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absointe unless stated the dependence explicitly. f(x) = Q(g {(x)) would mean

lim g((x)) >0 and f(x} = @, (g(x)) would mean (only when f(x) and g{x)
are real) lim AL >0 and lim 1«(—) < 0. We state below the results.
s §(X) oo g(x)

Tueorem 1. Let K be a quadratic extension of Q with discriminant d. Also

let 1/2<0o<1, 0<e<1/4. Then for
1z 17
T 2 Ty(o, o)+ |d|t 7% 201

and any real O, there is a t, wirh
2 2001
THI= 3 3—2::0__10g2 T<te<T

satisfying
Allog T)' "™ (log log T) ™0

k(] — 2 _ _nl-eg
1= (sm {(1—ao)/2) (cosech (. 1—¢ 204—1 .
I—~ay Glog63—20,

With the special values 0 =0, n, £n/2 Theorem 1 gives the
- CoroLLARY. Let o be fixed, 1/2 < o< 1. Then as t - oo

log{lg(o+it) = 2, ((logt)! " (loglog )™}

Ree Plogly(oe+ito) =

with

and
arg{xlo +it) = Q. [(logt)* ~"(loglog )~ .

TueoreM 2, Suppose the Riemann hypothesis for {(s) is assumed. That is,
we assume, {x(oc+it) =0, [t]| > 0=> 0 = 1/2. Then we have as t— oo

o 2/ logt \!2
Ce+int =0 (“P{n(i&ﬁaé"r) })
N logt \M?
sc0-0. ()|

Sg(t)=n"1

and

where
arg (30,

We need the following lemmas for the proof of the theorems.

Lemma 1. Let 0y, 0,..., 0y be arbitrary real numbers and suppose that

0<d <1/2. There are at teast [ (R +1)] integers r such that 1<r<R
and ||r0,)| <8 for 1 <m < M.
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This is proved (Lemma 2) in Montgomery [3]

Lemuma 2. Let Nylog, T) denote the number of zeros of (x{(s) in the
rectangle 6, <6 <1, 0t < T Then for 04> 1/2,

Niloo, T) < (e(@ld)/> e 7)1 7707720 log TS

Jor T= T, (6g)+exp {(20010g |d))*?).

Proof. The method of proof is the same as that we use for the case of
Riemann zeta function. (See for example (6).) We have for o> 1,
oo

=[[1=-NE™) =3 almn™, am= ) 1<dn

4 n=1

1 Lk
N[n;\mn

where the product is running over the prime ideals p of K. Also

- ) & b(n)
CK1(5)=2“: £§2f =,§1 nf, b ()| < d(n).
Consider M, (s)= > b(mn™* and
o(s) =L (M (5)~1 =Y gimn~*, |g)| <d*(n)

since g{n) = ¥ b(d)a(n/d) and g(n} = c(n) for n < x where

din
A€ x

1= {elshlg () =3, e(mn™,

Now let x = T{log T)" ' and we have
‘2T

2T 2T -

2) JloG+inldt < T+( | [LxG+inl*de | M, G+in>de)'"?
T T 1 T

<c@id* T Tlog® T,

using the result

27

[ Ik G+in?de < ce)ld]"* Tlog? T
T

from the theorem in Hinz [2]. (We used the estimate

J' M. +in2dt < T z BP(mn~* < Tlogx)*,

n¥x

where the first < follows from Theorem 6.1 of Montgomery [4]) Also with
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6 =(logT)™*
2T

[ lo(+6+in)*dt =
T

we have

,Z g(n)n'l 8- zrl?.dt

n>x

& TE Q.Z(n)nm2*-26+

n>x

+ 2 Aa(m)(mn)™ T2 llog ()|~ 2) g (n) (mi)~C + 912 log (mym)| ~12)

MM X
m¥n

< Tx~! Z g n TP ¥ g2 (my(mn)~ ¢ log (m/m) Y,
mm!f:‘n\.

using Holder’s inequality for the last sum. Now g%(n) < d%(n)

< dgy (n) and
we obtain

3} f lp(1+d+it)f?dr < T~ Z des (myn=1" 254 Z des(m)logm-m=1-2

n=1 =

T {0 (1+28)+ |(C°* (1 +8))] < (log T)53

where we have denoted ( f (s)) by (f*{x)).

