter H (= 10) such that a; =1 and

lad < (4, H). Put F(s) = 3 a,4;° where s = ¢+ir. Then F(s) is analytic in
n=1

oz A+2; F(s)is called a Titchmarsh series if there exists a constant A = 1
with the above properties and further a system of inifinite rectangles
R(T, T+ H) defined by o2 0, T<t<T+H} where 0K H T and T
{which may be related to H) tends to infinity and F(s) admits an analytic
continuation into these rectangles and maximum of |[F(s) over R(T, T+ H}
does not exceed exp{H%}.

Consecture. For a Titchmarsh series F(s), we have
] .
G ﬁF(suzdw Ci 3 laf”

iy SX
L

where X = 24D, H, L denotes the side (T<t< T+H, 0 =0) of R(T, T+ H)
and C, and D, are positive constants depending only on 4.
He proved the following theorems:
Tukorem A. We have
1 ;
= MNF @) dt > C
H ﬁ (i) A
L
where C, is an effectively computable positive constant depending only on A.
" Tueorem B. We have

L J Fin)?dt > Cy Y, la,? (1
H Ay X

L
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where X = 2+ D H and C, and D, are positive constants (depending only on
A), which are effective.
In the present paper, we replace the quantity exp (_H_A) in the definition
of Titchmarsh series by expexp(H/804) and still prove Theorem B (with
i log A, 1
refinements). Secondly, we replace the tapering factor l_log H+log log 1l

:n Theorern B with more refined quantities (see Theorems 1, 2 and 3 below).
From now on we replace A, by n, for simplifying the notation. All our results
are true for the Titchmarsh series ), a,/4y also.

In paper I of this series there were some typographical errors and we
correct them in the present paper.

2. Let a, be a sequence of complex numbers, possibly depending upon a
parameter H, with a; =1 and g, < (nH); we assume that the series F(s)
= » a,/n* has an analytic continuation in R(T, T+ H) as explained in Section
1 and that |F(s)] < exp exp(f/804) there. The constants A;, A, and A
appearing below are effectively computable positive constants, depending
only on A. We also assume that A is sufficiently large.

TueorEM 1, There exists Ay such that

o] T+9H/1O r+H
[do [ [|F(=1ldt <A (HA 4 [ [F(in]dr).
0 T+H/LO T

TreorEM 2. There exists A, such that for any real B (—1/2 < < 1/2)

T+H
L 2 (1B og (1/m)’
T j i) dr > AZHS,HZIZDOIaHI (|(10g )P )
T

TueoreM 3. There exists A; with
T+H _
1 .
5 j FoPde = As Y lad*f (n)
H s H/200
T
where one can take f(n) to be

) ol
log log H’

1

1 1 1
(s (log M_+log N) log log log H’

. 1 !
) (mg Mlog log M) ' log N (log log N)z)

®
Im“ log H
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where M = IOé(H}!‘l)+ 10° and N = log (H/m)+ 108,

Remarks, (1) From Theorem 3, one can get that for a suitable 4,,
Yl ¥ii

J E(i)2de > A, Y

nE {200

a |2(w~m—~1—~—+ =
" \log log H M
+ 1 N 1
log M log log log H  log N log log log H+

T

1 1
+
(log M)(log log M)? +10g N(log log N)? )

(2) The numerical constants (eg. 200 in ¥
n< Hj200

and 80 in F(s).

< exp exp(H/804) clearly could be improved.
(3) For slnghtly different set of results on the lower bounds of the mean
value of the Titchmarsh series, we refer the reader to Ramachandra [3]. The

results contained in [37 also can be slightly improved using the method of
this paper.

