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Automata and the arithmetic of formal power series
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i. Let p be a prime and denote by F a field of characteristic p. Then
F{(X)) is the field of formal Laurent series

f=f00= F AXY ki mez,

The ¢lement f is said to be algebraic (over the field F (X} of rational functions
over F}) if for some se N there are polynomials ag, a;,...,2,eF[X] not all
zero, so that _

o fSta fs 4 ... +a, =0

Denote by Z, the domain of p-adic integers. Each ieZ, has a unique
Tepresentation

A= % 4o Ael01,..,p=1}.
k=0

For each nonnegative rational integer n = Y m, p* we define the binomial
coefficients k=0

()= 1
nt’ =0\t

Since n, = 0 for all sufficiently large k, the product on the right is finite.
Furiher, we define

A < /'L n
(1+X)* 1= ,,;o (n)x .

Of course our definitions are theorems in characteristic p as one sees by
arguing naively:

(L4+ XP = 1+ X)™ = [T+ X% = [T(1+x7™

ARG A G)e

n=0k=0

In this spirit, given a formal power series

f=fx thX"
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thus an element of F[[XT], with f, = 1, we have

fi= M= = 3 (ﬁ)(f’— b

k=0 n=0
. A
Our definition of . 52 well-known congruence {see for example [7]).

One notices readily that the map i f* is continuous (in that elements p-
adically near to one another in the domain yield power series near to one
another in the formal power series topology); it follows that we have defined
a proper exponentiation,
We shall make a simple appeal to the theory of finite automata to show:
THEOREM. Let ¥ be a finite field of characteristic p and suppose
F=5 fiX"is in FI[X]] with fo=1 and [ s fy. Let 1 be a p-adic integer.
hz0
If both f and f* are algebraic then A is rational. (If A is irrational and f is
non-constant algebraic then f* is transcendental over F[X])

1. Finite automata. Formally, an m-automaton, m = 2, consists of a finite
set § of states containing a distinguished element i: the initial state, and
a subset F of acceptance or final states, related by a map o

{0,1,2,...,m—-11 x5~ 3§

o]
known as the transition function. A word ues |J {0, 1,...,
=0
be accepted by the automaton il p sends the state i to a state in F. This
s to say: set i= Xy, p=polty ... fh—y (e{0,1,...,m—1}) and define
Xy+1 = o{py, x;). Then p is accepted by the automaton if and only if x,eF.
The language .# of all words accepted by the automaton is described as
generated by the avtomaton. The words of ¥ may be interpreted as natural
numbers presented in the base m, so one might speak of a formal power
series

m~1}" is said to

LxXy=3 X"
ne#
as generated by the automaton. Moreover one might associate a symbol y;
with each state x;, in which case each integer i > 0 becomes a symbol, say f,,
on being read by the m-automaton. Then the formal power series

fXy= 3 fiXh,
hz0

or the sequence (f,), is appropriately described as m-automatic, L is the case
where the states in F have the symbol 1 and the states in S\ F have the
symbol 0.

Suppose now that m is a power of some prime p and that the symbols
are chosen to be elements of some finite field £ of characteristic p. Then it is
a theorem of Christol, Kamae, Mendés France and Rauzy [3] that fis
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algebraic over F(X) if and only if the sequence (f,} is m-automatic. It follows
readily from a theorem of Furstenberg [6] that the manner of choice of
symbols from F is irrelevant.

The following well-known result (see [t], [5]) is easily seen:

"Lemma. If the sequence f = (f;) is p-automatic then the subsequence { f o}
is {(ultimarely) periodic. 7

Proof. Consider words p"= 100.,.000 with h greater than |S], the
number of states of the automaton. On reading p" the automaton must reach
some state more than once. Hence the sequence ( f ) is periodic with period
of length at most |§].

CoroLLary. If f is algebraic over F(X), where F is a finite field of
characteristic p, then the subsequence ( f w of the sequence of coefficients is
periodic.

For a quite informal introduction to finite automata see FOLDS! [4];
note also the uncited additional references.

3. Proof of the theorem. Were

o0 A .
A+x7 =3 (n)X

n=

. 2
algebraic, then the sequence ((’ ) would be p-automatic, so by the Lemma
T

the sequence (( ))—(( )}—(A,,) is periodic. But then A=3 1,p" is

rational. Conversely if 1 is rational then of course (1+ X)* is algebraic.
For convenience, change notation to set

f=3 fixt
h=1

and suppose that both f and (14f) are algebraic with f = 0. Write
h(X) =(l+ X)*. We claim that if hof =g and both f and g are algebraic,
then so is i Indeed f has a right inverse, j say, with j(X) a formal power
series in some {ractional power of X. But since [ is algebraic so is j, and then
so is goj. Thus we have ho(fojf) = h = goj is algebraic (and since a priori
h(X) is a power series in X, the power series goj has no fractional powers).
But as already shown, h algebraic implies 4 rational

4. Remarks. The authors had conjectured (a special case of) the theorem
in [9]. There we note that in characteristic 2 one has

1+Xx)}= 3 X"
nef )
with % {1) the language of all integers u = H e 2 with 0 < e < Ay (and gy

=0 for all sufficiently large k). Thus: ./’(/1) is the language of all nonnegative
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o
integers ‘under” A= Y A, 2% Here we have shown that whenever AieZ, is
k=0
irrational then the language %(4) under 1 is not recognisable by a finite
automaton,
Our present theorem can of course be proved without appeal to the
theory of finite automata. Indeed the referee points out that A may be
approximated by a rational a/b:

lA—afbl, <p™™ with 4, |b] < p~

Then
(14 X)* = (1 + X)* (mod X*™

and given a polynomial P(X, Y) with zero ¥ =(1+X)* one readily shows
that, with k sufficiently large, the polynomial one constructs to vanish at
(1+X)* also vanishes at {1+ X)". Of course this is a significantly less el-
egant argument than the one we present.
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L. Introduction. Let d(n) denote the number of positive integers dividing
the positive mteger n. For every integer I = 3, recursively define an integer

sequence S(I) = {a,}i, by

(1) ag=1I, a4, =a+(-1d{g) for k=0.
For example, the sequence §(275) is
2 275, 28%, 279, 285, 277, 279, 273,

where the bar indicates that the sequence becomes periodic immediately after
the term 275, and that one full period consists, in order, of the terms 281,
279, 285, 277, 279, 273. We will show that every sequence contains only
integers exceeding 2 (see Proposition 1). If a sequence S(I) is eventually
periodic, we call the period a cycle. If there are » terms in the cycle, we say
that it is an n-cycle, or a cvele of length n. Thus, the cycle in (2) has length 6.

At the West Coast Number Theory Conference, held in Los Angeles in
December of 1977, we stated the following conjectures about these
sequences: _

ConiecTure 1. For every I, the sequence S(I) is eventually periodic.

Cownrecrure 2. For each n, there are infinitely many 2n-cycles.

ConsecTURE 3. The series ) 1/n, summed over all positive integers which
are elements of at least one cycle, diverges.

Comuecrure 4. Every element of a given cycle has the same parity.

In this paper, we establish that there are infinitely many 2-cycles (see
Theorem 1). This is Conjecture 2 for n=1. In addition, we show (see
Theorem 3) that Conjecture 2 follows from the Prime k-tuples Conjecture.

2. Elementary properties of the sequences S (/). Throughout this paper, m
and n will denote positive integers, and p will denote a prime. Proposition 1,

* This investigation was supported in part by a Research Development Fund Award from
the State University of New York Research Foundation.
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