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The Hausdorff dimension of systems of linear forms
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J. D. Bovey (Canterbury) and M. M. Dopson {Heslington)

m

Let X Xyay. V< j<m be a system of i real linear forms in m variables.
i=1

Let f(x) be a positive function of a positive real variable such that the
integral

o+

j‘ .f (X)" xm*— H dx
1

converges. Groshev hus proved that the system of inequalities

m
13 @afl <fl@, 1<j<n,
i=1

where ¢ = max {|¢,], ..., [¢,]}, has infinitely many solutions (g4, ..., g,) in
Z™ for “almost no™ matrices (a;) (see [12], p. 33, Theorem 12). As usual,
[lxll = inf{|x—k|: ke Z!, the least distance of the real number x from the
integer nearest to x, while ‘almost no’ matrices (a;;) means that the set of

" matrices (a;;) (identified with the points (a;,, ..., Qi Gyqs +-.y Gyy) in B™) has

Lebesgue measure 0. Groshev also proved the complementary result that
when the integral | Sy " tdx diverges and f(x) satisfies certain

i . . .
convergence and monotonicity conditions, ‘almost all’ systems of linear forms
satisly the above inequalities for infinitely many integral vectors.

Let = > m/n and for each vector x = (x;, ..., x,) in R" write

foe] = max{lxgl, .. |t
LE 4l

Then the integral | f(x)"x""'dx converges for f{x) = x™* (x > 0} and the

1
set of matrices (a;;) satisfying the inequalities

N .
(M ‘ : Il 2 4 ﬂu” <lg™% 1<j<n,
=1
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for infinitely many vectors g = (g,, ..., q,,) in Z™ has Lebesgue measure 0. In
this paper it is shown that the Hansdorff or fractional dimension of this set
of matrices or systems of linear forms is

m--n
a+1’

(2) (m—1)yn+

m

The system of linear forms Z X;a;;, 1 €j<n can be written more
i=1

concisely as the »n-dimensional vector xA, where x=(x,, ..., Xx,) and
A = {a;;), and the object of this paper can be regarded as the determination
of the Hausdorff dimension of the set of matrices 4 which sead infinitely
many lattice points ¢ in 2™ to points g4 in R’ which are a distance of at
most |g 7% from Z" Alternatively the paper can be regarded as studying
linear maps from 2" to the torus R"/Z" which send infinitely many points g
to within {g|™* of the origin of the torus. Also by doubling the size of the
torus, the associated problem, where g4 1s reflected from the sides of the
torus, can be shown to be equivalent to the present ome where g4 is
“translated” to the opposite side.

To simplify the notation further, write J = (—1%, ] and for each vector x
in R, define (x> to be the unique vector x—r in I", where re Z2”. Then the
system of inequalities (1) can be written more concisely as

[{g4>| <|q™*
and we show that the Hausdorff dimension of the set
W(m, n) ={AeR™: |(gA)| < |g|™® for infinitely many q in Z™),
=[x}l

where o > m/n, is given by (2). Note that for any real number x, ||x||
The set

W(1, 1) = {xe R: |lgx||<|g|™* for infinitely many ¢ in Z?},

where o > 1, is the set of well-approximable numbers and was shown by
Jarnik [9] and Besicovitch [2] to have Hausdorfl dimension 2/(x+ 1). Jarnik

[10] (p. 508, Satz 1) and later Eggleston [8] (p. 60 Theorem 7) extended this

result to the set

W{(l, n)= {xe R" [<qx}| <lql~* for infinitely many ¢ in Z},

where a > 1/n, of simultaneously well-approximable numbers and showed
that its Hausdorff dimension is (n+1)/x+1). The methods used in the
present paper for W(m, n) have some features in common with those of
Jarnik and Besicovitch. but also include a ‘variance’ or ‘second moment
argument which has some similarities with an argument due to Littlewood
and used by Cassels in his discussion of metrical Diophantine approximation
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in Chapter VII of [4]; see also Chapter I, § 7 of [12]. It is not hard to prove
that (2) is an upper bound for the Hausdorff dimension of Wim, n) and the
difficulty lies in showing that (2) is also a lower bound. The arguments
needed are fairly elaborate and rely upon the variance being small. This
suggests a parallel with the notion of independence in probability. Indeed the
metrical theories of Diophantine approximation just cited and the present
paper bear an mteresting resemblance to the Borel-Cantelli Lemmas (see
[117, pp. 337-340).

The Hausdorff dimension (also called Hausdorfi-Besicovitch or
fractional dimension) of a set X in R¥ will be denoted by dim X and can be
defined as follows. Let % by any finite or countable cover of X by k-
dimensional hypercubes C. For each real number s define the s-volume of a
cover % to be

L) = ¥ L(CY

Cett

where L(C) is the Iength of a side of the hypercube C. For each positive ¢
and real s write

AS(X) = inf I5(%)

where the infimum is taken over covers % of X with L(C) < ¢ for all C in 4.

