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I. Introdnction. Eet d > 2 and my, ..., my_; be non-zero integers. Let
Fos .-s g~y be integers with r; = im;(modd). T: Z— Z is defined by

(1) T(x) =% if x=i(modd) (0<i=<d.

Certain cases of this mapping have been studied by Matthews and
Watts in [2] and [3]. Only the case {m;, d) =1 for all i was considered in
[2]. In [3] this was extended to (m;, d%) = (m;, d). Also in [3], they used
results on Markov matrices, without observing that there was an actual
Markov chain involved. :

In this paper no restriction will be placed on the m,, except that they be
non-zero. Tt will bé shown in Section 4 how the results of Matthews and
Watts are derived from the general theory.

Some examples are presented in Section 6. Example 3 illustrates the
heuristic technique of Section 5 for reducing infinite Markov chains to finite
ones. This serves to show that the infinite case is not just a curiosity, and
useful results can be obtained.

Acknowledgement. I am grateful to Dr. K. R. Matthews for introducing

me to the problem, and for suggesting Example 3, which, through attempts

to explain it, led to the method outlined in Section 5.

The Aim. Given a modulus m > 2, the aim is to predict the limiting
frequencies

lim fNj’
N—on
where
1
(2) . I :ﬁcard{n; 0<n< N, T"(x)= j(modm)},

for trajectories {T"(x)},»o Which are not eventually periodic; these are called
divergent trajectories.
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Under certain fairly general conditions, values will be found for the
related limts (see Theorem 4)

1 N .
lim ﬁ Zl Phij

N n=

with

3) Puij = ;;; card {x: x=1 (modm), T"(x)=j{mod m)}
where card_,.(4) denotes the number of residue classes mod md" contained in
4. {Compare equation (1.4) in [3].)

To permit the application of the theory of probability, we put [ = [m, di
and extend 7'to a mapping from the set of l-adic integers, Z,, into itseif. The
extension is easy, being defined expressly by (1).

Markov chains {X,} and {¥,} are defined over the probability space
(Z, P) where P is the Haar measure on Z,. {X,! and {Y,} are related by
Theorem 3 which implies that it does not matter which of them is vsed. (X}
is to be preferred in practice so as to reduce the mumber of states to be
considered, while {Y¥,} is more useful for most theoretical purposes.

Resulis on [-adic integers are transferred to rational integers by means of

Convecrere 1. Any condition on the distribution of iterates which has
probability zero, does not vccur in divergent trajectories.

Corollaries of this conjecture include the following:

(i) If a divergent trajectory enters a positive class then

lim J{}\u = Py
N-—eo
where p; are given by (29) (see Theorem 3).

(11) If the Markov chains are finite, every divergent trajectory enters a
positive class. (See Theorem 6.)

- (i) Following on from (i), take m = d. Suppose a trajectory enters a

positive class and

d~1 Py

m
1<,

4 v

J=0

Then the trajectory is eventually periodic. This follows from (61} of
Lemma 3.

2. Notation. (¢, b) and [a, b] denote respectively the greatest common
divisor and the least common multiple of the integers a, b.

B(j, M) is the residue class {xe Z,; x =j(mod M)} (MeN); # is the set
of all such residue classes. '
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For non-zero integers x, the functions C(x) and D(x) are- defined by:
CxleZ, DXeN, CHD(x)=x,

with (C(x), d} =1 and D{x) a divisor of some power of d. For example, if
d =10 then C(—360) = —9 and D(~360) = 40.

let ¢ = Cim) and d;, = D(m;) (0 < i< d).

The term trgjectory will be used interchangeably to mean a sequence
1T"(X)}az 0 for an integer starting point x, or the corresponding sequence of
sets (X, lazo OF (Yhuzo

Notation for Markov chains. The usual notation for conditional
probabilities will be used, wniz.

