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o
integers ‘under” A= Y A, 2% Here we have shown that whenever AieZ, is
k=0
irrational then the language %(4) under 1 is not recognisable by a finite
automaton,
Our present theorem can of course be proved without appeal to the
theory of finite automata. Indeed the referee points out that A may be
approximated by a rational a/b:

lA—afbl, <p™™ with 4, |b] < p~

Then
(14 X)* = (1 + X)* (mod X*™

and given a polynomial P(X, Y) with zero ¥ =(1+X)* one readily shows
that, with k sufficiently large, the polynomial one constructs to vanish at
(1+X)* also vanishes at {1+ X)". Of course this is a significantly less el-
egant argument than the one we present.

References

[1] J.-P. Allouche, Somme des chiffres et transcendance, Bull. Soc. Math, France 110 (1982),
pp. 279-285 (sec lemma at p. 281).

[2] A.Blanchard et M. Mendas France, Symmétrie et transcendance, Bull. Sci. Math, (2)
106 (1982), pp. 325-335.

{31 G. Christol, T. Kamae, M. Mendés France et G. Rauzy, Suites algéhrigues,
automates et substitutions. Bull. Soc. Math, France (08 (1980} pp. 401-419,

[4] F.M. Dekking, M, Mendas France and A. I, van der Poorten, FOLDS! The
Mathemutical Intelligencer 4 (1982), pp. 130-138; H Symmerry disturbed, ibid., pp. 173-181;
1T More Morphisms, ibid,, pp. 190-195, ’

(51 S. Eilenberg, Automata, Languages and Machines, Vol A, Academic Press, 1974, (see
proposition 5.1, p. 24),

[6] H. Furstenberg, Algebraic functions over finite fields, J. Algebra 7 (1967), pp. 271-277.

[71 N.Kobtitz, P-adic analysis; a short course on recent work, Cambridge U.P.; LMS Lecture
Notes 46. 1980 {note p. 15).

{81 I.H Loxton and A.J. van der Poorten, Arithmetic properties of the solutions of a class
of functional equations, J. Reine Angew. Math. 330 (1982), pp. 159~172.

(9] M. Mendes France, A. . van der Poorten, Automata and p-udic numbers, in: Théorie
des nombres, Colloque de Luminy, 1983, (Unpublished manuseript).

SCHOOL OF MATHEMATICS AND PHYSICS
MACQUARIE UNEVERSITY
NORTH RYDE, NEW SOUTH WALES, AUSTRALIA

UER. DE MATHEMATIQUES ET D'INFORMATIQUE
UNIVERSITE DE BORDEAUX [
. TALENCE. FRANCE

Received on 17.7,1984
and in revised form on 2{.2.1085

icm

ACTA ARITHMETICA
XLVI (1986)

Ap iteration problem involving the divisor function*
by

Craupia Sriro {Buffalo, N.Y)

L. Introduction. Let d(n) denote the number of positive integers dividing
the positive mteger n. For every integer I = 3, recursively define an integer

sequence S(I) = {a,}i, by

(1) ag=1I, a4, =a+(-1d{g) for k=0.
For example, the sequence §(275) is
2 275, 28%, 279, 285, 277, 279, 273,

where the bar indicates that the sequence becomes periodic immediately after
the term 275, and that one full period consists, in order, of the terms 281,
279, 285, 277, 279, 273. We will show that every sequence contains only
integers exceeding 2 (see Proposition 1). If a sequence S(I) is eventually
periodic, we call the period a cycle. If there are » terms in the cycle, we say
that it is an n-cycle, or a cvele of length n. Thus, the cycle in (2) has length 6.

At the West Coast Number Theory Conference, held in Los Angeles in
December of 1977, we stated the following conjectures about these
sequences: _

ConiecTure 1. For every I, the sequence S(I) is eventually periodic.

Cownrecrure 2. For each n, there are infinitely many 2n-cycles.

ConsecTURE 3. The series ) 1/n, summed over all positive integers which
are elements of at least one cycle, diverges.

Comuecrure 4. Every element of a given cycle has the same parity.

In this paper, we establish that there are infinitely many 2-cycles (see
Theorem 1). This is Conjecture 2 for n=1. In addition, we show (see
Theorem 3) that Conjecture 2 follows from the Prime k-tuples Conjecture.

2. Elementary properties of the sequences S (/). Throughout this paper, m
and n will denote positive integers, and p will denote a prime. Proposition 1,

* This investigation was supported in part by a Research Development Fund Award from
the State University of New York Research Foundation.
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below, implies that the sequences §(f) are well-defined (ie. that none of the
a, are negative or Q).

