Conspectus materiae tonii XLVI, fasciculi 2

Pagina
K. Thanigasalam, Improvement on Davenport’s iterative method and new results
in additive number theory 1I. Proof that G(5) < 22 . 91112
J. H. Loxton, Seme problems involving powers ol integers 113-123
G. M. Leigh, A Markov process underlying the generalized Syr'lbusr. dlgorlthm 125-143
" R. Lidland G. L. Mullen, Commuting polynomial vectors over an integral domain  145-157
P. G. Schmidt, Zur Anzahl quadratvoller Zahlen in kurzen Intervallen . 159--164
H. Delange, Sur les fonctions multiplicatives 4 valeurs entiéres , 165-195
J. C. Douoai et C. Touibi, Courlbes définies sur les corps de sérics formcllcs et 101
de réciprocité (Acta Arithmetica 42 (1982), p. 101-106) (Errata) 197
La revue est consacrée & la Théorie des Nombres
The journal publishes papers on the Theory of Numbers
Die Zeitschrift verdffentlicht Arbeiten aus der Zahlentheorie
JKypHAA [OCBSIEH TEOPHH YHCEN
L'adresse de Address of the Die Adresse der Anpec penaxumu
la Rédaction Editorial Board Schriftleitung und " kXHHroobmena

et de I'échange and of the exchange des Austansches

ACTA ARITHMETICA

ul. Spiadeckich 8, 00-950 Warszawa

Les auteurs sont priés d’envoyer leurs manuscrits en deux exemplaires
The authors are requested to submit papers in two copies

Die Autoren sind gebeten um Zusendung von 2 Exemplaren jeder Arbeit
Pyxonwce crarelf psmaxnms NpoCHT upeAnarath B ABYX SK3EMILIAPAX

© Copyright by Panstwowe Wydawnictwo Naukowe, Warszawa 1986

ISBN §3-01-06641-5 ISSN 0065-5036

PRINTED IN POLAND

W R O C L A W S5 K A D R U K A R N I.A4A N A U K O w a

icm

e o ngnn

.

ACTA ARITHMETICA
XLVI (1986)

Improvement on Diavenport’s iterative method
and new resuits in additive number theory II
Proof that G(5) < 22

by
K. TaaNicasaLAM (Monaca, Penn)

1. Introduction. Combining the proofs in Part I of this series of papers
{(which will be referred to by [1])(}), together with some additional
arguments, it will be shown here that G(5) < 22.(*) The result H (5) < 23 would
follow as indicated in- § 17 in [1]. Before using the new method in [1] for
obtaining better bounds for «, in US(N) > N* " with 5 > 7, we introduce
some new arguments for retaining the use of admissible exponents. In doing
so, the bounds obtained for &, and o will be slightly weaker than those
given by Davenport’s method.

Most of the definitions and lemmas will be referred directly to [1]. We

recall the following definitions. With P, = P,
(1LY f=fl@= ¥ e fi=fild= 3 elxx.

P<x<2P Py < €2P;

_ Write (uniformly)

(12) Fl=y Y e(4,(Ha), F(o= Z Y.y e(zlf,rlw_,tr(x") o)

T p X

(where 1, t;,...,t and x are taken in appropriate intervals).
Most of the preliminary results in this paper will be used for k = 6 also,
and, as much as possible, the arguments are given with general k.-

3. Prelinuinary resufts, The next lemma will be used repeatedly.
LemMa 2.1, Let # be a subset of {1, ..., s}, and

1
21 | M= [y .. Ji do,
4]
L 5 . 1
(22 My =TT £ de. My=[1fs ... L2 dor-
, 0 ii;%. 0. e

(Y Acta Arith. 46 (1985}, pp. 1-31. : _
(%} For the later improvement G(35) € 21, we take 6, = 118 for 6 <i< 8.



92 K. Thanigasalam

~ Further let F (o) be defined as in (1.2), where t, t,, ..., t, and x are positive
- integers satisfying (for some 1 > 0)
(23) Card[{t, t;, ..., t,)] € P*
Then (with 1 r < k-3)

and P <x<2P,

I3 3
24) [ F,@f - Ll de < {PEPM)+ P PR (M2,
0 i=1
idon

Also,
' 1
25 [ F@f .. AP de < [PTPM)+PFE(Py L. PRI (AM)N2,
o

Proof. By Schwarz’s inequality, the integral in (2.4) is

. 1 ¥ 1
26) <{[InE@FI A da}'? 15 - T A )™
i : )

and, using part of the argument in the proof of the Fundamental Lemma (in
[t]), (by estimating |F,(a)i* using Cauchy’s inequality in the standard way)
the first factor in (2.6) is (cf. (2.2)) '

. 1 Ed
@ < {PEPM + P | Fiy (0)|[] A da}',
0 i=1
g

“where, in thé: definition of F,. {«), & ty,..., 1, x satisfy (2.3), and
0<tey <P (cf (1.2))
Now, the number of solutions of the equation

(2.8} Byt )= ¥ (xf=y0)  with  x, y,e(P, 2P)
li;£
(and ¢ty ...ty £ 0) s

<(T] P)* P,
i=1

]

since for given x.’s and y,’s, there are < P* choices for ¢, ty,

ey tr.+1 (and X is
then determined uniquely). Hence,

1 L] s
29 (P @|TT A de < (T PY P,
‘ . 0 ji::; ll-';a;.

(24) now follows from (2.6), (2.7), and (2.9). (2.5) follows the same way on
taking # to be the empty set,

icm

Improvement on Davenport’s iterative method... I1 33

The next lemma is the same as Lemma 4.1 in [1].