PiAn B)

If a Markov chain {X,] has stationary transition probabilities

Pap = P(X,4 = B|X, = 4),
the corresponding symbol pf} will represent the n-step transition probability

Pih=P(X, = B|X, = A)= ) z Pacy Pcycy -+- Po,_ 18-

A state will be called positive if it is recurrent (persistent) and has a finite
mean recurrence time. A class is positive if every state in it is positive. A
positive class will commonly be denoted by %. The limiting probabilities
corresponding to a positive class % are the limits

hi
lim 1 Y i (Be9)
N—~m N n=1
(see Chung [17, p. 32).

A Markov chain is ergodic if its entire state space consists of one
positive class.

A state that is recurrent with an infinite mean recurrence time will be
called null; a state that is not recurrent will be called transient.

A Markov chain is finite if it can take on only a finite number of states,
ie. if its state space is finite.

3. Construction and application of the Markov chains. If B = B(x, Me #

et

(5 G(B, y) = B{y, [M. 1]},
and i d|M,

(6) H(B)=RB ( T{x), M%)

where x = i(modd) (0 < i< d).
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Define the sequences of random sets {X,},»0 and {¥,},., as follows:

Y Xo =2,

®) Y, = G(X,, T"(x)),
and

(9) Xppy = H(T).

(7) is an optional condition; it serves merely to define the sequences uniguely,
and will not always be assumed.
For 4, Be#? let

0 _JP(Bl4) if B=G(4, x) for some x,
(10 B0 otherwise.
As an example take
) x/2 if x is even,
(an ) “{5x+1 if x is odd,

m==3, and x = 7. Then /=6 and the trajectory is {7, 36, 18, 9, ...}. X, = Z,.
Y,=B(1, 8, X, =B(0,6) =Y, X,=B(0,3), ¥,=B(0, 6, X;=5(0,3)
}rfi = B(Sﬁ 6)! ete. EXOYO = 1/63 lel'l = 11 ZXzYZ = 1/2 = 2)(3)’3’

We now list the main results of this section, before setting down their
proofs together with some lemmas.

Tugorem 1. {X,} is an infinite Markov chain with stationary transition
probabilities

(12) Pap = 2 Z4c-
HC)=B

The pu; of (3) are given by

) Py = Y s P(BG, m)|B).

Be@
TaeorEM 2. {Y,} is a Markov chain with transition probabilities
(14

_ k=0 B<B{j,m)

d4B = Zyisp,
and
. n -1
(15) Phij _m T Z Z qg?i+km,i’)8-

THeoreM 3. For n 2 1,

(16) ' b = % p(Hn(:i)lc) “ch

icm
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and
(17 P=Y 2 zacdf".
C HiD)=B

If € is a positive class of {X,} with limiting probabilities ny then
(18) % = {Bec®; 245 # 0 for some Ae G}

is a positive class of {Y,} with limiting probabilities

(19) Qn = E g Zepsy

Ce¥

and H™'(%)—%' contains only transient states of {Y.}, all of which lead into
%" If %' is a positive class of {Y,} with limiting probabilities gy then

(20 %= H(€)
is a positive class of {X,} with limiting probabilities
(21}  mp= Y g

Ce?®”’

H(C)ﬂ"B

THEOREM 4. Suppose {X,} and {Y,} enter positive classes with probability
one. Then

1 ,
(22) lim N Y Puij =2 faims &, s P(B(, m)B)
N-ow n=1 € Be¥
m Ym-~1 : . ,
(23) = T Z Zfﬁ(iﬂm,n@' z [15.7)
k=0 ¥ B’
B < B(j,m)

where p,; are as in (3), the sums are over all positive classes ¢ and %
respectively, and ‘

(24) Jue = P({X,} enters €|X, = B),
(25) fie = P(Y)} enters Y, = B).
If 1X,} and {X,} are ergedic this reduces to

1 & .
(26} lim N Y Puy =2, Ty P(B{j, m)B)

Ne—oo n=1 B
(27) = ) o

B B(j,m)

This result corresponds to equation (1.4) of {3].