We now consider the zeros o= f+iy of {(s) with s, <<
T<y<2T where oy > 1/2 Then for T = T(og), o is > 1/2+(log T)™!
and so f> 1/2+(log 7)™'. Denote by R the boundary of the rectangle
12-B<u<14+6-4 ——logZTévé. log? T in the w (=u-+iv) plane.
Observe

’

1
“) 5 | elet Wy E(w)dw = —1

R

‘as w=0is inside R and @(g) = — 1. On the horizontal sides of R, |v| = log?T
and the integral is bounded by exp(~—75log*T) provided we choose

(5) |d1'°, y < exp (rhs log? T,
since for 1/2< f+u<1+6, y+ve » T
lp(e+wW)l < [Lx(e+w) M, (g+w)|+1 < |d| T?

as we can take the bound

Ux(o+in) <ldd, o >1/2, > 100

icm
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from Theorem 4 of Rademacher [5]. Hence we get from (4) that

y+lug2T
6 1<y -p~" [ leG+ind
','-lnng
7+log2T
Fy TS [ eI+ dr.
yvlégz’r
Let
- y+log2T
My=M (@@= | leG+i)de+1/T
ylogZT
and
}’+1052T
My=My@)= | lp(l+é+indi+1/T
)‘—Jong

and let y = (M /M,)%U %28 (Observe M, > 1/Tand M, < |d| Tlog® Tby (2)
and so y satisfies (5).) As E—f, [1+5~f8 = og T)™', (6) gives

(7 1 < log T{M{*3P M-ty +29

Now divide the region 1 20 = gy, T <t < 2T into rectangles of height
2log® T leaving possibly a rectangle of height less than 2log? T at the top.
Take one set of alternate rectangles and pick a zero each from these

rectangles whenever available. Now ) will mean summation over the zeros

e
thus chosen. Now we have

y+log2T 2T
® Y jz lpG+i)dt+ T )< | loG+it)de+ T T(log T) 2
e y—logsT T

< C@dY*** Tlog® T,
using (2) and

)'+10ng J+log2T
@ Y( [ le(+d+inde+T 1) <Z( [ perTes
Q y—log?T o - IDg r -

< 2og T I lop(1+8 +in)2dt+0(T™Y)
T

< (log T)°°,

using (3). Let M} and M3 be two fixed quantities, to be chosen later. Denote
by N, the number of zeros from the chosen set for which M, = M| and by
N, those for which M, = M?. From (8) and (9) we get

N M <C@|d*** Tlog® T and N, M? < (log T)*®
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s0 that
Ny S MTYC(@)|d*** Tlog® T and
We would choose M| and M) satisfying
M| = MZC@)|dV*rT

Ny < M5 *(log T)°°.

so that
(10) N+ N, < 2M5 2(log T)%C.
We observe from (7) that if we choose
My = (log Ty~ 2(C(e) |d) /2 +e q)~ (L 7 o0T MWO2 =0 +20

we would have included every zero from the chosen set either in N, or in
N,, since
1 —_ 0'0+ 5
32—0,+25

1-B+6
T 32—B+25

fOr a” ﬁ ,2 Ty
With this value of M) we obtain from (10) that

N1+ Ny < 2(log TYO(C () d| 1> +# Ty ~70 T 312 =00+ 24

The same estimate holds for a corresponding set of zeros from the other set
of alternate rectangles and each rectangle contains less than 2log? T(log T
+logld)) < log® T' zeros (using (5)) (this estimate holds for the left out
rectangle at the top also) and hence

Ne(oo, T, 2T) < 2(log T)7S (C(g) d) /2= Ty 770 32 c0m 23
Now
l—op+6 1-

—2
YI<a,+2 3= 20+0(5)

= (log T)™"
Ni(oq, T, 2T)

and we havg chosen § . Hence for 1/2 <oy <1,

< (C (&) |2 e T)4(1 o3~ 2ag) (log T)76.

We can how divide the interval (0, T) into, [T, 471 [T, B*T7,...
SLT/278, T/ with r < 21og T for 12" 2 Ty(a,). Alsa for (0, T/27] the
number of zeros is < C{oy) < (log T)"® if T> T, (vy) dl’]d the lemma is now
proved.
Remark 1. Here we have obtained explicitly the dependence of the
bound for Ny(a,, T) on d. Heath-Brown [1] has obtained the bound in

Lemma 2 with C(gy, K) in place of our 78. But he has a smaller exponent
for T when 3/4 < o<1 —¢.

icm
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Remark 2. Let X; be an extension of the field ¢ with [K,: @] =%
Then we have for 0> 1—k™% T2 Ty(s, K)
Ny, (3, T) < T2 7904719 (log T°
with C = C(K,) for k= 2.
Lemma 3. We have for 1/2 <

Y po{p—llog(p/x))

x<pSax

c<l, a>1,

a1

i 1—a)l
= x' 7 (log x)~* {Z(b—loga)wﬂ_i_

+(23inh (3(1—0)loga)\?