Proposition 1. If 1223, then a, = 3 for ail k.

Proof. This result is true by inspection, for 3 <7 <8 If 1 29, and
a, =9 for all &, then the assertion is clear. If [ =9 but there is a k with
a, <9, let m be minimal subject to a,<9 By (1}, m is odd, and
Gy = Oy —d{a,. (). But since a,,_, = 9, and since d(n) < 2 \ﬁ for all n, we
have

Chy = a‘m-—lmz\/amwl 23

The proposition now follows from its truth for [ with 3 <1 <% =

The next proposition is an approximation to Conjecture 4.

Prorosrtion 2. If n is fixed, and the numbers comprising a 2n-cycle are
sufficiently large {perhaps depending upon n}, then these numbers have the same
parity.

Proof. Let a be the minimal number in a 2n-cycle, and let b be the
maximal number in it. Since d(m) is odd if and only if m is a perfect square,
it suffices to show that the cycle cannot have any squares in it if a is
sufficiently large. By (1) and the weli-known estimate d{m) =o(\/ E) as m
—+ o, we have a < b < a+\/;1 il a is sufficiently large. Hence, the cycle
contains at most one square. But if it contained exactly one square, then
when we started on a4, and ran through the 2 terms of the cycle, we would
find exactly one parity change, contradicting the fact that a = a (mmod 2). We
further remark that after the sequence hit the square and changed parity, it
could not hit the same square again without first undergoing a second parity
change. Hence, the cycle contains no squares, and the result is
gstablished. = )

Conjecture 4 asserts that we can delete the condition from Proposition 2
that the terms of our 2Zn-cycle be sufficiently large.

E cg_cjes with minimal term less than 100 are

3,5, 35,7, 6,10, 10, 14, 11,13, 12, 18, 17, 19, 22, 26, 29, 31, 34, 38,
35,39, 41, 43. 44, 50, 51, 55, 58, 62, 59, 61, 60, 72, 65, 69, 70, 78, 71, 73,
72,84, 82, 86, 84, 96, 87, 91, 91,95, 92, 98, 93 97, 95, 99, 96, 108.

L)

3. Statement and proof of the main theorem. By definition, I is the
smallest integer in a 2-cycle if and only if d (1 +d (1)) = d(J). Accordingly, we
will be able to deduce the existence of infinitely many 2-cycles from the
following theorem.

Treorem 1. For x = 3,

#in<xdnrdi) =d(n » x(logx)~".
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Our method of proof depends on the construction of a certain
7

polynomial with integer coefficients of the form f(m) = [] (b,m+c,). We
=1

will then apply results derived from sieve methods to show that for
arbitrarily large positive integers m, there are two factors b,m+c, and b;m
+¢; (with the subscripts h, j possibly depending on m), such that both factors
are squarefree, and have the same number of prime divisors. Thus, d(b, m-+¢y)
will equal dib;m+c;). We will then multiply the bym-+c¢, and b;ym+c; by
appropriate quantities, to obtain our integers n with d(n+d{n)) = d(n). This
method was recently exployed by Heath-Brown [37, to establish that

#ln<x dny=dn+1) > x(logx)™".

It is necessary to note that for that result, it was harder to determine the
coefficients of the appropriate polynomial, and that his procedure for
choosing those coefficients is very different from the procedure we use here.
Again apart from choosing the polynomial, this method was first employed
by the author (see Theorem 4.3.3 of [4]), to show that d{n) = d(n+ 5040)
infinitely often. _

The next lemma is central to the determination of the coefficients of our
Fm).

Lemva 1. For each je!0,1,2,3,4,5,6,7,8 and each ke{75,
125, 375, there exists a positive integer | < 10% such that

() Jd(h =2k,

(i1} no prime excezding 11 divides L

Proof of lemma. We present the integers ! in the following table.

k=75 k=125 k=375

i=0 22.34.52 5* 354

j=1 2¢-3 -5° -3 -5* 2%-32.5
i=2 23852 27-3%.5% 2.3 .57
i=3 2*.3 -5% 293 -5% 26-32-5%.%
i=4 2+.32.5% 275 26-3 -3%7
Tj=5 2°-3 5% 28.5%7 28-32.5%7
i=6 29.32.5% 2352 28-32.5¢
i=1 283552 0.3 210325811
et 2%-3%.54 2t.3.5% 210-3-5%-141

By inspection, these values of ! satisfy (ii). The purely numerical verification
of {i) for each ! 1s left io the reader. ®

We remark that these numbers were computed by hand, by examining
multiples of small powers of 2. The reason for choosing {75, 125, 375} as our
set of possible values of k will be clearer after the proof of the theorem, and
we will discuss it at that point.
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Proof of theorem. First, observe that
(3) C,=210h—~11 is prime, for h=1,..., 7.