Remarks. If {X,} and {Y,} are finite Markov chains, the condition for
Theorem 4 is automatically satisfied (see Theorem 6).
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If all the positive classes are aperiodic, the Cesaro limits in (22) and (26) for example u = d"[K,, ..., K,]. Let
may be replaced by ordinary limits. This was observed by Matthews and ; : . .
Watts but they were unable to prove it. (36) T'xo+w—T(x) =1, K; (0<i<n—1)

THEOREM 3. If ¢ and %' are corresponding positive classes, as in Theorem for integers vy, ..., v,_,;.
3, then : : When i =0 (36) is
(28) P(lim fy; = p;|{X,} enters @ or {¥,} enters ¢')=1 U= Ko,

N-ron <o
where fy; are given by (2), and
oy (37) volu.
(29) py=), 7p P(B(/, m)|B) = Z Op-
e 5 25Gm) If 1<i<n—1, (36) implies

This proves Corollary (i) of Conjecture 1. 0 K; = T (xg+ 1) — T (xo)

Tueorem 6. If {X,) and {Y,} are finite Markov chains, each enters a A . _
positive class with probability one. : :—I;“—l[T THxe+u) - T (x0)] by (1), (34) and (35)

This proves Corollary (ii} to Cenjecture 1. '

Remark. The case where {X,} and {Y,} are finite is very important, =Tié;’~v,-le,-_1.

Indeed, it is unknown if there is any non-finite example in which {X,} and
{¥,} enter positive classes with probability 1. . d
All cases considered by Matthews and Watts correspond to finite From (6) and (33), K, = [Ki_l_iL:L, []_ “Therefore

Markov chains (see Section 4). d
The proofs, | _ K., T{‘f’“
Lemua 1. For n 20, : v = p Vi1,
(30) P(XOEAO: Y():BOa--»vXn:An: Yn=Bn) _ i~1 d
=ZA"B"P(XD :AOJ YOmB(): Y anAn) and
Proof. (30) certainly holds if the event D(Ki—l)iiiid;l
(31) Xo=4dy, Yo=By ... X, =4, Dy = D{v;—4).

has probability zero. Suppose then that {31) has a positive probability. Let

d;
NECRE Y
x = xq satisfly (31). Let '

(32) B , Hence
;= BT (xq), M), . ‘
' (7Gxl M) (38) D{w)D(v;-y)-
{33) ' K, =M, 1]
and - Combining (37) and (38), we have _
(34) T'{xo) = j(modd) (0 <j < d), :: (39) D (0 )ID(@y—3)| ... D (vo)| 1.
for 0gign ' ; Put

Choose ueN such that C{u)=c¢ and x = x,+u satisfies u
) ) : ’ 40 U= .
(35) T'(x) = T'(xo}modK)) (0<i<n—~1); “0 D(v,-,)
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Since by (33) dIK;, (36) and (39) imply that x = x,+ U satisfies (35). By (36)
and (40),

™ ! (x0+ U)_ ™" ! (XO) = C(Un— I)Kn—- 1:

50
my

21K,y =wM, by (6)

T{xo+ U)=T"(xo) = C(va-1)—

where w = C(v,-;) C(m; _,) satisfies

(41 (w, d) = 1.
Furthermore,

(42) T"{xg + alU) — T"(xp) = awM,
for all acZ;. '

For ¥, equal to B, B, must be a residue class mod K, which is
contained in A,. Then

P{¥, = B,Jx = x¢(mod U)} = P{T"(x)e B,|x = x,(mod U)}
=MJ/K, =245 by (42) and (41).

That is,
(43) P{Y, = B,, x = xo(mod U)} =z, 5 P {x = xo{mod U)}.

Now write U = U(x,) and define the relation ~ on the x which satisfy
(31) by
(44) Xy ~ Xg<>X; = X {mod U(x,)).
~ is easily shown to be an equivalence relation, since U (x;) = U(x,) if x,

~ X3. (30) then results by summing both sides of (43) over x,, taking one
value from each equivalence class.

_ Proof of Theorems 1 and 2. For n2{,

P(Xo= Ao oy Xust1 = Aps1) = Z P(Xo=Ag, ..., Xy =A, ¥, = B)

HEB) = Ay 3 )
using (9)
= E zA,,BP(X0=A0= ey Xy Ay)
HBy=dAp 4
by Lemma 1

=pAnAn+1P(XO = AO! vy Xn mAn).