Lemma 2.2, With 6 =8, (where 0<35<1), A, =AY =(k—1+68)/k (and
A =4 defined as before for 1 <i<s=1), and f, f; as in (1.1), we have
{for 1 <1< k-2 )

(2.10) (I)lflef} S da

€ PM 4PV EM (Pl pri=t=1(p  py? pM-1312
where M is given by (2.1). B
The next lemma is a modification of Lemma 2.2 (in the same way as
Lemma 8.2 in [1] is a modified form of the Fundamental Lemma).

Lemma 2.3, With the same premises as in Lemma 2.2, and M|, M, defined
by (2.2), we have (for 1 €I<k—-2)

@11 [IfPIf .. £l d
| ,

‘ s .
< PM 4+ PLl¥o+epg {P—i(Ml Mz}M"2+P_'5_‘—1(H Piz)(Mzsz)}llﬂ_
Il';ﬁ%

Proof. In the proof of Lemma 2.2, we use (at each iterative step) the
inequality (2.6) with 1 =0+r for 1 <r <L Here, we follow the same
arguments at the iterative steps with 1 <r < I—1; but, at the last step (with
v = 1) we use (2.4) (with © = é+4r). Comparing (2.4) and (2.5), it is easily seen
that the terms on the right-side of (2.10) can be replaced by those in {2.11).
[Note: (2.6) is used with the set # empty.] The next lemma is essentially
Davenport’s result (with 0 < § < 1/2%, but is given in that form to retain the
use of admissible exponents, '

LemMa 24. Let {4y, ..., X} (0 < X < 1) form admissible exponents with

(212) A+ ... i)k =a (so that, UP(N) > N*9);

and that, for some 1 with 1 <I< k-2,

(2.13) (I+1)—(k—1e = (2'— 1 +a)/2".
Then, with ‘
(2.14) 06 <1/2, 4 = k=140 Ak (I <igs),

A5 .., &gy 1} form admissible exponents. Furthermore, U™ (N) > Nf~%
where '

(215) B=(s+ ... +4+1)k.
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Proof. We use Lemma 22, where M satisfies P, ...P <M
<(Py ... P} P Accordingly, the number of solutions S of the equation

5

FHY D)=y +(Y ¥ with  x,ye(P,2P); x, ye(P, 2P)
i=1

i=1
is (cf. (2.10)
(216) < P(P, ... PyPt4pieove-tizhp  pyo
- 1
o PEHETI-aiE )2 (P ... P,)“ml.

From (2.14), the second term in (2.16) is < P1**(P, .
Plo1tde 5 Py ... P, the third term in (2.16) is

(2.17) < PYtE(P, .. Ps)(P{(k-1+r5)a'(5-l-l+13),/21'+6)_

.. P); and, since

The exponent of P in the last factor in (2.17) is equal to
{e=Na—(+1)+(2 -1 +a)8}/2,
which, with (2.13) and (2.14), is easily verified to be < 0. It now follows that
S <Pi*(P, ... P),

proving the result.
' .The next lemma will be used in estimating a; and «, (at the same time
retaining the use of adinissible -exponents).
LeMMaA 2.5. Let x;, v, z;€(P;, 2P,), and for given m, n, the integers u;, uy,
u, are of the form xj+xk; x, ye(P, 2P); the set of positive integers
tty, ..., by Satisfy (for some = 0)

(2.18) Card[{t,1y,..., 5} <P

(where, if 1 =1, we simply consider the set of integers ).
Then, the number of solutions M, of the equation

. (2‘19) Ar,ri,....q_ N (xk)"l"'ui = Uy
- satisfies
(2.20) My < P*"3 (P P)+(PP Py P, M) P2,
where M, is the number of solutions of
- (221) ' Ar,rl....,r, (x*} 4w = u,
With t, ty, ..., t,_; subject to (218), and 0 <t, < P,
Also, '
(222) My PP, PP, Pyt

Proof. With u, = 242t et Mi(t, ty, ..., -y, 21, z;) denote the
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number of solutions of (2.19) for given ¢, t,..., {1, z; and z,. Then, by
Cauchy’s inequality,

(2"..23) MI_ZZZ“' Z ZZMl(I, by s o1y 215 Z3)

Coroiy —y 2y 2z
142
<{ZXT . T XTI x
o tf—1 29 %3
X{ZZ"' Z ZZM%(ts t1,-“,t1—-1;21: 22)}”2‘
tn t-1 %1 22

By (2.18), the first factor in (2.23} is < {P*(P, P,)}}"'"%, and the second factor is
«(M3)'?, where M5 is the number of solutions of
(2'24) At,ll,...,ll_ 1 (xk)+ui = At,ll,...,t'_l (yk) +uf =u,

(with x, ye(P, 2P)).
(a) As already defined, M, denotes the number of selutions of (2.24).
Let
(b) M, denote the number of solutions of (2.24) with x =y, u; = u;;
(¢} M denote the number of solutions of (2.24) with x # y.
With u; = yk+ 3%, for every given u;, the number of choices for y,, y.
satisfying
(2.25} U= YtV
is < P* since the number of representations r(x;) of u; in the form (2.25) is
uniformly bounded by P°. Hence, it follows that (cf (p))
{2.26) M, < PFM,.
Now, let M, denote the number of solutions of )
(2.27) Aoy VU =4y o P +u  with  x#p.
With u, = z5 +2z%, to every solution of (2.27), there correspond < P* solutions
of (2.24), since r(u,) < P* (uniformly). Hence, (cl. (c))
(2.28) : Ms < P M.

Now, putting y = x+1, (0 <, < P), we see that

(2.29) My <M, (cf (221));
so that, from (2.26) and (2.28) (cf. (a)),
(2.30) My < PE(M + M,).