Clearly A;(X) cannot increase as ¢ decreases, and if s > s,

AV (X) < oF TP ALX). .
Thus if A*(X) = sup A5(X) is finite and if 5’ > s, then A* (X) vanishes. The

Hausdorff d1mcns1on dim X of X is the supremum of all real s for which
AS(X) is positive, ie.
dim X =sup {s: A°(X) > 0} =sup {s: sup igf E(%) > 0.

‘ ex>0
It follows that if X can be covered by a collection % with arbitrarily small s-
volume [5 (%), then dim X < s. On the other hand if for each positive ¢, there
exists a positive number ¢ = g(g} such that every cover ¢ of X with L(C) < ¢
satisfies (%) > ¢, then dim X zs; roughly speaking if the s-volume of
covers of small hypercubes of X is large, then dim X =s. An equivalent
condition is that if there exists a positive & such that for any positive g,
collections % with L(C) < ¢ and satisfying I!(%) < & cannot cover X, then
dim X = s. In other words, if collections of small hypercubes and of small
s-volume cannot cover X, then dim X = s. This form will be used to establish
that dim W (m, n) 2 (m— D) n+(m-+n)fe+1).

Clearly a cover % of X will be a cover for any subset X’ of X and it
#follows from the definition that if X' < X < R*, then

3 dim X' < dim X < k.
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When ge Z™, {gA> depends only on the coefficients 4; modulo 1 and so
it suffices to consider a;; in the interval [ =(—4%, 3], ie. to consider Ae/™.
Indeed, since R™ is a couniable union of translates of I,

dim Wm, n) =dim W,
where
W= {del™: {{g4>] < |qg~* infinitely often} = W(m, r) ~I™.
Note that when there is no risk of confusion the Hapsdorff dimension
will be referred to simply as the dimension.
LemmMa 1. Let o > m/n. Then

m+n
—1
(m )n+M_1

Proof. Let ¢6>0 be given and let ¢ > (m—1)n+(m+n)/foe+1). For
gach ¢ in Z™ r in Z", the number of mn-dimensional hypercubes C of

width 4|q/~@*1 with centres on the (m—1)n-dimensional hyperplane
[Re(2Iy™: gR = v} at integral multiples of |g|~®*"" apart is

dim W <

< mn.

< lql(a:+ Iym— 1

((21)"”' iR = (r,-j): _1 < T',-j s 1, 1. \<., 1
of such hypercubes C covers

B{g.r) =
and for each N=1,2, ...,
iy = {%(g. 1 | <3lgl, lg > N}

<m, 1 <j< n}). The collection % (g, »)
(Aer™: |gd—r <|q™*)

the collection

covers 7
W ={delI™: |{gA)} <|q " infinitely often}.

The i-volume of 7y is given by
~LET 4,

where the sums are over ¢ in Z" with || > N, r in Z” with lr| < }lq/ and C
in %(q, r). Thus

= (ot L)r
Lty <y ¥ ZZ‘I *
q>N |gl=q »r
< z q—(u+1);+(m—l)+n+{a+1)(m—1)n <z
q=N

for ‘N sufficiently large since > (m—1)n+-(m+n)fa+1). Hence inf IX{%,)
N

- =0 and the lemma follows by the definition of Hausdorff dimension.
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The complementary ineqguality is much harder to establish and some
additional definitions and notation are needed. Let o >m/n, let 5 be any
positive number < 1/n and write

m+n
r={m—1
(m )ﬂ+oc+1

—0.

Suppose that for some positive ¢ and any positive p, the countable or finite
collection % of mn-dimensional open hypercubes C with L{C) < p satisfies
4 E(ty= 3 LCY <e.

Ce¥
It will be shown that no such % can cover W so that from the definition of
Hausdorff dimension

m-+n

dim W2 (n~1)n+_——.

For each ¢ in Z™ and r in 2" let H(q, ¥) be the (m— 1)n-dimensional
hyperplane in I™ given by : .

H(q: ¥ =

(H(q, v) 1s a more general form of the resonant hyperplanes considered in

(10

Let N be a sufficiently large positive integer, let » satisfy

iRel™: gR =r}.

and let T in (0, 1) satisfy

(m=—1)t <nqg {(<m).
Denote the set of primes by P and the set of vectors p in Z™ which satisfy
N <py <2N, |[pl<N'T"

Ipl = p, P, 2<i<m,

by Py (any vector in Py will be written p). Then

- 1 Nm—Tim— 1) 1
5 A K _
0 e T )

Let Sy be the collection of hyperplanes given by

SN = lIi(pa ): EPN!J'* <flpi "‘Tplja

Sy will be called the N-skeleton of W. By definition, each R in H (p, r) satisfies
pR =r and so for each k in Z, (kp) R = (kr), whence Re W. Thus Sy, = W
(strictly speaking {RelI™: ReH(p, r)eSN} < W). The number of hyper-
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planes H(p, r) in Sy or the cardinality |Su| of Sy is given by

2m~1(2n+1_1) Nm+n—z(m—1}( 1
== = * 1 O
IS =221 1 og N\ | \lgN

where as always the second sum is over those r in 2" with || < % p,. Note
that the unit normal to each H(p. ¥) in Sy is

10...0
10...0

FONT),
10...0

ie. the hyperplanes H(p, #) are all almost parallel and almost orthogonal to
ceach xjaxis, 1<j<n
Let