Thus {X,} is a Markov chain as stated.

iom

P(Yo = BQ, -

frnxl,

= ZH(B,,_I)B,,P %= By, ...

A Markov process

- Y, =B,
ZP{YQ:B(), o

s Yn—l =Bn—1: X, :I{(Bn—l): Yn =Bn}
s Yn-1 =Bn—1:Xn=H(Bn—1)}

133

by Lemma 1

=g, 5, P(Yo =By, ... Y, = B,_,).

Therefore {Y,} is a Markov chain with transition probabilities (14).

{43)

it follows from (3)

that

Puij = P {T"(x) = j{mod m)| x = i (mod m)}

B =B(j,m)

-3

Y P{X,=4, ¥,

B cB(f,m) AeR

= BIX, = B(i, m)}

Y Yz P{X,=A4X,=B(i,m} by (30)

BcB(jm) A
=Y. P(B(, m} A) pltma by (10).
A
This is (13).
From (45),
Ym—1
pm'.!m Z Z P{YO=B(I+km: D: Yn=B|XO$B(ii m)}
B<B(m) k=0
m—1 m
=3y ¥ T‘p{yn = B| Yy = B(i+km, )}
B<Bim k=0 *
m Wne— 1
*T & BZ(:’ )qg?wkm.nn-
d = a2 Ji{J,m,

This proves (15).

(46)

Lemma 2. If n 2 |,

P(X, = B|Y, = A) = pfia}.
Prool. (46) holds for n =1 (pif} == 8,p). If it holds for some n then
P(YQ)WA,X,-,.'.lﬁ-B)ﬂZ Z P(YC}:A:Xn:CaKAED)

C HD)=B

=X X

C HD)=8

ZCDP(YO = A, Xn = C)

by (30).
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Hence

P(Xpy =BY=A)=Y Y zpPX,=Cl¥%=4)
C H(Y=B

=Z Yoz P(ﬁ(l)lc) by (12) and {(46)
C

= P%?A)B-
Thus (46) is true by induction.
Proof of Theorem 3.

gy = P(¥, = Bl¥, = 4)
=), PX,=C, %, =8% =4
¥

=) 2cp P (X, = C|¥ = 4} by (30)
c

=X Zea Pt by (46).
C

Pk = P(X, = BX,=4)
=2 Y PY,=C, Y, ., =DX,=A)

¢ HD)=B

O

C HiDy=B

24 P{Y, o1 = DYy, = C),

which gives (17).
Now suppose % is a positive class of [X,} with limiting probabilities g,
so that

1 N
47) lim — Y ph==n, if A, Be%.
N-reo N n=1
Let %’ be given by (18). 4" < H™ ' (%) since % is closed. It can be seen from
(16) that for Ae H™* (%), ¢{y can be non-zero only if Be%'
From (16),

. 1 N 1 N i
(48) = 2 4= ) = ¥ thnlzes (A Be).
N n=1 CEWN n=1
Noting that the sum over C is finite, we can let N — oo to get
1y |
(49) m - Z q%h = Z TcZop = @
' N—w n=l Ce¥

and so gy are the limiting probabilities of %"; (49) also confirms that %’ is a .

positive class, since gy > 0.

icm

A Markev process A 135

Next suppose %' is a positive class of {¥,} with limiting probabilities 05
Let % be given by (20). For 4e¥, z,- can be non-zero only if Ce %', since &'
is closed. Then similarly g{; " can be non-zero only if De%’. Hence by (17,
Pl can be non-zero only if Be®; that is, % is closed.

Taking Cesaro limits of (17) for 4, Be%,

1 N
: — {m _ .
lim W Z Pig = Z E Zaclp = Z @p = Tp;
N-m IV 2y Cet"  De’ HDy=8
H(D)=B

again, this verifies that % is a positive class,

Proof of Theorem 4. It follows from Theorems 3 and 4, p. 31 of [11
that :

N )
(50) lim N z PYh = fae gy if
n=1

N~

Be¥.

Also, by Theorém 1, p. 33 of [1],

(51) Z TEB L 1:
B
$0 that
(52) Yfae Y ma=1.
13 Ba#'

(22) results by taking Cesaro limits of both sides of (13), applying (50)
and (52).

