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Factorisation of x"—q over Q
by

Henk Hovoomann (Issy les Moulineaux)

1. Introduction. It is well known that the cyclotomic polynomials @,(x)
(ne N) are the irreducible factors of binomials x¥—1 (NeN} over @[x]. In
this paper, we determine the irreducible factors of binomials x"—¢ {4y Q,
NeN) over Q[x].

It turns out that besides polynomials of the form @,(x™/a) there are
exactly two other families of polynomials in O[x] which divide some
binomial. In fact, under certain conditions on n and s there are irreducible
polynomials &, (x) and ¥, (x) such that

@n,s (X] @n,s( - )C) = <pn (XZ/S) and !Pn.s ()C) TPI.S ( - x) = q)n (754/ - 452)

(here [(x) = ¢g(x) stands for f(x) = cg(x) for some constant ¢, a convention
used throughout this paper) and the polynomials of the form @, ,(x"/a) and
¥ (x"/a) constitute the other two familics.

The polynomials @, ,(x) and ¥, ,(x) are not new, they can be obtained
from certain polynomials defined in [9]

We shall use the following notation:

Let Q be a field, & its algebraic closure. {y is a primitive root of 1 of
degree N and Qy = Q({x). .

For ve{l, @ a field such that Q £ Q'S 3, we denote the minimal
polynomial of v aver Q" by m(v, 2'; x). Its degree is the degree (or dimension)
of v over . The order of v over €' is the smallest N > 0 such that v¥ e, (If
no such N exists then the order is taken to be «.) Let F(x)ef2[x]. The
order of F(x) over @ is the smallest N > 0 such that F(x) divides some xV —¢
with ge 2. (Again taken to be o if no such N exists.} Remark that if F(x)
has order N over @ then F(x") has order nN over £2 (note that F{x")|x™ —b
(he ) implies n|M) and F{x)|x™—b (beQ) implies by a standard argument
that N|M. We shall make a frequent use of these results in the text.

Let F(x)eQ[x] have order N over Q. The dimension of F{x) over Q is
the dimension of.any of its zeroes over Qy. (Note that this s a proper
definition: If v is any zero of F(x) then the other zeroes all have the form
CNV for some i)



Moreover, we introduce the following npotation from [11]: Let
ae$2\{0}, then
E{a, Q) = {

0 if a={y for some N,

maximal n such that ¢ =", veQ, otherwise.

We quote the following result ({117, Lemma 2, (12))

(1.I)  For any field 2, with aeQ\{0}, if a=b", be@ <, then
m-E(b, QYE(a, ).

(In fact, in [11] this result was given for Q an algebraic number field,
but the proof given there remains valid for any field Q2.){*)

This paper is constructed as follows: In Section 2 we show that any
F(x)eQ[x] of finite order can be written as: F{x) = G(x") wilh G(x)eQ[x]
of dimension 1, irreducible over @ iff F(x) is irreducible over €. (This
result improves [11], Lemma 3) So it is sufficient to determine all
"' polynomials of finite order and dimension 1. This is done in Section 3, for
2 =@ In Section 4 the irreducibility of @ (x™/a), @y (x"/a) and
¥y (x7/a) is investigated. Finally, in Section 5 we treat some examples and
mention an application to Number Theoretic Transforms ([2], [5]).

2. A property of polynomials of finite erder. Our aim in this section is to
show that in searching polynomials of finite order we can limit ourselves to
the search of those having dimension L. Our results are obtained from the
following lemma:

(2 1) Lemma. Let veQ and let vNe®., If v has dimension d over Qy
then vV'eQy and m(v, Qy; x) = x*— L.

Proof. This is a slightly different formulation of Satz I in Hasse (4], =

Then the main result of this section is

(2.2) TrrOREM. Let F(x)eQ[x] divide x¥—q (qe$2). Then there exists
G(x)e Q[x], NN such that F(x) = G(x", and G(x) has all its zeroes in Q-
F(x) and G(x) have the same number of irreducible factors over £[x].
Moreover, N/n|(N, E(q, Q)).