Thus, from (2.23),
M < (P P,PY? {P(M+ M)}
& (P Py P, M) + (P P, P M),
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(2.20) now follows easily from this. (2.22) is deduced from (2.20) by using the
fact that M, < (P, P,)* P*, since there are < (P, P,)? choices for u;, u,, and in
(2.21), for given u;, u, there are € P* choices for ¢, ¢,, ..., & and x. -

3. Further auxiliary results. In this, and some of the remaining sections,
we prove some inequalities required in the estimates of U®(N). Similar
inequalities will be used for k=6 also (so that, as much as possible, the
arguments are given with general k). Some of these inequalities can be
improved on slightly (but that will not be required for our purposes). The
values of the §;s given below will play a role in the proofs. The &;s are
chosen iteratively to satisfy

1
(3.1) [Ufi o Sl de < (P, ... P)P,
0

where, we recall that (while the A’s will vary proportionately at different
iterative steps)

(3.2) P, =P, with
Let |

M =(k—1+38)/k . (at each iterative step).

(33 4 =1, & =(717), &, =02218, §,=01629, 55 =(1/8),
3 = 0.1018, &, = 01075, &, = 0.086.
" We note that {at each iterative step)

(3.4) M =)9  and f =f,.
For convenience (in repeated usage), we write
1
(3.5) Moo= [1ffici . PP 1 £ de (for r 2 3).
5

The next lemma is implied by Hua’s inequality.
Lemma 3.1. For 1 1<k,

S
- (3.6 : i I‘ﬂlﬂda < Pﬁz*mlﬂ'
1}
LEvma 3.2.
- 1
(37 {1l da < P,
0
1
(3.8) [ 17210 da < PiRT0*e
¢

. : 1
(39 _ : {1 fal*2 da < P71+
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and
1
(3.10) [ 1A do g P+e,
0
Proof. By Holder’s inequality,
1 1 1
(3.11) [ 1510d < {§ 1fol* dar}"* {] 1 121® d}',
. 0 1] [¥]
1 1 1
(3.12) (17200 da <€ ] 1 51® dat}™ {[ 1 £o11€ d}",
0 0 0
! 12 r 8 12 b 16 4..11/2
(3.13) [1folt 2 da < {[ | fol® dee} " {[ 1 fol® dt}
0 1] 0
and
rE L g A e 16 g3
(3.14) 11 da < [ 1 £2lP da} ™ {f 1Al 0 ™
0 0 1]

The lemma follows from these and (3.6) {with | =2, 3 and 4).
Lemma 3.3. With k=5, and 3, as in (3.3),

315 My = [R5 ds <S5
where
(3.16) Sy = Py PYI*e.
Proof. We have 1 .
(3.17) Mi e < Py :{ ]f;[sdd+(j}'F(&)|f2I6dat,

where F(x) is defined as in (1.2) with 0 <t < P;Z, and Py < x < 2P;. Also,

1 i 1
(3.18) [ P@)1310 de < ([ IF @I 1fo/* da} ™ {f 1 f51° da}' "
0 b 0
1
and (as in the proof of Lemma 2.1), {using {{f2|*dx < Pty
0

i : 1
(19)  [IF@F |l de <(PF2 Py PR+ P {] Fu@)fol* dar,
4]
~where F () is defined as in (1.2) with <t < Pg’", 0<t; <Pyand Py <x
< 2Py,
1 .
Furthermore, | F{(o)|f,/* dx is the number of solutions M, of 4., (x)+
o]

+u; = u; with ﬁ,-, u; of the form x5+ 4.
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To estimate M;, we can use Lemma 2.5 with P, =P, =P,, P=P,, ¢
=1+d, and I = 2. Accordingly, using (2.22), we have

1 .
.[Fl ()i fo]* do < P;+62+EP%+{P;+52”}1/2 pite,
0

Thus, from (3.6) (with /=2, 3) and (3.7), we have from (3.17), (3.18)
and {3.19) that

+26 4 1+dp+e, 3 i
(3.21) Ma,s < P, P{27[2)+::+{P; zP%ﬂ Paz(Ps 2 P)uz Pg i—e}l/Z(P% + )uz

L+385)/4) pate
< P, P(27/2)+5+Pg1/2>+62 pUmte {P{‘ 4L pate,

(3.20)

Now, it can be verified with k == 5 (and &, as in (3.3)) that each term in
(3.21) is < Py PY/?*% proving the lemma.

Lemma 3.4, With &, as in (3.3),

1
(3.22) My = [1/32152)%0 < S,
1]
where
{3.23) Sy = Pgalct)M;P(zsms)ﬂ <P, P(26~y1)+c
with
(3.24) ¥ = (181/240).

‘Proof. We adapt the proof of Lemma 23 with =2, § =8y Py
replacing P; f; replacing f; |/5)® replacing |f, ... fJ?;
1 )
M= [ £ dx < P3*;
(3.25) L -0 )
Ml = J‘ ifziﬁda < Pg/ZHa; M2 - " |fzimd06 < P‘_—E?HH‘",
: 0 0

and ([] P2) =P (cf. (3.6), (3.7) and (3.8)).
li;; ‘.
Accordingly, we have (from (2.11) and (3.25)) - _ ‘
(3.26)  Myg < Py M+P5" 2" MU2 My (P71 M, 4 p; 7272 pgy e
< P3 Pg+a+{P§§3/4)+52} P281/16)+ﬂ+{P(31"’r‘362),/4} P(291/16)+8.
It is now verified (with the value for 8, and using P, = P*2) that the

second term in this estimate dominates over the other two terms, proving
{3.22). (3.23) is verified from this.