The proof of (23) is similar, taking Hmits of (15).

Proof of Theorem 5. By Corollary 1, [1], p. 87,

(53) P(lm fyg = gg| { Y} enters %) =1
No=oo
for all Be %', where
i .
(54) -NB:ﬁca‘rd{n;0<n<N,Yn=B},
50 that
(55) fo= 3 I

Bed
BB

By using (53) and (55), with the analogue of (51) for {¥,}

(56) | ¥ oes=1,

Be¥’
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it is proved that
P(lim fiy= Y edi¥} enters ) =1.

N-+ren B
B < B(j.m)

By (19} we also have

Z QB"“"“Z LT Z ZC‘B=Z7CCP(B(1.=m)IC)’

B’ Ce B Ce®
B=H(,m | B<B(.m)
using (18).
This completes the proof of Theorem 5.
Proof of Theorem 6. Let 2 be the set of positive states of {X,}. For
any initial state A we have ([1], p. 31}

(57) lim p4§} =0
if B¢ . Hence
lim P(X,¢ Xy =A)= 3} lim P(X,=8BX,=4)=
=0 Bed# n—eo
that is
(58) lim P(X,e P Xy=A) =1,
n—ron
S0
(5% P(X,e# for somenXy=A)=1,

since 2 is finite.
Lemma 3. If {T"(x)} is a divergent trajectory with T"(x) = i,(modd)
(0<i, <d) then

n—-1 ; 1/n
(60) T~ TT |2 as  n— o
k=0 | d
and
n-l 1fn
(61) liminf J] -*| = 1.
| R o) k=0

This proves Corollary (iii) to Conjecture 1.
Proof. By considering only the tail of the trajectory, we may assume
that T"(x) is not zero for any n. Then it is easily proved by induction that

. g .m =
(62) T7(x) = — et I:I { m}

icm
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Because |T*(x)| —» w0 as k — oo,

i as  k
e =3 8 ~ 00
mlk Tk(x) ’
80
nI-:Il rik 1/n
lim 1— =
n—reo k=0 my, TH(x)

Therefore (62) implies (60).
(61) follows immediately from (60), since |T"(x)| = 1.

4, The results of Matthews and Watts.

TueorEM 7. If (m;, d%) = (my, d) for all i (so that d,|d), the Markov chains
are finite and Y, is a residue class modl for all n.

Most of the results of [3] now follow.
Proof. By (7) and (8), ¥, is a residue class modulo I ¥ ¥, is a residue

class modl, X, ., is a residue class mod[%‘ for some i. And l%‘l since d;|d.

Therefore Y,.., is a residue class mod . Thus the theorem holds by induction.
TueoreMm 8. If (my, d) =1 for all i (so d; = 1),

(63) P({ T"(x)} is uniformly distributed mod d* for each o = 1) = 1.

This was proved in [2] (Theorem 3) using ergodic theory. It is worth-
while to give a proof via probability theory.

Proof. Take m=d* Y, is a residue class modd*, by Theorem 7. The
resuit is proved by showing that

(64) ¢ =1/
for all A and B. Then
1
¢ =3 dqth = 7
[y

so {Y,} is ergodic with limiting probabilities 1/d®. Thus (63) will be true by

Theorem 5.
q% = ): Gac, dcicy ey 1B ™ Z Epaycy ZHC)Cp ~« SR(C, - ()B-
C.’l.....Cu,_..l .
H(A) and H(C,) are residue classes mod d*"*, by (6) since d, =1 for all i
Therefore

) |
= card{(Cy, .. Cums Co S HA), € SH(C), ., B HCor ).
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The condition C; < H(4) gives d distinct choices for Cy, all congruent
modd*~*, Similarly there are d distinct choices for C; corresponding to each
value of C,_,. This gives d' distinct choices altogether for C,, all congruent
modd ' 2<giga—1)

Of the d*~* possible vatues of H(C,_,), exactly one will contain B. Thus
(65) becomes

as required.

5, A method for calculating the limiting frequencies. Let D be a subset of
# which confains Z; as an clement.