Proof. Let d be the dimension of the zeroes of F (x) over 2y. Then (2.1)
implies that their minimal polynomials over Qy, hence certainly over @, are
in fact polynomials 111 x?. This in turn implies that F(x) is a polynomial in

x’, F(x)=F (%%, Fi(x)eR[x], say, and F{x) and F,(x) have the same
number of 1rreduct1b!c factors over Q[x].
Repeating the same argument, we find polynomials F(x) = F(x), F,(x),

Fy(x), ... in 2[x] and dy =d, d;, d,, ... such that
Fi(x) = Fipy (5, FyQofxMofti-n_g -

{*) Editers note. It is tacitly assumed E(y, 2} =0 if a =", vg £, for infinitely many n
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the dimension of the zeroes of F;(x) over Quy . 4, is d;, until finally for
some m we have 4, = 1. Then with n =d,...d,..,, G{x) = F,(x) we have
the first part of (2.2). '

Finally, if v is a zero of F(x), then g =v¥ = [+*]¥" and since v" is a
zero of G(x) we have v'eQy,,. Then the last conclusion of (2.2) follows
from (1.1). m

(2.3) Remark. If in (2.2)
and hence dimension 1.

(24) Remark. (2.2) includes [117, Lemma 3. That (2.2) may lead to
stronger conclusions is shown by the following example: With the
assumptions as in (2.2}, take @ = @, ¢ = -~ 2% N = 6. Then ¢ = (1+i)*? and
{(1+)eQ,, so by (1.1) this implies 12/E(g, @) and Lemma 3 of [11]
allows no conclusion. However, since g = (20)%, 2i¢ Q4, (2)%e Qg it follows
from (2.2) that F(x) is a polynomial in x?

F(x) has order N, then G(x) has order Nfn

3. The irreducible polynomials over @ of dimension 1. From now on, we
take = @. Let us denote by S(N) (Ne N) the set of square free se Z such
that /s e Qy. We have the following well-known theorem (see e.g. [10],
Lemma 3):

(3.1) Let N=2"M with M odd.

(i) If m=0 or m=1 then S(N) consists of the numbers (—1)0)t wzth
te N, t squarefree and t|M.

(i) If m =2 then S{N) consists of all teZ with t squarefree, M.

(1) If m=3 then S{N) consists of all te Z with t squarefree, t|2M.

If F(x)e @[x] has order N and dimension 1, F(x)}x"~gq (ge Q) say,
then x" —g also has dimension 1. First we shall determine for which N, g this
is the case.

(3.2) Lemma. x¥—gq (g€ Q) has dimension 1 iff one of the following holds:

(i) N odd, g = a" with ac @,

(i) N even, ¢ = a"s™* with ac Q@ seS(N),

(i) N =4M with M odd, g = —a*™ (25" with ae Q, seS(N).

Proof This is an equivalent formulation of [10], Lemma 4. a

In the next theorem we show that there are other irreducible
polynomials in Q[x] of dimension 1 besides &, (x/a) (M odd, a= ). We
shall denote the Galois group of Qy over @ by Gal(Qy/Q) and its order by
& (N) (where @ is the Euler function). Let Me N be odd, seS(ZM)\ 1},
te S{4M). Define v and » by

U5=CM\/Sv,

@M.s(x) = m(U! Q: x):
Then we have

0= Lapg(l+i) Jt
and let

Yy (x) =mn, @; x).
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(3.3) TuEOREM. (i} @ (x) Is frreducible, of order 2M, degree ®(2M)
= (M), dimension 1. Moreover @, ,(x) @y (—x) = Dy (x*/s).

(i) W (x) is irreducible, of order 4M, degree @(4M)=20{M), and
dimension 1. Moreover Wpg,(x) War (=) = @y (x*) =417} = Py (x3/21),

Proof. (i) Clearly ve Qz4 and v has order 2M. It follows that @, ((x) is
irreducible of order 2M and dimension 1. If oe Gal(@yp/0) maps v to +o
then o fixes v, This implies that ¢ fixes {3, a primitive Mth root of unity.
Since Q. = Oy 1 follows thal ¢ = 1.