6 =85; |f2I'* replacing |fy ... f1?;
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Lemma 3.5. With 8, as in (3.3),

~ 1
(3.27) Mj 0= [1f:1* 1o 0 da € 85 35,
0
where .
(328) S3‘10 — P(33t'4)+62P(2109l16)+5 < PB P(ZS_?’Z)'”
with
(3.29) v, = (241/240).

Proof. Here, we adapt the proof of Lemma 23 with [ =2, § = 051 £t
replacing |f; ... fJ%; '
(I1 P} =PS;
1‘:5

1
M = J1f1da < PET°,
1]

1 1
M, = [1filSda < PYPY M, = [lfyf**dx < PgUS+
0 . 0 :
(cf. (3.10)).
Hence, as in (3.26), we have
(3_30) Ma,no < P, P(227f4)+£+P;+52+e P(22718)+5 P(241/16) *
% {P;l P(27/2)+P;"2‘3 PS4
<P, P<22714)+a+{1;,(33f4)+62+2}13(2109116)+
+{P(31+352)I4} plisne+s
Here again, it is verified that the second term in (3.30) dominates over the
other two, and that it is bounded by P PS5 "2 (cf. (3.28)).
Lemma 3.6, With 5, as in (3.3),

' 1
(3.31) M;1z = [P de <S5 45,
0
where
(3.32) S342= Pyl patiarve o p pliO=rarts
with
(3.33) - 72 = (5/4).

Proof. Here again, we adapt the proof of Lemma 23 with [=2,
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1
(H Pz) 8 M= j|f2|12dfx & P(217/2)+:s;
0
lé'%‘

1 1
M, =“fz|8 do < P35 Mzﬂj | fol*€ do € P5*E
) b

(cf. (3.6) and (3.9}
© As in (3.26),

My 1z < Py PRTI ey p3TI27¢ pATMI T (pI2)UIs {pT Py Py pype

4
(B3 Py PRI (IO Py (PN pgTiate,
It is now verified that the third term in (3.34) dominates over the other two,
and that it satisfies the inequality (3.32).

4. Estimation of U$(N) and U$'(N). The next lemma is a standard
result.

Lemma 4.1. With 8, =1 (and 2V =1), {1,
and USY(N)> N"27°, where

1} form admissible exponents,

@.1) ay = (2/5).
Lemma 4.2. With 6, as in (3.3), and
4.2) A3 = AP = (443,)/5,

(232, AP, 1} form admissible exponents, and U (N) > N®7%, where
(4.3) oy = (AP + AP - 1)/5 = (47/85).

Proof. The values of 8, and a, given above are precisely those given by
Davenport’s method {cf. Lemmas 4.2 and 4.3 in [1]) with k =5, a = ay,
=12 The fact that the integers x%+x% are not necessarily distinct will not
affect the conclusion in this lemma, since, arguing as in Lemma 2.5 (cf. (3.20)

and (3.22)), the same estimate as in Davenport’s method (where x§ +x% are
taken to be distinct) is obtained for the number of solutions of the equation

KA +x%) =y + (i +¥h)  with  x, ye(P, 2P);  x;, ye(P;, 2P)
(where we use the fact that the number of representations of an integer in the
form x%+4x} is uniformly bounded by F%).

5. Estimation of U (N).
Lemma 5.1, With 8, (1 <1< 3) as in (33), let 4, = 4 (1<i <

(5.1) AP = (@4+85)/5, AP =2 = (4452 AP/,
Then, {13, 2, AP, 1) form admissible exponents, and U (N) >

3), where

N™T
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where
(5.2) g = (AP + AP+ AP +1)/5 = (1/5)+ 19 a3,
satisfying ‘ o
(5.3) _ 0.666881 < a, < 0.666383.

Proof. Far proving the result, it is sufficient to show that (with f, P;'s
and f's as in (1.1))

1 .
(5.4 6[ |/ fafafil* doe < P(P3 P, Py) P

With § denoting the integral in (5.4), we have

(5.5) 5 < PI IJ%fzfllzddﬂ F(@)|fsfofil* da

< P(P3P; Py) Px"‘J-F(“)ffsfzfﬂzda

(using the fact that {).1, 12, A3} form admlss1ble exponents) where F(x) is

as in (1.2) with 0 <1 < p’ , P<x < 2P; and, by Schwarz’s inequality (cf.
Si =1

(56) EF(a)mfzfllz du < {2;) [F @) of? de {z AP e},
Using (3.15) and the fact that

:g |faf2l? doe < (P3 Py) P,
we have (from (5.5) and (5.6))

(57 S< PPy Py PP+

priatl

(P3 Pz)P‘+P & ]" Fi(a) |f3f3|2doc}”2 [P, Pt

where F,(x) is as in (1.2) with 0 <1 < P*, 0 <t <P and P <x <2P.
1

Now, | F{o)fs f2|?de is the number of solutions of
]

(5.8) A!.l] (xk)+ui = Uy

and, this is estimated by using Lemma 2.5 with | =2, P,=P,, P,=P,,
T = 1+65; so that, from (2.22),

with u;, u; of ihe form x%+x%;

s U

1+83+e 1+83+e

Y!/2(Py Py P2,

1
(59 (_)rF1(5!)|f3f1|2d0E <P (P3 Py} +(P
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Thus, from (5.7), we have
(5.10) S <P(PsP, PP+
F{PH TP, Py PP (P TR TR (Py PR (P PYA
< P(Py Py Py P2+ {PYPH07) p pyiay (pU T30 pais pisizta,
3tz

Now, it is verified (with k = 5, and the values for &,, &;) that each of the last
two terms in (5.10) is bounded by PP, P2*¢ proving the result (cf. Py = Py).
The remaining lemmas in this section will be used for estitnating a; with

izA
Lemma 5.2, With &,, 83 as in (3.3},

1
(5.11) My = j|f4f3|2 | f5|% do <S4,
0 ' .
where
(5 12) S {P(1+363)I'4'} P(19f16)+(1/4)52 P‘257!64]+? < (P PB}P(4 v4)
. 4,6 =
with _
(5.13) Yo = 043855,
Proof Here, we use Lemma 2.3 with I— 2, 8 = d3; P, replacing P;
S f4 replacing f; (n P?) = P} P4;

i=1
1]

1
M=M;¢= _f Lfal? 1 £l det
0

|fsl*1/2]° replacing |f; ..