3. Proof of Theorem 1. Let G{z)=F(z)—1. Then for T+H/I0<t
€ TH9H/10, 0 <0 < A+2, we have :

. 1 L fz—a—it\\? dz
G S -
ot =5 JG(Z)(GXP(Sin( 4418 )) )f””—”
R

where the integralion is over the boundary R (taken anticlockwise) of
the rectangle 0 K Rez < A+4, T<Imz < TH+H.
Since |G (z) < exp exp(H/804) by assumption and

Re z] < 1/4

it lollows that the integral over the horizontal sides are < 1. Since
la,| < (nHY*, we have G{z) < H" on Re z = A+4 and hence the integral on
the vertical side Rez = A+4 is O(H4). The integral on the vertical side
Rez=0is at most '

lexp ((sin 2)?)| < exp(—exp(Im z)) i

T+H
Gix
[l
J lix—o—if
T

Thus we have, for T+ H/10 < v < T+9H/10,

fee 1 \N2
T8 |G (ix)| (exp (sin (W)) )
j dx+ HA,

[ix o — it}

G (o +it)| <

T
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Consequently,
T+9H/10
|G (o + i) dt
T+ H10 ] ) )
THH T+9H/10 gyp ( sin (lx—d—'” '
44+8 Al
< |G (ix) dx P -dt+ H
T T+H1D .
T+H
1 [ : A+
<log(—+~l) J |G (x} dx -+ H™ "
a
. = 'I‘ "
This yields
Lemma 1. We have
A+2 T+9H/10 T+ H
[ do j |G (o +it)| dt <€ [ [G(ix)lderH“‘“.
b T+H/1D T
Now we need
Lemma 2. There holds
‘ w T+ 9H/10
[ do j |G (o +it) dr < H** L,
Ar2 T+H/10 .

Proof. Since |G(o+it) < , the result follows.

a
| HI < Z
The proof of Theorem 1 follows from Lcmmas 1 and 2,

4. Proof of Theorem 2. We introduce the following notation.
Let as usual, s=o+il.
Let k be an integer = [34]-+11,

a,,(’l——i>k~a,,(1——n—)k I n<x,
3x b
k
b, an(ln%) if x<n<ix,

0 _ if , on>3x
W= uiv, Wy = Uy vy, Wy o=ty ivs.

-1
giw) = wiw+D(w-2) .. (w+k)
y = H/100.
§ = 1/log H.
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Lemma 3. For any complex number a, and real > —1
¥

jx“ (log (y/x)) dx = y=+!1

n

WF(IH"),

provided Re(1+a) > 0.

§ Proof. Since both sides of the equality are analytic functions of «, it
suffices to prove the result then « is real In this case, the substitution
log(y/x) =t yields the result.

Levma 4. Let Rew, =Rew, = —~Re s = —§. Let O

£ H —-Imw, € H,
~Imw € H 0<H —Imw, < Hy~Im w, < H.

Then
THH, I
| [ Fls+w)F(s+w,) dt|< |F (ir)|? dt.
THH;
Proof.
T+Hy o T+H, T+H,
| | Fls+w)Fs+wydi| < [F(s+wPdt+ | |[F(s+wp)*dr
TEH THH, T+H;
T'l‘.ﬂz—ul T"l“HZ-'-vz
< | |FGnPdt+ | F(i)Pde
T‘I-Hl—ul 'I‘+H1--vz
T+H ‘
< [ IF(in)*de.
1 .
LeMma 5. We have, uniformlﬁ Jor pin |fl <1
dtion d+iw
—_ 1 e Io F—1
f |dwy] J ‘g(wl)g(wz)m—_*—-;dwz < (—gH)——>.
d~ioo d—~im (WI+WZ+45)ﬂ B

Proof Since

1

(w1+w -|—45)"“s1

vy —vq| "D i 1/log H < |v,—~v,] <1,

{(log HY+t if [y —vyf < Ylog H,
if o —ugl 21

it is casy to see that the doubla integral

(log HY'—1
B

we note that [log HY| <|(log HY —1)/8 by discussing the cases

£ (log H)”+

'—6—1;
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Bl < 1/log log H, |f = 1/log log H separately. Clearly 1 <|{(log HY' —1)/p|
and this completes the proof.
LemMa 6. We have
T+THILG

[ S bynfdes HL b/

T+3H/LO n
provided x < H/100.
This is an immediate consequence of the theorem of Montgomery and
Vaughan [1]. For a simpler proof see [4].
Lemma 7. Let T+3H/10 <t < T+7H/10 and X < H. Then there exist
H, and H, with H/10 < Hy, Hy < 2H/10 such that