(In fact, 210 h~11 is prime for 0 < h < 10, although we will not need that
information here.) Let

(4) pl = 139 pZ = 17: p3 = 19) P4. = 239 ])5 = 29, p,s = 31, p7 = 37

By the Chinese Remainder Theorem, there is a solution s> 0 of the
simuitaneous system of congruences in m

(5) . 1IC,m+1=pp* " * (mod p37%%), h=1,...,7.

Here, the exponent 157499 = 210-2-3-53—1 is chosen to enable us to apply
Lemma 1 at a later stage (see (19) and (23}429), below). Set

() gy =[N Cps+1]py 1374%°, h=1,..,,7.

Then each g, is a positive integer satisfying

(7) (Qha 11 ph) = 1.
Put
ki
(8) A=11 H p’1’57500.
h=1

We claim that
9 (Chd, g =1, h=1,..,1.
In view of (6) and (7), it is enough to show that if 1 <j <7, and j+ &, then
py X dw By (4),
Ci I Cys+ 1]~ C, [T Cys4+1] = 210(j— h) & 0 (mod )
Since s is a solution of the simultaneous system (5), p; divides 111 C;s5+1.

Hence, p; cannot divide 11! C;s+ 1. Therefore, (6) yields Py X gy, as asserted,
Consider the polynomial with integer coefficients

;
(10) flmy =TT (25 *°7%%° Cy Am+ q,).

=1

We will show that there is no prime p such that p|f (m) for all m. Indeed, it
follows from (4), (8) and (9) that f(m) is never divisible by any prime less than

. 38. If p> 38, then (9) implies the existence of at most one solution of the
congruence

py 157490 ¢ Am+-q, = 0 (mod p).

Iteration problem involving the divisor function 219

Hence, there are at least p—7 > 0 solutions of

J(m) = 0 (mod p),
and our assertion follows.
We state the sieve result which we will use to regulate the number of
prime divisors of the factors p, '374%° Am-+gq, of f(m), as the next lemma.
Lemma 2. Let o, B; (i=1,2,..., T} be integers satisfying
7

(11) (I1 =) I1 (ufo—o,B)+#0.

i=1 1€u<uE7y

Assume also that for every prime p, there is an m jor which

(12) g(m) = l_—l {o; m+ B;) # 0 (mod p).

Then for any integer N > 0, we have
#m<x: (gm), Ny=1, ulg(m) # 0, o{g(m) < 27} » x (log x)77,

where u denotes the Mébius function, and w{m) is the number of distinct primes
dividing m.

This lemma follows from Theorem 10.5 of Halberstam and Richert’s
book [2], as improved by Xie [5]. We have stated the special case of these
results where g(m) has 7 linear factors. The general statement is given as
Lemma 2 of [3].

We apply the lemma with f(m) in place of g(m) (so that g
= p 137499, 4 and B; = g;), and with N = 1500l. We have already shown
that the second condition of this lemma holds. Clearly, since there is no fixed
prime p dividing any of the factors ¢;m+f;, we cannot have «,f8, =a, f,
unless a, = +a, and B, = +f,. By inspection, we do not have §,=+§,,
here, for u # v. Therefore,

(13)  # {m<x: (f(m), 1500) = 1, u(f(m) # 0, (M) < 27} » x(logx) ™7

Let M > 0 be any integer satislying
(14) p(f(M)#£0, o(f(M)<2T, (f(M), 1500)= 1.

We claim that there are h, j with 1 < h < j <7, possibly depending upon M,
such that

(15) w(py ¥4 CLAM +qy) = w(p; 17 *7 C;AM +q)).