We have shown: @Ms( x) has degree P(2M) =
O (—x) (=m(—~wv, @ x)) are distinct.

Since both v and —uv are zeros of @, (x?/s) of degree 2¢(M), we have
Oy (X) Oy { ~X) = Py (x5} _

(i1} Here we have 5@,y and y has order 4M. Moreover, note that
n? = 203EM and (35 is a primitive 4M-th root of 1. Now essentially the
same reasoning as in (i) will prove (i1). =

Remark. The polynomials in (3.3) are not new. If M is odd, M = nM*
with Af* the squarefree part of M, then

\/ O

@Ms(’c)— W g sl ‘C/x 5
o 21 (‘x/\/é|r|)")(z¢rnm

@ (M) and @y (x) and

WM,S (x} =
where ¥, . (x) are polynomials as defined in [9], Theorem 1. It follows from
the said theorem that @, (x) and ¥, (x) have integer coefficients and
satisfy the formulae given in (3.3). Their irreducibility could then be deduced
from the irreducibility of @, (x) and @,y (x) and from the lemma of Capelli
(see [12], p. 289), which implies that the number of irreducible factors of
Slg(x) for f(x) irreducible does not exceed the degree of g(x).

Now we come to the main result of our paper:

(3.4) Tucorem. There are exactly three famtlzes of irreducible pr)lynommls‘
in Q[x] of finire order and dimension 1:

() @y (xfa) with M odd, asQ of order M, degree ®(M),
(ii) @y, (x/a) with M odd, ae Q, se SCM\ (1], of order 2M and a’eqree
dRM),

(i1} M,(\/a) with M odd, aeQ, teS4M),
& (4A]),

Proof, Suppose F(x)e Q[x] is irréducible of order N, dimension 1, and
fet F{x)IxY—¢ (g Q) say. Then xV—q¢ also has dimension 1, and we can use
(3.2

(' N odd, ¢=4a" (ae0Q).

of order 4M and degree

Since xN—aV =[] @4(x/a) with @, (x/a)
N
wreducible of order d we must have F(x) = @y(x/a).
(1) N even. g = ¥V (e Q, se S(NY). If 4N or 5 =1 then
X _a,’\ sJ’\‘j',. — (fo‘z%“N,tz SNI4) (XN/Z'I"C!N":;SNH),

icm

Factorisution of xM—q over @ 333

contradicting the fact that F(x) has order N. So we may assume that N
=2M, M odd and seS(2M)\{1}. Since x*¥a*M sM = T] &, (x*/a®s) with

d M
®,4(x*/a*s) of order 2d we must have F{(x)|®,(x*/a®s). Now use (3. 3)

(i) N=4M, M odd, g = —a*" (2™ (ae 0, reS(@M)). Since x*M+
+a*M(21)2M = H@d( x*/—a*(20") with @,(x*/—a*(20%) of order 4d we

must have F(x [(DM( x*/~a*(2t)%). Now use (3.3). =m

(3.5) CoroLLarY. Any irreducible polyromial over Q[x] of finite order is
of the form @y (x™la), Oy (x"fa) or Wy, (x"/a) for some meN and some
M, s, t, a as in {(3.4).

Proof. Consequence of (2.2), (2.3) and (34). =

4, The irreducible polynomials over @Q[x] of finite order. To complete
our investigation we shall state mn this section under which conditions the
polynomials in (3.5) are reducible. The interested reader can find the proofs
in the appendix.

(4.1) Ler M be odd, mEN as Q. Then CDM(x'"/a) is reducible iff one of
the following holds:

(i) For some prime p, some be ¢ we have p /M, plm, a = b",

(ii) 2lm and a = b2s for some be @, seS2M)\{1),

(iti) 4lm and a = —b*(2t)* for some be Q, teS(4M).

(42) Let M be odd, meN, aeQ, seS2M)\ 1), reS{4M)

Oy« (x™/a) is reducible iff p ¥ M, plm, as = (b% s) for some prime p, some
he Q

¥\, (x"/a) is reducible iff p ¥ M, pjm, a*{26)*
p, some be Q.