If B=B(x, M) and IM, let A = H(B) minimize P(4) subject to the
conditions Ae @ and H(B) ¢ A. Define the sequence {X,},50 by

(66) o =2y,

4

(67) £ = H(G(X,, T"()),
with ¢ as in (5).

{X,) is not in general a Markov chain; the essence of this method is
that good approximations are obtained by treating it as a Markov chain,
The approximations are thought to become exact in the limit  — #, ie. as
% increases to include every element of # (see Conjecture 2 below, and
Example 3).

Let

(68) Pan= 2, Zac
Cedt
_ HC)y=8
for A, Be . Let #, be the limiting probabilities of {X,} using these
transition probabilities, a different set of i corresponding to each positive
class 4 of {X,}. Let

© B =3 %P(B(,mB).

Beé

CONIECTURE 2. In the limit & — @, a one-to-one correspondence emerges
between classes of (X} and classes of {X,}. If € is a positive class in {X,} and
in {X,), then

wu‘h p; as in (29). If % is a positive class in 1% ot Only, then lim p; still exists,
G i
and (28) still holds with Py equal to this limit.

iom
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6. Examples.
ExamprLE 1. .
3x—1 x = 0{mod 3),
(70 T{(x)= { (x—16)/3, x=1,
(—4x-7Y/3, x=2,

m =2, Use the Markov chain {X,} defined by (7)~9). Possible transitions
are shown in Figure 1. The Markov chain is finite, the only states required
being B(0,2), B(l,2), B(56), B(818) and B(17,18) (B(0,1) is omitted
becuase it never re-occurs,). The matrix of transition probabilities is

1 0 0 4
0 2 0 4+ 0
(72) - P=l0 1L 0 0 0]
00 1 0 0
0 0 1 0 0

The first and last states are transient; the limiting probabilities of the states
B(1,2), B(5,6) and B(8, 18) are ¢, + and %. B(l,2) and B(5,6) are both
contained in B(l,2), while B(8, 18) < B(0,2). Therefore p, =2+% =%, and
Po = $(p; as in (29)).

Conjecture 1 (ii) predicts that every divergent trajectory will enter one of
the states B(1,2), B(5, 6), B(8, 18). Conjecture 1(i) then says that the limiting
frequences of even and odd iterates will be + and ¥ respectively.

(13) also gives exact values for the numbers

1 , - .
(73) Puij :wé—gcardz.a,,{x; x = i(mod 2), T"(x} = j(mod 2)}
in terms of the elements of P"(i,j=0, 1). (26) gives
(74J Proos Pnio %:
(75) . pnOl: Pnin —}% as n—» 00

(The Cesaro limits may be omitted since P is aperiodic.)
B(O,1) =~ [ B(O,6) > B(17,18 = B(5,6)

B(L,6) 5 B(1,2) =% [B(L,6 & B(1,2
B(2,6) 3 B(1,2) B(3, 6) ﬂ» B(3, 18)

) B(5, 6) & B(1,2)
B3, 6 2 B, 18 5 B, 6
B@4,6 5 B(0,2) £ B(O 6) —> B(17, 18)
B(5, 6 5 B(1,2) B(2,6) 5 B(1,2)
UB@,6 2 B(0,2)

‘Fig. 1. Finding transition probabilities for Example 1

4 ~ Acta Agithmelicn XLVIL2
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ExampLE 2.

(x/4, x =0 (mod 8),
(c+D2,  x=1
20x—40, x=2
(x—3)/8, x=3

| 20x+48, x=4
(B3x—13y2, x=35
(11x--2)/4, x=6
L(x+1)/8, x=17,

m = 8. From Figure 2 it can be seen that {X,} has oniy the 5 states
B(0,1), B(1,4, B©O,2, B(O,8), B(,32),

(76) T(x)=

and the transition probability matrix is

i 1 1 1 1
4 4 ra g 3
| .
1 1 1
7z 4 4

1 .