Indeed, if there were no h, j satisfying (15), then we would have

ki 7
1z olft)=Y op T CAM+q) > Y i=28.
i=1 : i=1"
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Furthermore, this argument shows that we can choose /i, j so that

(16) w{py T C AM +q,) = w(p T CiAM +4q) = ¢,
with

(17) 1<1r<6

Since pu(f(m)) # 0, (16) yields

(18)  d{p VT C AM +q,) =d(p] T AM 4 q)) = 2

From (4}, (18), and the last equation in (14), it follows that

(19)  d(CLAM +pi*7*% qp) = d(C, AM - p}P 7499 g ) = 20412103 57,

From (3) and the final equation in (14), we can conclude that

(20 d(CH(Cp AM +pi57%9% g)) = d (C,(C; AM + pE37499 )
=272.210-3-5%,

Furthermore, it follows from (6) that

(1) CH(Cy AM +pi37%%9 g) — C(C; AM + pl37%%% gy = C,— €.

Redefine h and j if necessary, so that C; > C,, and set

(22) r=C(C;AM +pi? 7499 4}
Hence, (20), (21), and (22} yield
(23) dir) =d(r+C;—-Cp) = 2'7*-210:3 - 5%,

We will verify that there is a posilive integer /, bounded independently
of r, such that n = rl satisfies d(n+d(n)) = d(n). The idea is to arrange that

{24) (GGl =l = (C—C) I = 21722103 -5 d())

(the fizst equality being, of course, trivial). By (3),

(25) C;—Cy = 210u,

where

(26) I <u<eé.

Substituting {25} into (23) yields

27 d(r) = d(r+210u) = 22210+ 3-5%,
Furthermore, equation (3) and the last condition of (14} imply that
{28) (AU, =01, r+210u) = 1.

By Lemma 1, there is a positive integer [/ < 10% none of whose prime factors

icm
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exceed 11, such that
{29) d(h) = 22%2-3-5%u,

for all integers t and u respectively satisfying (17) and (26). Let n = rl. Then
(23), (25), (27), and (29) imply that
(30) d{ny =d(n+{(C;—Cp) 1) = 210ul =(C;—C) 1.
Therefore, d(n) = d(n+d(n). Since n =rl, | < 10%, and there are only finitely
many choices for h and j such that (13) holds, we can deduce the theorem
from (21}, (13), and our choice of M.

At this point, we will indicate why we chose the ranges of j and k as we
did in the statement of Lemma 1. As seen from the sentence containing (29),
we never needed the lemma for j = 0. However, if we replace 157499 by
78749 = 210-3-53—1 in (5), then Lemma 1 permits us to consider a
polynomial with 8 linear factors in place of the f () which we chose. If we
make this change, then we are required to restate Lemma 2 for polynomials
with 8 linear factors. Halberstam and Richert [2] (see Theorem 10.5, and
Table 3 on p. 285) proved results containing Lemma 2 with 7 replaced by 8
in (11), (12), and the final inequality, and with 27 replaced by 34 in that

g

inequality. Since Y i= 36> 34 (compare with the inequality preceding (16)),
i=1
this result is sufficient to obtain the weaker estimate
# g x dn+dm))=d(n)} » x(logx)~%
Hence, Xie's improvements are unnecessary, if we merely desire to show that
infinitely many 2-cycies exist.

Secondly (c¢f. the sentence containing (29), and the derivation of (30)), we
needed to choose a set of the form {38, 5B, 15B} for the range of k, where
B is a positive integer. The choice {75, 125, 375} = [3-5% 5% 3-5%), with
B = 25, was motivated by the relationships

3=3%4(3Y, 3-27'=3/d(3), S5P=5%d(5%, 5°-27%=5%d(5Y),
and the fact that (3, 5) =L

The limit of the current method of proof is the replacement of 7 by 2 in
Theorem 1 {cf. Theorem 10.5 of [2]). Making this improvement by these
methods amounts to proving the Twin-Prime Conjecture, or establishing a
related result of equal difficulty. On the other hand, any pair of twin primes
is an example of a cycle. We belicve that the number of cycles with minimal
term not exceeding x is substantially greater than the number of twin primes
p, p+2 with p < x. Bearing in mind that } 1/p, summed over primes such
that p+2 is prime, converges [1], we have stated our belief about the
number of cycles in the form of Conjecture 3.
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For completeness, and because the argumént is much shorter than
Heath-Brown’s proof that d(n) = d(n+1) infinitely often, we will present
Theorem 2, below. By using 7 linear factors instead of the 8 that we used in
Theorem 4.33 of [4], we have reduced the constant 5040 to 2520 with no
extra work.

THEOREM 2. # {n< x: d(n) = d{n+2520) » x(logx}™7,
Proof Let
= (11, 17, 23, 29, 41, 47, 53],
and put

Sm)= ﬂ (sm+1).

sef

" Then Lemma 2 implies that
Gl # {m<x: p(f () 50, w(/ (m) < 27, {f (m), 601) = 1} » x(logx)™".
Let M be any positive integer such that

u(f (M) # 0, w(f (M) <27, {(f (M), 60!) = 1.