D(v,0) = {xeR" |x—v <o}

be the n-dimensional open cube of side 2p > 0, centred at » in R" and with
~ volume

vol D{v, p) = 2"¢".
For each g in Z™ the function @, I™ — I" given by
Py(4) = {g4)
satisfies _
@, {D(0, ¢/p1) = B, (p. H n I™,

where 0 <g <% and B,(p.r)={AcR™ |pA—r <g}. Let g=g(N) be
given by

6 0 = o(N) = N7
since np <m, g—0 as N-—o0 and ¢7* €« N"/log N. For each x in R" let
1 i | <o, '
6(x) = {0 otherwise,

ie. let & be the characteristic functidn of D(0, ¢). Then volume considerations
give ’

(N [ O(x)dx = 2"g" = 2"N"™"™,
R
where dx = dx, ...dx,, and
(8 vol(B,{p, )~ I™) = [ B(pA)dA =2"g"p;",
. : . Im!!
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where dA =day, ... da,,...d,,...d,, whence

vol @ 1(D(0, ¢/p,)} = vol D(0, o/p,)

(more general results are given in [12], pp. 34-35).

Suppose f(pA—r) =1, ie. suppose that [p4d—r| <g. Then since the
distance function x| = max {{x,|, ..., {x,)} satisfies the triangle inequality, it
follows that any ¥ in Z" distinct from r satisfies

lpA—r| 2 lr—ri—|pA—r = 1-0.
Hence, because N is sufficiently large, (p4d—r} =0 and so

if |[pA—r <o for some r, [/ <4%p,,
otherwise.

O Topa-n={,

Define vy: I"™—1{0, 1,2, ...} by
ww(d) =33 0(pA—7),
p

so that vy(4) is the number of hyperplanes H(p,r) in Sy such that
|pA—r¥| <o or which are close to A (the Euclidean distance of 4 from
H(p,r) is at most of(p?+...+p2)'3.

Let

p= | vl(d)dd

mn k3

and

oh= [ () —m) dd = [ vy()?dA—pif.
Imn Im"

We now sketch how the lower bound for dim W is obtained. First it is
shown that the hyperplanes in the N-skeleton Sy are asymptotically regularly
distributed or independent in the sense that the variance o3 of vy is small,
satisfying 0% = o(u%). This permits the construction of a subset T(N) of I™
which is well enough distributed to ensure that the volume of the intersection
of T(N) with hypercubes C from % can be - estimated quite effectively.

o0
Moreover T{N)} in closely related to W: the intersection [\ T(N;), where
=1

{N;: j=1,2,...} is an increasing sequence of integers, is a subset of W. For
sufficiently rapidly increasing sequences, the intersection is not empty and a
volume calculation shows that any collection of hypercubes satisfying (4)
cannot cover the intersection and hence W. It follows that (2) is a lower
bound for dim W.

5~ Avla Arithmetica 454
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LeMma 2.

Since N <p, <2N and |p| < N'7%, 2<i

J. D. Bovey and M. M. Dodson

. i 1
fy =2 %(1+0(10g N))

1
— am+tr—1 ng—(m—1) -
=2 N (log N) (1+0(l oz N))
Proof. By definition

uy= { vy(d)ydd=3%% | 0(pA—r)dA.

gmn p r pnn

uy =22 2"0"pr "(1+ 0N

1Y 1
- 2"Q~zp (1 —p—) (1+0(N"9) = 2"g"§(1+0 (1og 5

1

The rest of the lemma follows from (3) and (6).
Note that since np > (m—1)1, gy — 0 as N — o0.

second moment estimate.

Lemma 3.

[ vy(4)?dA syy+y§(l+0(

Imﬂ

Proof. First, by (9)
R0(pA-n)(T0(pA—r) = T0pA~,

whence

[ wwidPda =

yman

I
O(pA—r)dA+

1

= =M
{1 =

!
oy
+

I

3

n r#r

<m oand |r <%py,

I

og1 N))'

Z ZB(pA-——r)H(p’A——r’)dA

))

The estimate ¢ = o{u?) is an immediate consequence of the following

Y Y 0(pA—n0{(pA—ridA+

+[ ¥ EY0(pA—n0(p A-r)dA

mn pEp' v ¥

=puy+y. 3 f 0(pA~r)B(pA—rdA+

P rFEy pma

L L2 folpa-

p*Ep r ¥ omn’

O(p' A—r)dA.
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The integral | 6(pA—r}8(p’A—r}dA is the mn-dimensional volume of

the set U of pointg A in I"" which satisfy [pA—+] < g and |pAd—¥| <, orin
other words the integral gives the volume of points in I™ close to both the
hyperplanes H (p, ¥) and H(p, ). When p == p’ and r # ¢, these hyperplanes
are paraltel and at least 1/2N apart and hence > g/N apart, so that when
rEY

{10) [ 0lpA~n0(pa~¥)dA =0
I”tn

Translating the hyperplane H(p, ¥} by the mn-vector (—L/p}{re, ..., Fus
0,.... 0 gives H(p, §), the hyperplane parallel to H(p.r) and passing
through the origin. Under the same translation the hyperplane H(p, r)
becomes H(p', ¥'—pi#/p;). Since the choice of p and p' ensures that the
hyperplanes H (p, ¥) and H (p’, ¥') are almost parallel, the translation cannot
decrease the volume of U. Hence