(5.14

1 1
= f|._f3|2|-f2|4d05; My, =M, =§|f3|2|fzisd“~
0

Since {i,, 4, A3} form admissible exponents, M, < Py P?** (cf. Lemma
4.2). Hence, from (5.14), as in (3.26) (cf. {3.15) and (3.22)),

(5.15) My < Pa(Ss)+ Py 7 (8,602 (83,0)4 x
x {P31(Py PH+ P, " (PR P,

It is easily verified (with the values for §,, ;) that the last term on the right-
side of (5.15) dominates over the other two; so that,

(5.16) My g < PLTIIT PIZ Py (s, 313 (S, ).

(5.12} is now verified from (5.16), (5.14}, (3.15) and (3.22).
[The following combinations of terms may be used in verifying (5.12):

icm
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(Such combinations will be especially useful in dealing with estimates that
involve large number of factors, and will be indicated as they occur).

(S, 6)1/2(83 8)1/4(133 P )1[4 P, P(7f4)+(5 71)l4+(1lz)+3
(from (3.16) and (3.23)), and
(83,6)'1% (S3,9)"* (P PP

also, (P3 PYY* = PJ*3"3"*  which can be estimated by using (4.3). Now,
the terms in P, can be estimated to be € P, P} (for suitable 7) by using
P, = P}7].

Lemma 53. With 8,, 85 as in (3.3),

w14 plT/E8)+ (6= )4+ (1/2)+e
= Py(P; P3)"* P, ! ;

1
(5.17) M, g = [J; ]f4f3|2ff2f8dd <848,

where

(518) S,5= {P(1+3’53)/4} P(17!15)+(3l4)52 P(363j64)+ﬂ < (P4 Py) P(G 115)
with

(5.19) vs = 0.69065.

Preoof. Here, we use the argument in Lemma 2.1 twice as follows:

1
(5.20) Myg < P4(M3,s)+£ F ()| 3?1 f2l® da,

where F(a) is as in (1.2) with 0 <¢ < P33, and P, < x < 2P,.
Also (by Schwarz's inequality)

1 i 1
(21 [F@A2 B de < {[ IF@P AP A} {152 1f220 da)
0 ' (4] Q
and, (with the standard way of estimating |F (a}|%)
1
(5.22) le(a» Al 1f218 da < PE2" (M )+ P2 [ Fy (@) /512113l dos,
0

where F,(a) is as in (1.2) (with 0 <t < P, 0 <t, < Py, P, <x <2P,).
Repeating the above argument,

1

(523) [F,

0

(@)1 /312 1 faf dot < { [IFy IR ARIR AR M TV ACIPALY Ml
i

and,

1
(5.24)  [IFL @ |2 1fl* de < P73 (Py P2T 4 PL {j Fo (@) ff? If)* dat}
4]



104 K. Thanigasalam

(using the fact that _[i f3l2 | fa|* do < P3 P3*%, and estimating |F, («)}* in the

standard way), where Fo(x) is as in (1.2) with 0 <t < P , 0=t <P,,

O0<t, <P, and P, <x <2P,.
1

Also, | Fa(o)] f1% 14 da is equal to the number of solutions of
Q

(5.25) Appyay K1y = 1,

where w;, u; are of the form x§+x4+y4 with x;, y,e(P;, 2P).

Now, the number of solutions of (5.25) is < P§P3** since, there are
< P2 P% choices for u;, u; (and then, < P choices for 1, t;, ¢, and x in (5.25));
50 that,

1
(5.26) [ Fa(@))fs]*1fo|* do < P3 PEY™.
0
From (5.26), (5.24) and (5.23), it follows that
(5.27) JF1 EHAP Sl da < (P2 (P PE9) 2 (M )
(the other term occurrmg in the estimate being bounded by the estimate in
(5.27) since, Pi °3 & P, P% with the values for d, and ;).
From (5.22) and (5.27), it is verified that (cf. (3.15) and (3.22))
1 .
(528 [IF@PIAPIAS de < PP (PLY S (PE P9} H2(S, )1
0

{as the right-side term in (5.28) dominates over .Pi““a (S3.6M-
Accordingly, from (5.21),

(5.29) IF(OC)Ifai | f2l® do <€ P‘“z"’sfP”"B(P%P‘;”)}”4(53.8)”4(33.10)”2.

The term on the right-side of (5.29).is. verified to satisfy (5.18) (cf. (3.23) and

(3.28)) and that, it dominates over P, (83 g). Hence, result follows from (5.20).
LEMMA 54. With §,, 53 as in (3.3),

{5.30) My, = ‘ |fafsl* 12" da <€ 84,3,
where .

(5.31) Sinz=(Py Py) P57

with

(5.32) ys = 1.1125.
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Proof. Here, we use Lemma 2.2 with [ =3, § =43, P=P,, f=1,;

1
(P PP =PIPI%, M=M= [|f]f ?d
0

Accordingly, we have (cf. (2.10) and (3.31))

(533) My, €P.(Ss )+ Py 758, )+

(1/2)+(7/8)5 +e
+ P, PPy PR (S3,12)"%.