By the same justification that was used to establish the sentence containing
(15) in the proof of the last theorem, there exist 1, d& § such that y < 6, and

o(pM+-1) = w(dM~+1).
Since the primes y, § are in S, (f/(M), 60!) = 1, and p{f (M) # 0, it follows
that & —912520, and that

2520 2520
d(*g:;)d(é(}lM—k 1)) =d (5_“},)4()'(51\4-% 1).

We can now conclude from the multiplicativity of 4 that

d(N)=d(N+2520) for N = ;29-;:-(5M+ 1).
_:\]p

The theorem is now an immediate consequence of (31). m

4. A conditional proof of Conjecture 2, In this section, we prove that

Conjecture 2 follows from the Prime k-tuples Conjecture, which we state here
for convenience. ‘

Tue PriME k-rupLes CONJECTURE. Let ol key, BN, be integer
Sequences with no w; equal to 0. Suppose that for every prime p, there is an
n with

k
[T (yr+) % 0 (mod p).

Then there are infinitely many n such that o, n+ B is prime for all i.
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For related conjectures, see pp. 1-2 of [2].
Tueorem 3. The Prime k-Tuples Conjecture implies Conjecture 2.
Let N be any fixed positive integer, and set P= {] p, where the

product runs over primes. Consider the polynomial #<28+3
N~1
h(m) = [] (m-+2kP){m+(2k+3)P).
k=0
Choose primes po < p; < ... < p3,-; exceeding 2N 4-4. Then by the Chinese

Remainder Theorem, there is a unigue solution § to the system of 2N
congruences in m

(32) m+2kP=p3f?~t (modp3f’?), O<kgN-1;
(33) m+(2k+3} P = piay! (medpyid ), O<k<N-2:
(34) m+2N+ 1) P = pfFY2P 1 (mod pifY29):
(35 m=1 (mod P).
Pui

2N=-1
(36) "E=P [] p.

k=0

Define the linear functions I ({m), 0 < k< 2N~1, by
3N Ly {m) = piy P2 (Em+ 8+ 2kP) = Lo m+ ptyy,
(38)  Lopsy(m) = piy PR (Em+S+(2k+3) P) == Aoy s M+ Loks1s

<k N=-1;
(39) Loy_i(m = pby T YPP(Em+S+( AN+ 1) P) == Aoy m+ fay—1-

From (32)-(34), (36)(39), and the definition of P, we can conclude that 4,
and p, are integers for 0 < k< 2N -1, and that

0k N-1;

{40) p AL (m)  for all k, m.
We claim that
(41) My ) =1, O<k<2N-1.

Since E/J, is a power of the prime p,, (41} will follow from (40} if we show
that

(42) pX(E, 1) for all p# p.

If p <2N+3, then (37), (38), (39), and the fact that S satisfies (35) imply that
pX . We remark that (36) now gives

(43) (Lym), Py=1 for all k, m.
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If p==p; for some j, then (32}, (33), and (34) yield p/S. But then, we can
conclude from (36}440) and the inequality p;> 2N+4 that pru. We
remark that (36) and (43) now yield

(44) (Ly(m), E)y=1 for all k, m,

and that (42) now follows from (36).
Let

2N-1

= ] Le(m).
k=0

We assert that for every prime p, there is an m such that p ¥J(m). For
P < 2N+ 3, this assertion is an immediate consequence of (43). If p = 2N +3,
then by (41), there is at most one solution to the congruence [, (m)
= 0 (mod p) for each k. Accordingly, there are at least p—(2N—1) >0
solutions to J(m) 2 0 (mod p).

Therefore, if we assume the validity of tbe Prime k-tuples Conjecture,
then there are infinitely many m such that

L.(m) is prime for all k.
For any such m, it follows from (37) and (44) that
d(Em+S5+2kP) =3P, 0<k< N—1.
Similarly, we can conclude from (38), (39), and (44) that
d(Em+S+(2k+3) P) = Ok N-2;
d(Bm+S+@2N+1)P) =(2N+1) P

Consequently, when | = Em+S, the sequence S(I) = fa;}i o referred to in
the introduction is given by

a = Em+ S+ 2kP if  i= 2k (mod 2N), 0k N—1;
=Em+S+(2k+3)P if i=2k+1 (mod 2N), 0 kg N—1,
The theorem follows.
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