[ OpA—nOpA—rdA< | 9(pA)B(p’A—M)dA.
jmn ymn 4

When the primes p,, p; are distinct, the system of Diophantine
equations

pr-pir=c,
where ceZ”, has at most one solution. Hence |
' r—pir
y Yy J@(pA)a(p'A—E‘-T&)dA
1

pL#py r
jmﬂ

<Y f@@AnizmyA~dm»¢4

Py #pi ceR"
Imn .
< X f (pA)(f (PA- v/pl)dl!)d/l
PL#PY
mn Y L

since | 0(pA)@(p'A—w)dA decreases as each w; = 0 increases and decreases
1"’!"

as each w; < 0 decreases, 1 <j<n Thus by (7) and (8),

a ¥ Iy 9@@0@%~E1§E£}m
1

p *py v r
ymn

py#py NPt _P1ER]

< ¥ (‘2—Q)NP'1'(ZQ)"€ (200" ¥ 1.
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When p#p but p, =pi, then
a=min{|p—p: p;#pi, 2<i<m} 2 1.

Volume considerations give

G
JG@A—r)B(p’Awr’)dA “A\p/\a
= ()

mn

Hence

when r—r| < aGG+20),

otherwise.

Z ZZ jBn(pA—r)G(p’A——r’)dAQ(ZQ)Z" Z p{"a”ZZl
pL=p1 v ¥ ymn pL=r1 rr

where the third sum is over all ¥'e Z" satisfying [r— | < a(3-+2¢). Thus

(12 ¥ YT [0@A-nopa—ria
- py=p1 r ¥ pmn
<20 L pimaya(1+0@) <20 Y (1+0().
, P1=r1 - py=ri
By (10), (11) and (12),
| Vi (A)dA < py+0+20*Y Y. (1+0(0)
} -

_,-mn
< pn+ i (1-+0{1/log N))

by Lemma 2.
The above argument can be simplified when m > 2 since when m > 2
it follows from Lemma 9 of Chapter 1 in [12] that

(13) Y3 | ogA-nb(gA—r)dA = 22>
r ¥ mn
for any distinct g, ¢’ in Z™ Tt can then be verified that
uy=2"¢" 3 1-
. PESN
and that the second moment of vy satisfies -
[ vE(A)dA < py+pf.

mn
COROLLARY.

0% < py+0(ufflog N) = o{uf).
Proof. The variance o} satisfies
ok = [ ww(A)?dA—pf, g
. ymn

and py tends to infinity with N,
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Let )
Zy = {Ael™: vy(4) =0} = v51(0),

so that Zy is the set of points in ™ which are not close to any hyperpiane
H{p,r) in Sy. The relatively small upper bound just obtained for the
variance of vy implies that the volume of Z, is small.

LEMMA 4.
vol Zy < py'+0(i/log N) = o(1).
Proof. Since vy(4) =0 for each 4 in Z,,
) (VN(A)'—'HN)Z dA = [ pydA =y vol Zy.
ZN Zn
But
[ A~y dA < | (ry(d)— ) dA = o3,
Zn mn
whence

vol Zy < oj/uk

and the lemma follows.

This estimate for the volume of Zy is used to construct the regularly
distributed subset T(N) from the N-skeleton Sy. First another regularly
subset F(N) is constructed. Divide I™ into [N/169]™ congruent hypercubes
H with L{H)=[N/16¢]"" ([x] is the integer part of the real number x).

Shrink each hypercube H about its centre by 4 to get a new hypercube H’

with the same centre and with L(H') = +L(H). Llet there be M such
hypercubes H' whose intersection with each hyperplane H (p, ¥) from Sy has
an (m~ 1)n-dimensional volume strictly less than (L))" 9" when m > 2
and which are disjoint from Sy when m = 1. Let H” be an mn-dimensional
hypercube with the same centre as H' (and H) and with L(H" =3L(H)
=z L{H). Then since the hyperplanes in the N-skeleton are almost
orthogonal to each x, jaxis, 1<j<n, the distance of any point 4 in H"
from H (p, v} is at least § L(H)(1+O(N %) > g/N, whence vy(A) = 0 for all 4
in H". Thus

M-GLEH)" " < vol Zy =o(1)
or )
M = o(L{H)™™) = o(o/N)™,

It follows that there are (N/16g)™ (1 +0(1)) hypercubes H’ whose intersection
with a hyperplane H(p, r) from Sy has (m— 1) n-dimensional volume at least
L(H")®=bn Pick one such intersection (or ‘slice’ of H") J say from each of the
(N/16¢)™(1 +0 (1)) hypercubes H' and let F(N) be the collection of such J, so

:
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that the cardinality |F(N)| of F(N) satisfies
[F(N)] = (N/16gy™ (1 +0{1)} = L(H) ™ (1+0(1).

