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Necessary condition for the existence of
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The purpose of this note is to establish the necessary condition

W Hp'—~—2m>2

i=1 Pi— i=1 Di—
for the existence of an incongruent covering system with odd moduli. Here
Pis -+ Pr are the (distinct) prime divisors of the various moduli (See the

Remark following the proof of the theorem.) This condition is compared with
that of Selfridge (in [4])
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—-1 > 2,
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which is a strengthening of the direct counting criterion

©) 1%

It follows from (3) that no such covering system exists with prime divisors 3,
5. From (2) we can extend this to divisors 3, 5, 7 and from (I) we can extend
this further to 3, 5, 7, 11. This was first proved by Churchhouse [4], who
conjectures the further extension to 3, 5, 7, 11, 13. Tt is worthy of note that

* the existence of any mcongruent covering system with odd moduli is still

uncertain.
We use the parallelepiped approach, already explmted in [1]- [3]
A product set, #, in Z" is any finite nonempty set of the form

R=Ryx... xR,

where R,, ..,., R, < Z. The set R, is referred to as the i-th projection of &,
denoted

Ri:nitg?), Igign .
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Let p,, ..., p, be distinct primes. We define A(n; py, ..., Pa) to be the family
of those product sets in Z" for which [%;(#)| is a (nonncgatlve) power of p;,
1<i<n For b=(by, ..., b)eN" the set

= fe=(cq, .., CHEZ O G <l sisny

is called the (n; b)-parallelepiped.
For me N with prime factorization.

n

m=[]p

i=1

define
= H(l—l»x,)“ 2 x;—1
where
Si—l
I
x‘.= J=£_1 ) 1$i€n.

-xn
j=0

THEOREM Let py, ..., p, be distinct odd primes and let & be the
(n3 (Pt ..., pa)-pavallelepiped. Let 7 < A(n; py, -« p.) be a family of proper
subsets of @ which cover @. If y(|A) <1 then ﬂ' contains two sets of the
same cardinality.

Proof. For % define the set of indices

in(%) = {i: p||A/16}}.
Let
L ={%cT: in(¥) =1}
and set Y =g\F For 1<i<n let
’ si—1
Vi = P?i“‘ Z i
=0

Observe that since p; 2 3 :
4 nzp
For e % set #\¢ is a product set. Thus
| A=\ U %= () (P\9)
Cel¥

(134

is also a product set. Let us assume now that the sets in  have distinct
cardinalities. Then for any i

(5) I (@) = |m (N (P\D) =] ) m(P\ D) =y
€ef Ces
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Qince the sets in & cover # we must have

(6) LG EDNELGER

CeHF' Ced
Observe next that for ¥e ¥, 1 £

fr (& N B)| = |m; () 7 (6]

isn

. |7 (), iein(®),
< minim @, im(9N) = 7S

using (4), {5) in the last step. Thus

#ed < 1 m@) T1 @) =19 [T in (@
iein(%) igin(%) iein (%}
<1 T Im@) it

ign(%)

Since we have assumed that no two sets in 9 have the same cardinality it
follows that for any I < {1,...,n} with |[[| 22

sl :
Yo i@ngi<IA[I(Y syt =1H]]x
el il j=0 ief
in(#y=1
Thus
Y |R G | 2 T1x =124 (7.
Eeds Ic wn} Tel

£

Now it follows from (6) that ¢ (&) = 1
Remark. Since x; < 1f(p;—2) it follows that

W (m) < H Z Wml
i=1 pl
In particular if » < 4 then ¥ (m) < 1. (Simply check the worst case — where

the primes are 3, 5, 7, 11.)
Let O0<ry, ..., <1,
development that

Then it follows from the power series

_Z
(7 < 24 Z
[Ta-=r)

1—ri

. o0
(Use the geometric series 3. r*=(1—r)""! and compare the expansions on
k=0 '
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both sides of (7) term by term.) Now wiite

5

Thus ¢ (m) <1 whenever

This is the condition of Selfridge (in [4]). The ineguality (7} can also be used
to show that

explaining why (1) is stronger than (2).

‘CorOLLARY. Let G be a finite nilpotent group of odd order, and let ¥ be a
family of cosets which cover G. If G¢ % and Y(|G|) <1 then & contains two
cosets of the same order.

Proof. As is well known (e.g. Rotman [5], p. 120), G is the direct
product of its Sylow subproups,
GEP]_‘X...XP",

where P, is a p-group. We can thus identify G as a parallelepiped in
A(n; pys..s po). Furthermore, any subgroup H = G is of the form ‘

H=Q1 X...XQ,,

where each , is a subgroup of P,. This means that each coset of G can be
identified as a product set in A (n; py, ..., p,). Hence the desired resuit follows
at once from the theorem. =
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