We wish to remark that @, (x™/a) divides x¥—g (M odd, a, ge Q) #ff
mM|N and g = a"™".

This fact together with (3.3), (3.4), (4.1) and (4.2) could then be used to
find the complete factorisation of any binomial x¥—gq (ge Q) over @ [x].

= (b*(21)*) for some prime

5. An application. We can use the polynomials of type (iii} in (3.5) to find

factors of x**+2°M (M odd): Indeed, (3.3) implies ¥, , (x)x*¥ +27¥ We

have computed some of these ¥, ;(x). The result is:

Wy (x) = x4 2x04- 2,
Wi lx) = x4+ 2x7 4+ 2x - 4x+ 4,
Yo (x) = x*+2x7 +2x0 — 4xF 4+ 8x7 + 16x+ 16,
Yo (x) = x1 P 2 4 2x 0 4x® e BT — B - 167 — 16x% + 327 + 64x + 64,
Wy (x) = x' 2+ 4x7 -+ 8x0 4+ 32x3 + 64,
Wis g (X) = x1022xt5 4 20 AP B A 16 4 2410 4327 - 48 %P +
4 64x7 4+ 96x8 4 128x% + 128xF + 1287 + 128x* + 256.x + 256,
{Note that ¥ {x) = 2*¥;,(x*/2) in accordance with (1) of the appendix.)
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The polynomial x®*™ ¥, (x7') is in Z[x] and divides 2*M x*¥ 4.
As a consequence, the numbers M, ,=2%4M"g, (27" are in Z and
divide 2*MEn* D | (M odd, neN).

These numbers M,;, could then be used to define new families of
Number Theoretic Transforms with 2 as a root of unity (see [2], [5]). (This
problem was in fact the motivation for this work.)

Appendix. Let us make the following observation:
If for. some a, beQ, neN, we have

a=h" ats=(s)" or a2 =(b*(20Y

then we have

(1) ngn(x/b)iq)M(x"/a)s @Mn.s(x/b)I@M,s(x"/a) or WMn,t(x/b)!WM,!(x"/a)

respectively.

Moreover, under these assumptions, we have = instead of | in (1)
iff n{M. .
To see this, first remark that the zeroes of the irreducible polynomials
on the left-hand sides of (1) are also zeroes of the polynomials on the right-
~hand sides of (1). Then inspect their degrees, and use &(nM) = nd (M) iff
HM.

This observation shows that the conditions stated in (4.1) and (4.2) are
sufficient.

On the other hand, suppose @,,(x™/a} reducible. By (2.2} and (2.3),
there exists njm such that ®,,(x"/a), of order nM, is reducible of dimension 1.
As a consequence, x™"— g™ also has dimension 1 and sinece M is odd, (3:2)
now shows that we have one of the following:

(i) n odd, a = b" (be Q). Then (1) implies n ¥ M, so we have (i) of {4.1).
(i) n even, a = b"s"?* (be @, seS(Mn)).

If s=1 or n/2 tM then again we have (i) of (4.1). Let us therefore
assume 5% 1, n/2lM. Then S(Mn) = S(2M) and we find seS(Mn)\ {1},
a = [b? 2= W22 .5 and we have (i) of (4.1).

(ili) n =4k, a = ~b*(2)% (heQ, reS@4kM), with k odd.

If k¥ M then again we have (i) of (4.1). Let us therefore assume k|M.
Then S(4kM) = S(4M), so teS(4M), a = —[B* (2%~ V27*(21)* and we have
(iii) of (4.1). \ :

The case @, (x"/a) reducible can be trealed along the same lines:
Again we can find nlm such that &, (x"/a), of order 2nM, is reducible of
dimension 1, and hence we find that x2M"—g?M s™ has dimension 1. Then we
use (3.2). Note that —1¢$(2M), so that (iii) of (3.2) is not possible. We find
ads=b"1" (beQ, reS(Mn\{1D). . i
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Since 5 # 1 and s and t squarefree in Z, n must be odd and s = . Then
the first part of (4.2) follows.

The second part of (4.2), concerning ¥,,,(x), can be proved by a similar
argument.
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