By construction the distance (in the Euclidean and the supremum
metric) from the centre of the hypercube H {or H') to J is at most 3 L(H)
=4[N/16g)]". Let cl H' be the closure of H' and for each J in F(N) let V
be the closed set given by

1 .
(14) Ve ldecd H: |[A—R SE(ZN)"“"’ for some R in J}.
Thus Vis J “thickened” slightly. Note that if J < ¢l H' < H, then V< H and
that since Je H({(p, r} lor some p, r, there exists a real matrix R in J with
pR =r. Because o> m/n and N is sufficiently large, the mn-dimensional
volume of Vis given by

vol V= (%(21\1)*“— 1)"(5 L) " (1+0(N7)

=g(N){1+O(N") say.

Let T(N) be the collection of the sets ¥, so that |T(N) = |F(N)| and

vol T(N)= 'S vol V = |F (N)| g(N){1+e(1))
VeT(N}
(15) = L(H) ™ g(N)(1+0(1))
(16) =(m2m+a+3)-nNrrz+n- oc-+-1)n—nn(1+o(1})_

The set T{N) is sufficiently regular and numerous to “measure” the volume
of a set. More precisely if the boundary of a set X has measure 0, vol X is
given asymptotically by
vol (X n T(N))
vol T(N) °

as we now show.
Lemma 5. Let the boundary of a given set X < I'™" be of measure (. Then

vol{X n T(NY) = vol X -vol T(N)-(14+0(1)).

Proof. Dissect I™ into [N/16g]™ hypercubes H with L(H)
= [N/16¢]*. Suppose Q hypercubes lie wholly within X and Q' meet X and
its complement "™ X. Then

Q- L(Hy™ < vol X <(Q+Q)) L(Hy™

and

0’ L(H™ = o(1),
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whence
vol X = Q- L(Hy™+o0(1).

The number of hypercubes which lie in X and contain a set V from
T(N) is O +o(L(H)~"™) and it follows that

vol(X v T(N)) = (Q +o0 (L(H) ™)) g (N)(1 +0(1))
vol X L(H)™™ g(N)(1+0(1))
vol X - vol T(N)-{1+0(1))

by (15).
When the set X depends on N the above argument breaks down but the
volume can be estimated in the following special case.

Levmva 6. Let C be an ma-dimensional hypercube with
Then

L(C)= N~&+D,

vol(C n T(N)} < vol C-vol T(N)+ L(C)m~ 1 N~te+bin
where the implied constant depends on ¢, m and n but not on N.

Proof. Since n <o—m/n and N is sufficiently large,

N~ < [N/16g] 1.

By dissecting I™" into [N/16¢]™" mn-dimensional congruent hypercubes H
with L(H) = [N/16¢]"! and using arguments similar to those in the
preceding lemma, it is straightforward to verify that the number of sets ¥
which meet C is

< (L(CYL(H)™
when L(C) > L(H) and

<1

otherwise. Thus since L(C)>N @t = (2N) et

vol(C m T(N)) € L(CY™ L{H)™ ™" vol V+ L(C)m~1n N~ Un
< vol C-vol T(N)+ L{C)m~ n py=l=tLin

by (13). o

This result is now applied to hypercubes C from % for which L(C)

lies in a certain range (recall that % satisfies (4), where r=(m—1)n+

+{m-+n)f(ec+1)—6). Let N, and N, be sufficiently large positive integers with
N, < N,. Write

E(s,7)

={Ce%: N;J*" ! < L(C) < N;*" .
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Lemma 7. For each © satisfying (4),
vol(E(s, 1} T(Ns)) < vol T(N-(vol T(N,}- Nyt~ D5y ym- s 1))
where the implied constant depends on ¢ m and n but not on N, or N,,
Proof. By Lemma 6,
vol(E(s, ) n T(N,)) < ¥ L{CY™-vol T(Ns)+; L(C)tm=lin. pj=(+ n
C

where the sums are over those C in % with N;*"! < L(C) < N7*"!. Now

ZL(C)mn = ZL(C)J+n—(m+n),‘(m+ 1344 < E_N—ra(a+l)+m+n--5(a+l)
r
c C

and

ZL(C)(m— 1n = ZL C)t—(m+n)/(m+1)+(i < E_Nl;n—l*n—é(a»k 1}
c

C

since & < I/n.
Hence

VO](E(S, r)r\ T(Ns)) << N;"+n_<a+ Lin—(at 1)6VO] T(Ns)+N;p+n——(a+ Din—(a+ 1)é
< vol T(N}-(vol T(N,)- Nm=far 15 . ym=(a+1)3)

by (16).
Note that the partial mn-volume ¥ L(C)™, where L(C)< N™°"1, is
comparable with the volume of T(N).
- Let
Gy = fAeR'"” 4 <3} =[-4 3™

and

f=(x+1)6~ny;

by the choice of 5, § is positive. For each s =1, 2, ...,
define G, inductively by

!

let Ny> N,_., and

G =(G,—y ~ T(N)\E(s, s—1),
- so that each G, is closed and G, =G,

_ Lemma 8. Let % be a collection of hypercubes C satisfying (4). For each
s=1,2,..., lef No, Ny, .. . N, be a sufficiently rapidly increasing sequence of
positive zntegers, with N, mfﬁczently large. Then for each s =1, 2,.

vol G, > 272 [T vol T(N}} > 0.

j=1
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Proof. The result is true for s = 1 since
vol Gy = vol T(N)—vol(E(1, 0) » T(N,)
= vol T(N)(1-K(vol T(Ny)-NGF+N7# )

where K is the implied constant in Lemma 6. As § > 0 and Ny and N L are
sufficiently large,

?

vol G; = Lvol T(N)).
Assume inductively that

vol Gy>27* TT vol T(N)).

i=1
By definition
Gor1 = (G TN DNEG+L, 5),
whence

vol Gyyy = vol(G, N T(Nyy )~ vol(E(s+1, $)n G, T(N, ).