I

where zeros are represented by dots. B(0, 1) is transient and there are two

positive classes %4, = {B(1, 4} and %, = {B(0, 2), B(0, 8), B(0, 32)!.
Conjecture 1 (i) predicts that every divergent trajectory enters either %,

or %,. For %, we have p, = p; =}, with all other p; = 0. We then calculate

@@V = /32 < 1,

so by Conjecture 1 (iii), every trajectory which enters %, should be eventually
periodic. ‘
The limiting probabilities of %, are %, 4, 4, respectively.

B(0,1) =Sw [ B(0,8) % B(0,2 =%z (B0, 8 3 B(0,2)
B(1,8) & B(1,49 | B8 3 BO,32)
B(2,8) & B(032) B4, 8) 4 B(0, 8)
B(3,8) & B(0, 1) B(6,8) 4 B(0, 2)
| B9 % B0,32) & B@ 3
B(5,8 = B(1,4) =Spr (B(1,8) 5 B(,4)
B(6,8) & B(0, 2) B(5,8) 3 B(1, 4

L B(7,8 £ B, 1

Fig. 2. Transition probabilities for Example 2
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Po=%9+3+i =% and py=p,=ps=i%=3 Now apply
Conjecture 1(i). Therefore we cxpect all divergent trajectories to exhibit
1
7“1

frequences %, 4, ¥, of iterates congruent to 0, 2, 4 and 6 respectively

modulo 8.
ExaMrLE 3.
40x/3, x =0(mod 6)
(Sx—1)2, x=1
-2 =2
77 T(x) = (Tx—~2)/6, «x

35x/3, x=3
(Bx—2)/3, x=4
(5x—1)/6, x=35,

m = 6. Here the Markov chain is infinite and all states appear to be
transient. We approximate it using the method of Section 3. Take

{78) 9 = {B{x, 2°3"; a< 4, xeZ).
As shown in Figure 3, this results in just 9 states
B0, 1}, B(i,2), B(2,3), B(0,4), B(5,8), B(#,8),
B(8,12), B(0, 16), B(10, 16)

with transition matrix

11 1 1 1
3 % % £ F
1 I 1
KR 1
1 . -
1 1
3 . 3T
1 1 1
373 5 .
i 1 1
. ) 5 T
1 ..
o 1 1 1
5 3 3
1 1 1
3 3‘3’J

This matrix is ergodic and .its vector of limiting probabilities is

1
[84 63 35 30 54 36 18 108 108].

536
Then by (69),
[ U U B 1 27
F i | B e o A0 e 3G oo e ~1 = = 2014
Pa 536(68 3303304510847 08) 134 = 2013
53 '
"= '5“3"6 = 0989,
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p, = "1”2687’12 = 2677,
7, :553% — 0989,
Fa = 1‘% 2015
Fy = 115‘712 1315,

We expect all divergent trajectories to have limiting frequences of
approximately these values. If Conjecture 2 holds, the approximations will
approach the actual limiting [requencies as we take

(79) 9 =1{B(x,2°3"); a < A}

and let A— w.
After only 1000 iterations, starting at x = 53, the frequencies are

2110, 0910, .2670, .0950, .1980, .1380.

B0, 1) =Sf BO,6 3 B©, 16) =% (B0, 48) I B, L6)
B(16, 48) & B(10, 16)
B(32, 48) 4 B(5, 8)

 B(1,6) 5 B(2,3) =% (2 6 3 B, 1)
B(2,6 3 B, 1) B(5, 6) 5 B0, 1)

] B3,6 5 B,y =i B(l 6 & B2, 3)
3(3 6 A B(l 2)

B(0, 1)
B4, 6 2 5 BO0,16 = [B0O, 43) LA > B(10, 16)
L B(5, 6 2 B0, 1) B(26, 43) 2 B, 8)
B(6, 8) —&W{B(s 24) f’; B(0, 16). B(42,48) & B(0, 16)
B(14,24) 5 B(0,4) % (B, 12) ii B(0, 16)
[B(zz 24y £ B0, 16) 4 12) 3 B(10, 16)
B(5.8) =S%»(B(5, 29 2 B(0,4 8,12 5 B(1,2)
B(13,24) 3 B(8, 12)
B(21,24) 2 B(5, 8)

Fig. 3. Transmon probabilities for Example 3
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