- )}+0(x1“’(logx)“1).

Proof. This follows from the prime number theorem in the form

9(x) = x+ O(x(logx)~?).

In fact we have

ax

S pclogp=9( u)u“’f +o [ S(u

b1x<p-<.nx byx byx

= x'"7(a' " =b{ )1~ 0) " + 0 (x' " (log ) 73),

—o—1 du

Also

5 "7 = ${w)u(logu) ! | +j {u= ' (logwy™*+

blx<p£ax 1* byx

+out"(logx)" ") S (u}du
=x!""(logx)" {(a'""=b; ") (1—0)" ' — -
—(logx)~Ha'"“loga—bl""logh)(1 ~a)" 1+
+(log x) " Ha' " —b1 ") (1—6)" 2} + O (x' 7 (log x)73).

Now the lemma follows by splitting the sum there to a™!
x < p< ax and applying the above estimations.

2 we have

log (s~ g)+ O (log |dt))

x < p<x and

LEMMA 4. For —1 <0<
log (x (s) = Z
HESTES1
with —n < Imlog(s—g) < xt for any t s the ordinate of a zero of {k(s). (Here
the summation is over those g = f+iy with [t—p < 1)

Proof. The proof is exactly similar to the proof of the corresponding
result in the case of Riemann zeta function. (See Theorem 9.6 (B) Titchmarsh

[71)



206 U, Balakrishnan

Now we start with the proof of the theorems, We have from (1)

oo

SmTINE)T™ =3 r(mn”t, o>,

pam n=2

(1) log Lk (s) =

where r{n) =0 for any » having at least two distinct prime factors and
r(m<2 for all n, since there can be at most two distinct prime ideals
dividing a rational prime p in a quadratic extension XK. Now for ¢ > 0,
0<a<1l—¢ we have by Lemma 2

: 1— (2 - 1)/(3-2
(12) Neloo, T) < 41! 770713~ 200)
whenever
1
(4~ 4 Zog ] —a—g -
(13) T> Tc')(o’oa E)_}_Mzm eota(2og -~ YL ~a—e)2eag m‘

Let us divide the rectangle 6o € o < L, T <t < T (5 = n{o,) to be chosen
later) into smaller rectangles of height T". The number of rectangles formed
is R = [T'""—1/2], leaving possibly a rectangle of height less than T at the
top. Consider the integers 1 < r < R, With é = 1/6 Lemma 1 inform us that
there are [6 ™ (R+1)] of these integers 1 <r < R with the property that
{our 8, =(2n)"* T"logp,.)

(19 [f{2m) " 'rTlog pall < 1/6 for 1sm< M,
We choose n and M subject to
(15) [6"MR+1)] > [67M T1-r] 5 4 7} HEr0m DG~ 2oal

Hence we have constructed more rectangles than the number of zeros (see
(12)) of {x(s) in 6o <1, 05t< T and hence there is at least one
rectangle in which {(s) is zero free and satisfying (14). Now (15) is satisfied if
n=h26,— D3~ 204), 0< b <a and

6 M=t ]

3— 200 log 6

Now we have a rectangle oy Ko <1, ry, T"—4 T <t <, T"+%T" for an r,
with 1 < r; < R, free from zeros of {x (s} and we can consider log { (s) in this
rectangle. Let to =7, T, s = 0o+il, and

1 +ien : et g u 2
I=7- | 10g§x(-s'o+s)(' . )e"*ds

27[1 = foa

r(n 1 1”"0 e —ea”™\? :
_._Z () - : e(ﬂmlogn)adsa

ne 211:11 i

using the expansion of log {x (s) from (11). Now move the line of integration in

icm
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the last integral to ¢ = 0 and we obtain

(17) I =Z€%% T (ﬁg)le(ﬁ—logn)itdt

o0 Nop

Z max (0, 2|a| — |8 ~logn|)
using the fact that
o0 M 2
§ (2smat) cos At dr = 2nmax (0, 2o —{4]).

ol

Now let t =log? T. We have

1+im

%S _pTus 2

(18) [ loglx(sy+s) (——3_) e ds ¢ eIl
1 kit

Hence with the error in (18) we can write the integral I from I —ir to 1+4iz.