Choose N sufficiently large so that

5—1
KN7# <2723 7 vol T(N,)

=1

where K is the implied constant in Lemma 6. Choose N, sufficiently large
so that

KN7# <2723 ] vol T(N,)
=1
and so that Lemma 5 implies
vol (G, » T(N,+y)) = % vol G,-vol T(N,, ).
Then by Lemma 6
vol Gyyy > % vol Gy vol T(Nyy ) — K vol T(Nyu ) (vol T(NJN;#+NJ#)

st+1
>4 vol G, vol T(N,y)—2%"2T] vol T(N)
j=1
s+ 1
> 2730 T vol T(N))
J=l

by the inductive hypothesis and the lemma follows.
Note that the factor of § introduced at each stage could be mcredsed to
any number 4 < I.
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Plainly Lemma 8 implies that no G, is empty for s =1, 2, ... But since
(v, is a closed and bounded subset of R™, G, is compact and so satisfies the
finite intersection property. By construction

Go2G, 2

so that 1G,: s=1,2, ...
each s =1, 2, ...

26,26, 2...

i is a collection of closed sets in Gy which satisfy for

5
GS = m GJ ?é (D,
j=1
ie. which satisfy the finite intersection property, Hence
ofi
i=1
Now , does not mect any hypercube C in the collection %, since if
AeCe %, then there exist positive integers N,_,, N, such that
Ns“atk1<L() Nsl ’

ie. CeE(s,5—1), whence A¢G,=2G,,.

Next suppose Ae G, so that A=G,, for each s=1, 2, ...
definition, Ae T(N,) for each s =1, 2, ..
R and vectors p in 2" r in Z* with

Ns <p < ZNS:

Then by
. Hence by (14) there exist a matrix

lpl =p P, M <ip,
satisfying

pR =7
and such that

1
|4—R| < —(2N)™*" 1.
m

(Note that R is in the N-skeleton Sy or more accurately in a hyperplane
H{p, r} in the N,-skeleton). Thus for each s =1, 2, ..
in Z™ and v in Z" such that

IpA—# = |pA—pR+pR—1 = |p(A—R)|
< mlp||4—R| < (2N,)"* < p7*
Therefore if AeG,, there are infinitely many ¢ in Z™ such that
|<qA)[ <|q™% ie. G, W

Since no hypercube C in % meets G, it follows that % cannot cover W,
whence from the definition,

dim W 2 (m— D n+(m+n)fa+1).

., there exist vectors p
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Since dim W(m, n) = dim W, this gives the
THEOREM. Let

W(m, n) =

When o > mfn,

1AeR™: |{gA}| <|q™* infinitely often).

dim Wim, n) = (m—)n+(m+mia+1)

and when a < mfn, W(m, n) has Lebesque measure 1, so thar dim W(m, n)
= mn.
Prool. Only the statement that W(m, n) has measure 1 when a < m/n
needs to be proved. If &« < m/n, then
2lg ™™ = e,
q
where the summation is over non-zero g in 2", and the result follows from a
general Khintchine type theorem due to Groshev and discussed by
SprindZuk [12].
The theorem still holds when the integral vectors g are restricted to
certain subsets @ of Z™ which are not too sparse or irregular. Given any
subset O of Z", write

Wo(m, n) = {AeR"": [{qA)| <|g™* for infinitely many g in Q).
Then evidently Wy(m, n) € Wim, n} and so when « > m/n,
(17} dim Wy(m, n) < dim W(m, n) = (m— ) n+(m+n)fa+1).

If the points in @ are asymptotically reasonably numerous and well
distributed, it can be shown by modifying the above method that when
o > m/n, the complementary inequality

dim Wy(m, n) = (m—1)n+(m+n)f(a+1}

holds, If the argument is to work for m > 1, a ‘coprime’ condition of some
kind is needed for the second moment estimate (Lemma 3). As an example,
the set  can be taken to consist of vectors g whose c‘oordmates are primes
in arithmetic progtessions, ic.