The third term on the right-side of (5.33) dominates over the other two, and
(5.31) is verified from this.

[Note: From (3.32), (P3PL)HB(S, ,)78 = P, (P, P p]it 0 730+ G
and (P, PAUE = p3lawsi®y,

6. Estimation of U‘s)(N)

Lemma 6.1. With 8; (1 <i<4) as in (3.3), let A, =AY (1 $ig
(6.1) A = (4-+48,4)/5, E‘“ =@+3) /5 (L<igy).

Then, {4, ..., A, 1} form admissible exponents, and U(ss’(N)>N15_E,
where o

H

4), where

(6.2) as =A%+ ... +iP 105 = (1) + AP ay,
satisfying
(6.3) 0.755231 < a5 < 0.755235.

Proof. It suffices to show that

1
(6.4) £ \fP | fefafotil?de < P(P, ... Py) P,

and, for this, we use Lemma 2.3 with | =2, 8 =4,, s =4;

(I1 P} = (PP P
‘i;g} .
1

M, = _.[ |fafsfol?dx  and

M= (J; [fafsfofil du;
(6.5) 1
M,=M, ;= g | 2 f3I? 1] 6 dat.

Accordingly, with S denoting the integral in (6.4), we have (cf..(2.11))
(6:6) S < PM+P' "™ MUZ(M, !4 (P~ My 4 P47 (P, Py Py,

Now, {4,, 43, 43, 44} form admissible exponents (cf. Lemma 5.1), and
{43, 43, 44} being a subset of this, also form admissible exponents (cf.
Lemma 7.1 in {1]). Hence, from (6.5),

(6.7) M<(P,...P)P* and M, <(P,P3P)P;
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so that, from {6.6) {cf. (5.11)) Lemma 6.3. Subject to (3.3),

. i .
(68) S < PPy ... PYP +(Py... PY2(S4,6)*(Ps Py P2 x | (6.13) Mg = [ 1fsfafal? | fol® du < Ssq,
% {P(3[4)+J4+2+P(1+364),‘4+ﬂ(P4 P3 P:}ll4}. i3

where
Now (with P, = P'l“, and the values of the &), it is verified that the second e
term on the right-side of (6.8) dominates over the third term (since : (6.14) Ssa=(Ps Py Py) Py ™®
pitiay, p, P, P,), and that, it is bounded by the first term, proving the , with
lemma. [Here, from (5.12) (with P, = P,), the second term in the estimate is
) [ G1AL 1= 5 (6.15) v = 0.6211.

—yq)fh - LYY
Q(P;.. Pi) Pf;- Y4~ (314 PHMH 4Pa;

so that, it suffices to show that : Proof. We use Lemma 2.2 with I =3, § =8, P=P, [ =/s;
(L= y )4 3,(3)4)+3y 1-e ' 1
P, P <P (Py ... P2 =(P,P*PY  and M =M,y = [ |fafsl?1/ol® da;

(using P, = P*3)]. >

The next three lemmas will be used in the remaining sections. so that, from (2.10) and (5.17),

LemyMa 6.2. Subject to (3.3), (6.16) My,5 < Ps(Sqg)+ P50 7S, 40+
(L/2)+(7/8) 84 ¢ 3 :
(69 My = { Usfufi 15l 2 < Ss 6 R PR S )™
0 . (6.14) is now verified from (6.16) and (5.18).
where ' [Note:
(6.10) Ss6=(PsPyPa) Py 7 (PFP3 PY)I%(S4,0)1® = (Py P3)(Py Py PR p10T120HO,
with ‘ and
| = 03774 | Py Py PYV8 = pilans®

(6.11) y7 =0 . (Py Py P3y° =PF; 1.

Proof. We use Lemma 2.2 with [=3, § =08,, P=Ps, [ =/s; Lemma 6.4. Subject to (3.3),

‘ 1
1
(Py ... P = (P, P3PS and M =M= |fufal*|fol* dot. (6.17) Ms, iz = ([ |fsfo L2l 2 do € S5 1,
0
Hence (cf. (2.10) and (5.11)), where
(10-79)
(6.12) Mg <Ps(Sqe)+ Py (8, o)+ (6.18) S5z =(Ps Py Py)Py~ 7°
| +PE.,”2)+WW4H(P§ P2 p§e (34.6)713_ with

(6.10) is now verified from (6.12) and (5.12). (6.19) 79 = 0.9901 .

[Note: ' Proof We apply Lemma 22 as in the preceding lemma with the

(P2 P2 P/t (54'6)7/8 < (P, P3)(P, Py pyus P;H—«m)lﬂﬂllz); difference that ' .
. 1 -
(P4 Py P8 =P§14ad3, (P, ... P> =(P,P3)*Pl2 and M=M,,, =.“f4f3|2|fz|12d0£.
’ 0

so that, we can use (5.3) (and P; = P§¥)].

3 — Acta Arithmeticn XLVE2
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Accordingly {cf. {5.30)),
(6.20) My, 1a <€ Ps(Sq 1)+ PS4 (84 10+
+P(1.’2)+(7/3)54+3 (Pz Pz P22)1,18( 4’12)7/8 .

{6.18) is now verified from (6.20) and (5.31). ET— .
[Note: (P} P} PE3)Y*(S,.12)""® = (Pa P3)(Py Py PR P10 710/ ¥ G

7. Estimation of UY(N).
Lemma 7.1, With §; (1 <i<5) as in (3.3), let 4, = 2% (1 €< 5), where

(1.1) AP = @485/5, AP =4+8)AD/5 (1<ig4).