Now move the line of integration to o = 0. On the horizontal sides the

integral is

) _e—a(a fir)\ 2

1 . em(a‘ tit i
(19) glog{x(so—l—criw) (——m—'—) Pl Ein gy

< el (log 1y +logld) T2,
using Lemma 4. Now from (17), (18) and (19) we get
T eia:t_e—iat 2 .
(20) jlogCK(so-Ht) (_——It—) &Pt dt

=2nY r(mn max(0, 2io|—|B—logn|) + 0 (% * ¥ (log T)~?).
We let a=1/2. Give the values f = —logx, 0, logx and multiply the
resulting equations from (20) respectively by $e” 1, ie'? and add
(corresponding to the first two values of § the > on right side is O(1)) to
obtain

j‘ log CK (So+it) (28!1’2(5/2)) (1 —i{f +log x) + 1 + 1 eL(ﬂ+Iugx)) dt

=2 Y

[log(njx)| 1

r{nyn” (1 —|log (n/x))+O{L+x(log T)"?).
Thus we have

L3 : 2
(21) Ree™i [ log {x(so +it) (ﬁ%@) (1+cos(8+tlog x))dt

=i Z r(n)n_ﬂocos(to log n)(l—|]og(n/x)])+o(1+x(log T)""z).

flog{nfx}} <1
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@
. | icm
ow

} (sin(tlf/z))2 (1-+cos{@+1log x))dr <2 ? (Sl—n(;/i))z d = 1.

—r o

Hence (21) implies that there is a #; with —7 <t; €1 for which

(22}  Ree logl,(s,+it;)

2t Y rmn "cos(tologm) (L —flog(n/x))+ O (1 +x(log T)™3).
[T ES
Let p be a rational prime such that there is a prime ideal p in K with
N(p) = p. We have for n = p*, p*,...
Y ormn <2 ¥ ¥ p~le

Jlog (nf=)} 5 ¥ psaxii2 122
e  txgplgax

e 3, ()
stz \L logp log p

< 14x7 7% 2x"¥/log x = O((logx)™*)  for o4 > 1/2.

On the other hand if p is such that N{p) = p?, a similar bound holds for
summation over n=p% p* p%... for ¢7! x < n < ex. Hence we can write
(22) in the form, for any real 8, we have a ¢, with —1 <, €t satisfying

(23)  Ree "loglg(so+ity)
23 _1‘2 r(p)p"“ocos(rologp)(lm|log(p/x)[)+0(1+x(logT)—z)'
e” tx€EpSex

Now using (14) we see that cos{tglogp) = 1/2 for all p in the above
summation if we choose x subject to the number of primes M in (e™ ' x, ex)
satisfying (16). Now (16) is satisfied if *
. a—-b 2a,—1logT
2sinh1 32, log6

(24) loglog T,

and with this choice of x the error term in (23) is Q(1). Thus (23) reads

Ree Plogy(sotit) >4 ¥

e xS pSex

r(pp " (1—llog(p/x))+O(1).

Now we observe that the prime ideals p with N(p) = p < X is asymptotic to
X/log X, thatis " r(p) ~ X/log X which is the same density as for rational

. PEX
primes. Also we have 8¢ (x) = ) log Np = x+0(x{log x)~3}. (The. number

Np€x

Extreme values of the Dedekind zeta function 200

of primes dividing d cannot exceed logldl/loglogld] which is less than
log T/loglog T by the choice of large T according to (13) and so would not
affect the density of prime ideals p for which N (p) == p.) Hence using Lemma
3 we obtain

Ree Plogly (so+ity) %{(WWZ sinh (1 - JO)/Z))l ~—~£} x'T%log x

1—a,

and using the value of x from {24) and choosing a = 2b = 2{1—¢)/3 we get
Theorem 1.

Towards the proof of Theorem 2 we make the following cbservations.
We assume Riemann hypothesis for {g(s) and so no zero of {g{s) lie on
g > 142, {t] > 0. Hence in the relation (15} we need » and M to satisfy

R -

Hence we can choose M = [{(1—n)log T/logé&] and the choige of x in (24)
becomes

x ~ 3(1-7)(cosech 1) log Tlog log T/log6.

Also we can take T" =log® T that is # =3loglog T/log T. By proceeding
exactly as in the case of Theorem 1, we get the relevant constant as

4(sinh?(1/4))(2(sinh 1) log 6)~ /2 —

for any 5> 0 provided T = T;(x) and we have proved Theorem 2.
Remark. We have in the case [K,:@] =k > 2thatfor 1 -k"' < ¢ < 1,
T = Tylog, K) and any real 8, there is a 1, such that 0 <ty < T satisfying

(25)  Ree "logly, (ga+ite) = C(K,, oo)(log T)' " (loglog 7)™ "°.

We have an analogue of Theorem 2 also, if we assume (g (s} does not have
zeros in the region o > 1 —k™ Y, |#f > 0, but with an implicit constant again.
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