(18) W'(ma---,
where (4, k=1, 1 Ki<m N

To prove the l11corun in this case the integral vector p, introduced
above and satisfying (5), must be restricted further. Let p = (py, ..., pw) NOW

denote any vector in @ n Py,
Recall that r is any vector in Z" with || <4 p;. Then

Nm (m— 1)
Z ] = gm= L Nl l)r(n @(k;) (log N) ) +O(W)a

4m)E 2™ |gil e P, ¢, = a(mod k), 1 <i < m),
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where ¢ is Euler's function, and the mean of

vy(d) = Z ZB(PA_")

is given by
py = § vw(A)dA =Y Y 29" p7 (1 4+ O(N7Y)
me p o
=2"¢"Y (1+o{)}.
P

Since nnp > (m~—1)1, uy — o0 as N — o0,

The method used in the second moment estimate (Lemma 3) is
unaffected by the additional restrictions on the vectors p and it can be
verified that

[ (AP dA < uy+(20*(T(1+0 (1/log N < py+ud (L+0(1).

mn P
Thus the variance 6% satisfies
ox = o(uz)
and the volume of the set' Zy = {AeI™: vy{d) = 0} satisfies
vol Zy = o(1).

The construction of a regularly distributed subset T(N) proceeds as
before, with vol T(N) satisfying (15) and (16), and with Lemmas 5, 6 and 7
holding for T(N}). Let Gg = [—4, 41™ and for each s=1, 2, ..., let

G, = (Gs—l m T(Ns))\E(Sa s—1).

Then it follows as in Lemma 8 that

vol G, > 27 [] vol T(N)) >0,

=1

so that G, = M G, % Q. Again by construction G_ does not meet any C
s= 1

in 4. But G, < Wp(m, n) nI™ since if AeG,, then AeT(N, for each
s=1,2,... Thus for each s =1, 2, ..., there exist a matrix R and vectors p
in @ and r in Z" such that

pR=vr
and

1 e
|4~ R] <—(2N)™*",

whence
lpA—rf < |pl™"%
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and Ae Wg(m, n) n 1™, Hence % cannot cover Wolm, my nI™ and so

- dim Wy(m, #) = dim Wy(m, n) nI™ 2 (m— 1) n+(m+n)f(a-+1).

Thus by (17), the theorem also holds for Wy(m, n) when Q is given by (I8).
In particular the theorem holds when the coordinates of the vectors in
have prime modulus (see [8], p. 69 for the case m = 1); this allows the
simpler proof based on (13) to be used for m = 2.

When Q= (g, ..., qu)eZ™ g =a;(mod k;), L <i<m}, the cases
m=1 and m = 2 have to be considered separately. The first case has been
dealt with by Eggleston [8] (Theorem 7) or it can be proved by modifying
and specialising the above arguments. We have to show that the dimension
of the set

Wo(l, n) = {xe R": |{gx)] < ¢ * for infinitely many g = a{mod k)},

where Q = {geZ: ¢ = a(mod k)} and « > 1/n is (n+1)f(x+1). When m =1
the hyperplanes H{q, r) reduce to rational points of the form (r /g, ..., r,/9)
but the N-skeleton Sy must be modified slightly, as follows. Let b = (a, k),
the highest common factor of a and &, and write o' = a/b, k' = k/b. Let the
integer p now be a prime satisfying

N<p<2N and p=d(modk),
so that
N 1
21 s 0 ()
Next let |
Sy = {r/p: p, Ih <1p},
so that

' (2rt1_ )y Nt? ’ 1
ISyl =231 =(n+1)(p{k’)10g N(l+o(l‘38 N))

p ¥
For each N, the mean py of vy(x)=3 % O{px—r) is given by
p P
iy = 2" N" (@ () (log N))™ ' (1+0(1/log N))

and the variance ¢ = o{ud).

The construction of T(N) proceeds as before except that the ‘slices” V
reduce to hypercubes D(r/p, (2bN)™*"'), where r/peJ <8y, shrunk by an
additional factor b~*!. Thus instead of being given by (15) and (16),

vol T(N) = (2bN)™%* " L(H)""(1+0(1))

= (2n(+3 bl+rx)—nNn-i'l"(ﬂ+1)ﬂf"'?(1+0(1))
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and so is still comparable with the partial volume Y L{C)" where the sum is
C

over those C in % satisfying L(C) < N™®~ 1. The argument is not affected by
each hypercube in T[N} being shrunk by b*"! nor by the resulting smaller
constant factor in the volume of T(N). As before, it follows that the set G,
which meets no C in %, is not empty. Also G < Wy(l, ) nI" since as
before, given x in G, there exists an infinite sequence of vectors r/p such that

[x—r/pl < (2bNJ™* "' <(bp)™* 1.

But p=a'(mod k), whence there are infinitely many integers g = bp
satisfying ¢ = a(mod k) and integer vectors u= br such that

o

lgx—ul < g%

ie. xe Wo(l, mn " It follows that dim Wy(1, n) = {n+ 1fle+1).
When m 22, (13) can be used and p will now be a vector in Z£7
satisfying p; = a;(mod k), 1 <i<m, and satisfying

N<p <2N, |pt<N'7, 2<ism

Then the mean uy of vy{d), the number of hyperplanes H(p, ), where
Y < 4p,, close to A is given by

2m+n~1 N~(fn-1)z+nn(1’l ki)_l

i=1

iy = 27" (L+o(1)) = (1+0(1).
b

The second moment

[l dPdd=py+ T 2T | 0pA—n0(p'd—r)d

mn pEP P . v ymn
=uyt 2, (207
pEp
y (13), whence

§ vl A)zdfl uy+200" 3, 1= py+ux(L+o(l)

gmn nEp
and so
ok = o(u})-
'The argument now follows the same lines as before.