Then, {29, ..., 28", 1} form admissible exponents, and U (N)> N*67°
where ’

(7.2) e = AP+ . +AP+ 15 = (1/5)+ AP us,
satisfying
1.3 0.823065 < ot < 0.823069.

Proof. In Lemma 2.4, we take a =ay, !=3. It is verified from (6.3)
that (2.13) holds; so that, we can take § = 85 = (1/2%, and the result follows,

The next two lemmas will be used in the remaining sections.

LemMa 7.2. Subject to (3.3),

(7.4) . Mg = 3; UfefsLalal? | 2l d < 84,
where

(7.5) | Se.s =(PgPs Py Py) Py 17
with

(7.6) Y10 = 0.588.

Proof. We use Lemma 2.3 with [ =3, d =685, P = Pg;
(H Pf)—(P5P4P3) P (fi v»-,f;)2=(f§f4f5)zfzgi
e

) 1
17y M= Myg; M, = g |fsfafsl* | fof*da and

(cf. (6.13) and (6.17)). Accordingly, from (2.11),
(1.8) Mgg <€ Pg(M; )+ -
1 3 -
P (MM (M) (PG M, +P5 5™ (P, Py Py PAIS.

Mz = Ms,u
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Now, {Az, 4, 43, A4, A5} form admissible exponents by Lemma 6.1 (cf. 4,
= 1,); so that, M; <(Ps P, P.) P3¢, Hence, from (7.8) (cf. (6.13) and (6.17)),
we have
(79)  Meyg < Pg(Ss,8)+(S5,0)*(S5,12)"/° (P5 Py Py PV? x

« ’{PgI8)+5S+S+P(61/2)+(7I8)§S +8(P5 P4 P3 P%)lla}.

The result is now verified from (7.9), (6.14) and (6.18).
[Note:

(Ps Py Py P3(S5,6)* (S5,12)"® =

3(6 - yg)/4 +(10—yg) /8 +(1/4)

(P5s Py Fy) P ;
also,

(Ps P, Py PRHE = pgssh,
so that, we can use (6.3} (and P, :P’;’,Z)].

The next lemma is essentially Lemma 9.3 in [1] (with the Is as in the
Fundamental Lemma). ‘

Lemma 7.3. LEt_} k .1 and

{7.10) a; <1— k(2.

Then,
! 2 2 20+d6g

(7.11) IJ=J|J§|2§f1- S da < P (Py ... P),
0

where

{(7.12) o =121,

[In the next.three sections, (6.2) in [1] may be used to verily So <€ 5;].

8. Estimation of U (N).
LemmMa 8.1, With 8, (1 <i<6) as in (3.3), let & = A® (1 i< 6), where

B1) MO =(@+5y5, A =(@+3)AD/S (1<i<I).
Then, (M9, ..., A9, 1} form admissible exponents, and U (N) > N77° where
(8.2) oy = (,1‘16’+ o HAE E1Y/S == (1/5)+ AP ag > 0.875207.

Proof. We apply Lemma 8.1 in [1] with /=3, s = 6; so that, from
(2.7), (2.8), {2.9), (2.10), (8.3) and (8.4) in [1],

(8.3) S «€8;+8+83 + T,
where

(8.4) SO :: (P(I.;'Z)+6ﬁ+a U) Pé’lzP—06+50
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(8.5) Sy = (Pé‘(’”m3 yy pHI T (plr plity potosiitin
o 8 =P PWSHWHZM(P?Z pli4y picetosiAtio,
(8.7) ™ = (P‘iﬁ!z +e U) P(T1/4+r21‘8) u

X(Péﬁ P§/4 P};/S)(Pl Pz Ps)”s P*("Gq"f’s/z) 4_’50’
with
(8-8) Og 5= 15/16,

(cf. (24) in [1]). .

(In choosing o5 and o4, we use the fact that a, and w4 satisfy (7.10))
From these, it is verified that § < P'** U (with U = P, ... Pyg), proving the
(r;as?’l;i)t (Note that (P, ... P)Y% = P*** and this can be estimated by using

9. Estimation of UP(N).

Lemma 9.1, With 6, (1 <i<7) as in (3.3), let 4= A" (1<i<7), where

7] =115/16, T1 25/15—3, 1:2 =5A.4""'2

(8:1) W) =(d+8,)5, MW =@+8)17/5 (1<i<e6).
Then, A", ..., 287, 1} form admissible exponents, and USHN) > N7 where
02) o = (AP ..+ 2D 1 1/5 = (1/5)4 2D oty > 0.918981.

}f'roof. Here, we apply Lemma 8.2 in [1] with /=3, s=7. In the
notation of that lemma, % will consist of the single integer 2, and (with
Ji =f3) we take (cf. (8,11) in [1])

©.3) I'= M = ‘j; s fafsl* 1 f5l0 det < 85,6 (cf. (6.9)).

The number ¢ in (8.11) {(in [17) can be takén to be 4,7y, where y, is gi

‘ \ ys is given by
(6.11) (since P}’ = P*#'7, Accordingly, from (8.12) and (8.13) (in [1]), we get
the estimate

(94) . . ) Y @ SO +Sl +Sgl o+ Tm:
where
(9_5) So = {P(111)+a7 +e U) P-I,"z P—"THU,
(0:6) Sy = (P77 y) PRI (pii2 pusy pto
i e Aerf 2 (178 e
@7 83 =(p : Uy (P 1/4”2"4)] (P2 pLi+ Py p 8 (Azi'wfﬂl1
O8) T = (P Uy PV st pus pisyp, | pyire pT0ar®),
with : : .