A2 : . r+H
F(——lm+it+w X*g(w)du n=()(}‘1"2)4-0(H""Z [ [F(it)ldt)
log H
- 1flogH T ‘
on the line Im w = Hy as well as on the line Im w = —H,.
Proof. In order to prove the existence of Hj, it suffices to prove that
ZH/LO A+2 T+H
1 - ;
j dv j F(—"+it+w)X“’g(w)du <H *4+H"? j | F (it} dt.
_ log H
H{10 ~ ljlogfl "

Hence it suffices to prove that

2H[I0 4+2 —

J dv J' iF(L+it+w)—1‘|X‘“g(w)!du <H *+H? j |F (if)| dt.
log H
Hi10 ~1flogH ! :

We note that, by a change of variable, it suffices to prove that

o6 T+9H/10 T+H
HA* 2"k (do [ [F()—1dt < H"?+H™* | [F(in|dt
0 T+ H/10 T
and this is a consequence of Theorem 1.
The proof of existence of H, is also similar.
Lemma 8. If Re s == 8, then
—&+iMy
P(x) = i by _ K F(s+w)g(w)x*dw-+E
—m=1”s—-2m, w)g(w) x" dw
~dtHy
where
' T+H
E=E(x)=0(H2+H"? | |F(it) dr).
: T
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Proof Since

h,’::!_ v dw_%o if O0<yp<i,
2ni Jwiw+1).. (w+ k) (I-1wF i y=1
it follows that
At3+in
P k F
{x} e . (54w g (w) x™ dw.
A+3~ia

We break the integral in —H, < Imw < H; with an error O(H"2). (Here
Hy and H, are as defined in Lemma 7.) Now we move the line of integration
to Re w= ~¢$ and the error is, by Lemma 7,

T+H

QH 2+H™? T[ |F (ir) dt}.

This proves the result.
From Lemma 8, there follows

Lemma 9. We have

(P(x)— E(x)

d+iHy 3+iH3
kN2 N
B I(Z_n—) J. dw, J Fls+w) F(s+wy)g(w)g(wy)x "2 dw,.
6-ifly 3-iHy, ‘

Lemma 10. We have
T+7HILO ¥y

dt J (P (x)—E () (log (/) dx

T+3H/10 G

T+H
log H ‘
< (—5——)—_'|r(1+mJ (0 dr.
T
Proof. From Lemma 9, we have
THTHLO. y ,
dt {x**=1|(P(x)— E (x))|" (log (y/x))ﬂ dx
T+3IFL0 0
d iy 6+1H3__"'r+7{”10
= [ dw, | dw, | F(s+w)F(s+wyg(wy)g{wy)dt x
d—illy d=—ifly T+3H/10

y }xwl +wg +ad= 1 (
o

log(y/x) dx.
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We estimate the x-integral by Lemma 3, the t-integral by Lemma 4 and the
w,, w, integral by Lemma 5. This completes the proof of the lemma.

LemmMa 11, We have
T+7Hf10 ¥y
dt J‘x“‘” HPe)f* (log /oY dx

T+ 3H/10 0
T+ H

‘ll" 1+ B J |F(if)* de -+ H" .

T

log H)!
<(g

Proof. Since
THH

RGP de+H 4,
T

"+ H
(E) < H”‘*(I { PG| i) +H™* <H™
T

we have, by Lemma 3, .

THTH[1O ¥

dt { x*= (B ) (tog (y/x) dx

T+3HM0G D
T+H

<(H™ [ {F(t)2de+H *)log HY'* [T (1+ Bl

Now,

STHTHIO  y

dt [ x*~ [ (Po)|* (log (v/x) dx

T+3H{10 O

T+THILO oy ) R ’
< [ dfx (P~ EN +[EG)) (log(y/0) dx
T+3H/L0 0 _
and hence the result, using Lemma 10.
Limva 12, We have
T+TH/LO .
dt (x4 (P (log(y/x)f dx > Y lag?(log(y/m))’.
T+3H!10 0 ns 4/200

Proof. Using Lémma 6, the left side of Lemma 12 is
¥ T+THHO ¥y

J =1 (log (y/x)) dx IP(of*dr > H waut(log p) lnnl

L]
0 T+3H{10 0

xEnE 2x

>Hj(log(y/x))” Y fafdx
(4]

LA ELLL € WL RO SREWTE UL U] S ECCEIIUES L SET IEY, X4 JL0

n

|| f(log (/) x*~ L dx
w2

la,)* (log (y/n))'.