When the error term |g|™* is replaced by a function y: 2" — R which
satisfies ¥ (g, 0, ..., 0) = || and which is ‘small’ on average over the lattice
points {ge Z™: |g| = g} on a large sphere, the Hausdoril dimension of the set
corresponding to W is smaller and much easier to determine since it

coincides with a simple, general lower bound. In fact the dimension is that of
the case when m =1, augmented by (m—1)n, the number of degrees of

icm
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freedom. For example the dimension of the set

< [T (g) = for infinitely many ¢ in Z™},

i=1

{Ae R [{g4)]

where ¥ = max [|x|, 1} and « > i/m, is (m— ) n+(n+ 1)/(o-+1) (the dimension
when m = 1 is (n-+1)/(x+1) hy [8] or [10]). The same kind of result still
holds when instead of |{(x)|, a fairly general distance function F(x) (see

(H )" is considered
=1

{13] (the dimension when m = 1 is obtained in [3]). Tile reason for this might

be connected with a transference principle (see p. 69 in [12]).

We conclude with an application, suggested by Dr James Vickers, to the
periodic Kolmogorov—Arnol’d-Moser theorem on invariant tori in perturbed
systems (further details and references are given in Appendix-§ of [1] and in
[7]). .This theorem holds for sets of non-resonant frequencies (wy, ..., W
— w for which there exists a positive constant ¢ = c(w) and a number « > m
such that

§V.10.2 in [5]) is considered [6] or when F(x) =

]k0+k1 w1++kmwml> Cikl;a
for all non-zero k ={k;, ..., k,) in Z™ ky in Z, ie. such that
|e-w)] =

for all non-=zero k in Z™, where |k|; = k| +...+lkd. Since (I/mik],
< |k| < |k|,, the periodic Kolmogorov—Arnol'd-Moser theorem holds when
there exists a positive constant C such that

Ilfe - enl| > ¢ |k[1®

[k asdl > ClH ™

for all non-zero k in Z™ When o > m, the set © of such w has Lebesgue
measure 1 and the complement E(x) = R™\ {2 has measure 0, so that the
theorem holds for almost all @ in R™ Now it can be verified that for any
positive e, ‘

Wim, o+5) € E{x) = Wim, a),

whence
dim E(a) = dim W(im, o) =
for o > m. In particular when o =m+1,

dim E(®) = m—1/(m+2).

m—1+(m-+1fle+1)

We are grateful to Professor A. Baker for drawing our attention to
Groshevs results,
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Jloxamnast opefleMmuas TeopeMa I
MYJAbTHIVIMKATHBHBIX apH(MeTHICCKEY. (HyHKigmi

C. T. Tynarames (Tamkent)

Ononolt B3 OCHOBHBIX 3a7a49 BEPOATHOCTHOI TEOPHM YHCEeJ ABIIAETCA
U3y9eHHe JIOKANBHLIX IIPENEeNbHBIX BaKOHOB Ppacipelelenuda 3suadenuH

- apafmerndeckux Gymxumit. JIOKANBHBIM NPeRENLHEIM TEOPEMAM TTA -

THBHHX apuuerndeckux §ywruuil mocsAmeHa goeTaToumo ofmmpHAf
narepatypa. B cnydae MyIRTHINMKATEBHELX YVHRIMI 2TOT BOpoe mo 1970
TOLA OCTABAIICA HE HIYYEHHBIM, 8 B IOCTAeMHNE MOLH MHTEHCHBHO HCCIENY-
ercsi MHOTHMH apropamm (eM., mampumep, [41-[97).

B 1973 r. B. B. Jlepur u A. A. ¥Ogun [3] norasanu, 9ro ouA agau-
TEBHBX (YEKUME DORANBHEI 3aKOH PACHpeIeleHHA HA NMPOCTHX YKCTAX
MHOYIHDYET NOKANBHEIN 3aK0H DacHpeReNeHHs HA HATYPAIBHOM PAXNe.
enrpaneusmt pesynpratoM paforst [3], NOSBONAKINUM TOYHO CYRHTEH
0 DOBENCHHHE IIABHOTO WIEHA, ABIAETCA CHENYIOMAL

Teopema, ITyems w(n) — sewecmeenHan addumuernan Gyrryus ydoesemao-
DAKUAR YCAOBULM

1
1 ——— = l4-&
) =) p{N,w(mel 'ra,-l-(aN(.w)/(lnN) * }, efde >0, mE ISN(Q)I <

< -+ oc pasHomepHo no N;

2) He cywecnayern b = 2, h e N markozo, ¥mo

w=1 u Lip < 4005
kad(modh) PP DEE
3) o = Dy k<< +o0. '
k
To20a
1 A6 — BB :
1 1= { )——ex {__ (Fln, N ﬁ)}+o( 1 ),
oV 2nin, N 20%In, N In, ¥

BEN, p(n)=0

We B = } v,k A(8) — xonemanma, sasucauyjai om y u .
k
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