(9.9) . g, = 17/16, Tg =j“6/16! Ty == 52‘6—3:' Ty = 5.15“"2

icm
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(using the fact that g, a; satisfy (7.10)), and
(9.10) : 620'7 +0‘5/2‘*50.

The lemma now fgllovgs on verifying S ¢ PP U with U= P, ... P,. (Here,
(Py ... P8 = PP*5%5/®  which is estimated by using (6.3).)

16 Estimation of U (N).

Lemma 101, With 6;(1 <i <8 as in (3.3), let A, = A® (1 < i< 8), where
(10.1) A8 = (4+6,)/5, B =@4+5)A8,/5 (U<igT).

- . . . t
Then, 128, ..., A" 1) form admissible exponents, and US'(N)> N "
where

(10.2) oo = (AP + ... AP+ 1)/5 = {1/5)+ A& oy > 095098,
Proof. We use Lemma 8.2 in [1] with I =3, s = 8, 4 = {1, 2}; so that,

(with f; =/f3) we take

1
(10.3) I'=Mgg = [|fefslofsl® 121" du < S (cl. (74)).

0
The number & in (8.11) (in [1]) is now taken to be 1, v,,, where y,, is given
by {7.6); so that, from (8.12) and (8.13) (in [1]), we have the estimate
{10.4) S <S8y +8 +85+T",

where
Uy Py P8,

{10.5) So=(P
(106) 8§, =@ U P TR Y Py P,

(10.7) ,2” - (P58f2+£ U) P(I/S +1:1f-1+‘r2f4) (Pé‘lz P!’,/4 Pél4) P—H-(lzj’lﬁ,’g)

(1/2)+ dg +e

(using (P; Py)'* = Py/4),
(108) T" = {Pﬁz':/'l*"E U) Pffif-‘”ffzfsl(};é/z P?}“)(Pl . P8 P"f‘—(h?m/ﬁ?, ’
with

(10.9) g = Ag/16, Ty = 54,3,

(e8] 2117/16, Ty 25)"6_2

(using the fact that aq, ey satisfy (7.10)), and
{10.10) 8 =ag+0a,/2~8g.

Sdgag/B

Noting that (P;... Pg/® = P , and using (7.3), It is now verified
that S« P**eU with U = P, ... Py, and the result follows,

11. Proof that G(5) < 22. With P = N*/* and @ = P**%, divide the unit
interval Q™1 <« < 14+Q? into intervals m and supplementary intervals m
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“as in the proof of Lemma 4.8 in [1] (so that, the basic intervals m, s are

defined with 1 < g € P19 Ja—afq| < (gQ)" ). Let the A’s be as in Lemma
‘10.1 {and the js be defined correspondingly). As already established in [1]
(by using Weyl’s inequality),

(11.1) f(a)<P“‘”“6)“°. it oem.
Write
1+~
(11.2) rs(Ny= [ fH@ {f@fi(@) ... fyla)} e{— No) do.

Q"l

With ag defined by (10.2), we see that (from Lemma 10.1) the contribution to

rs (N) from m is
(11.3) < P4(1“1/16+5[))(PP1 L Ps)sz.sﬁg-l—(jo {S P"SN({;D(P“')(PPI o PH)Z

since Sag +(4/16} > 5.

For the treatment of wi, and the transition to the singular series, we
make the obvious modifications in [2]. Davenport uses 7 fifth powers in the
singular series. (This can however, be simplified by using a larger number of
fifth powers.) In place of estimating (f7 —~g"), and its integral over m, we
estimate (f°f;—g®gy) and its integral by starting with

S8 fa—g%gs = (¢ —g°) s +9° (fs—gs),
and using (4.30), (431), (432) in [1]. (Note that wy, s are defined with
g< P'? in [2], and, this hardly makes any difference) 1t would then

follow (as in [2]) from (11.3), that rs(N)3 P(P, ... Py)?, proving that
G(5) < 22,
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Some problems involving powers of integers
by
J. H. Loxrow (Kensington, N. $, W, Australia)

1. Introduction. There are a number of famous problems which appear
to be questions about the distribution of powers of integers. For example,
Catalan’s conjecture that § and 9 are the only powers which differ by 1, and
even Fermat’s last theorem, have implications of this sort. Many such
questions, including Catalan’s conjecture, can now be resolved in principle by
mvoking lower bounds for linear forms in the logarithms of algebraic
numbers. (This technique and its applications, which include many powerful
results on Diophantine equations and inequalities, are surveyed in {5].) The
main point of this paper is a lower bound for simultaneous linear forms in
logarithms with some interesting applications to powers and integers which
are almost powers.

Consider first the problem of estimating the number of perfect powers in
a short interval. J. Turk [7] has shown that the interval [N, N+ N2} can
contain at most c(log N)/? powers, for some positive constant ¢. This is the
appropriate interval to examine because any longer interval [N, N+
+ NWD*TE] with ¢ > 0, trivially contains $ N*(1+0(1)) squares. This question
is aiso discussed ‘in [6], where it arises in the context of exporential
Diophantine equations. An appendix to [6] explains how to use linear forms
in logarithms, continued fractions and some brute force computation to find
all 21 solutions of the inequality |p”-¢*| < p*? in positive integers a and b
and primes p and g with p < g < 20. Probably, the number of prime powers
in any interval [N, N+ N'/?] is bounded. The computations in [6] give just
one example, namely 112, 5% and 27, of three prime powers in such an
interval. In this direction, we shall prove:

TueorEM 1. The interval [N, N+ NY*] with N > 16, say, contains at
most '

' exp(40(loglog N log log log N)*/%)

perfect powers.

Similar questions can be posed about numbers which are almost- powers,
or have various other assigned muliiplicative structures. Such numbers still
tend to be sparse. We give the following definition, from a number of