">H ¥

n< H200

>H ¥

n€ H/200

Now Theorem 2 follows from Lemma 11, Lemma 12 and the fact that

H'=o(H Y la*(logly/m))

ns 200
(since a; =1 and H is sufficiently large).
5. Proof of Theorem 3. We deduce Theorem 3 from Theorem 2. By

putting f = 1/loglog H we get (i). By putting p = 1/2 we get (ii). In order
to deduce (i), let

148 if

) = %0 iB > 1/log log H,

otherwise.

We multiply both sides of the equality of Theorem 2 by f(f)
wal. f§ in the range —1/2 < B < 1/2. This yields

and integrate

T+H 2 12

1 N 181 {log (&/m))
= |F (i) dt JJ‘( )df > a,)? J —eme— - f () df}
H J Pap> L. | g B
T — 142 -142
( )ﬂ —2flogN  4flogM
log (H/n)
> la? J L2 _ggs la? j +
nsr%‘zoo (log H)_ﬂ“—ll nsr:;/zoo |
11228 Loglog B —4fiogN 2jlog M
~2flog N 4flog M , ‘
log H \~
» a)* J log (H/n))' dp + i, J ( ) d
? nzsg,;zcu:)l | ( B /)) g nsuz/:zoo_ | log{H/n} d
—4flog N 2flog M

P
log M

Multiplying both sides of the equality of Theorem 2 by 1/(f|log?|1/p))
and integrating w.a.t. f# in the range —1/2< f < 1/2, we get (iv). This
completes the proof of the theorem. We remark that slightly different choices
of § gives marginally better results like 1/log M log log M (log log log M)~
Still the proof of the conjecture is open.

1
> 3 k(s
nm%zm) " ]08 N

‘and this yields ().
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On positive definite quadratic polynomials

by
R. J. Coox {Sheffield) and S. RagHavan (Bombay)

1. Iniroduection. Tt is well known that an indefinite quadratic form in 21
or more variables takes on arbitrarily small values al integer points (sec
Davenport and Ridout [8] for a full list of references). An analogous
problem for positive definite quadratic forms has been considered by
Davenport and Lewis in their interesting paper [7] which contains the
following

Turorem 1 (Davenport and Lewis). There exists an integer ny (absolute)
wirh the following property:

Let Q{x) =Q(X;, ..., X,) be a positive definite quadratic form with real.
coefficients and suppose that. n=n,. Then, if x¥, ..., x} are integers with
max |xF| sufficiently large, there exist integers X, ..., X,, not all zero, such that

{1 |Q (x+x*)—Q(x") <1.
In the course of their proof, Davenport and Lewis have however
overlooked the (trivial) solution x = —2x* for (1); indeed, their proof of

Theorem 1 assumes that {1) has no nonzero solutions and proceeds then to
obtain a contradiction. The object of this note is to show that the very same
analytic arguments used by them not only remove this lacuna but can also
be adapted to yield many more integer solutions x of (1).

In (1), the term 1 can be replaced by an arbitrary ¢ > 0, and the result
can then be regarded as a recurrence theorem. The quadratic form Q returns
to the ne:g,hhourhood of values it has taken. Examples such as @(x{+..
+x7) show that it is not possible to obtain a theorem of the form “Q takes
values close to all sufficiently large real numbers X" without some additional
condition, such as incommensurability of the coefficients of Q.

THEOREM 2. There exists an integer ny <995 and a constant © >0 with
the foliowing properry,

Let F(x) be a positive definite quadraric form with real wefﬂuenm and
suppose that n 2 ny. Then, if x{, ..., xi are integers with max |xF| sufficiently
large, then there exist at least [}x*l] integer points xeZ" such that

(2) ' |F(x+x9)=F(x%) <.



