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i. Galois cubic case. Let K be a Galois cubic extension of the field of
rational numbers @ such that exactly r primes ramify in K/Q. Then if Dy is
the discriminant of K, we have

(1.1) ’ Dy = (fp)*
where fi-is the conductor of K and satisfies

P Py with distinct primes p; = 1 (mod 3) if 3 y Dy,

12) fy = S . .
(1.2) fx {9;;1 ... P~y  with distinct primes p, = 1 (mod 3) if 3| Dy.

Let Ay denote the 3-class group of K; ie., the Sylow 3-subgroup of the ideal
class group of K. Then the 3-class rank of K is given by rank Ay
= ding, (Ag/AD), where Fj is the finite field with three elements, and we are
viewing the elementary abelian 3-group Ag/Ag as a vector space over Fj. It
is known that t—1 < rank A, < 2(t—1). (See [9], Satz 30.) So we may write

{1.3) rank Ag =t~1+¢ with 0<e 1.

We consider the following question: how likely is rank A¢ =t—1, rank Ag
=1, rank Ag =t-+1, etc.? To be more precise, we proceed as follows: for
each positive integer ¢, each nonnegative integer ¢ <t—1, and each positive
real number x, we let

(14) 8., = {Galois cubic extensions K of @ with exactly ¢ ramified
primes and fy € x};
(1.5 S ex = 1Ke 8, rank Ay = t—1+c}.
Then we define the density d;. by
St
1.6 d . = lim —*=.
( ) by £mc0 iSt;xi

Here |S| denotes the cardinality of a set 5. So d;, specifies how likely it is for
rank Ay = t—1+¢. The following result is proved in {6], which depends on
cakculations in [5].
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Prorosimon 1.1 {cf. [6], Proposition 3.1). Let t be a positive integer, and
let ¢ be an integer with 0 < ¢ < t—1. Let d,, be defined by equation (1.6). Then

i 1Nt kL
dic*[ I (“gﬁ'i‘—?)]@' Y [T 3"
j=1 il+"'+l('—l-"c&(' y

s=1
wugl g2 0

Cororrary 1.2 (¢f. [77). Ler notations be as in Proposition 1.1, Then

23]

3oetet 1) l"{ (1 __3‘“J')

limd,, = H]"":”H for c=0,1,2,...
| de #] H (1__3'1)
J=1

In Table I of the appendix, we list some values of . We note that ¢
=0 is most likely for all r. Hence for a Galois cubic field with exactly ¢
Tamified primes, the most likely 3-class rank is r—1.

L Preliminary results for pure cubic case. Qur goal for the pure cubic
case is to obtain results amalogous to Proposition 1.} and Corollary 1.2,
Some of the techniques we shall use are very similar to the techniques we
used in [5], [6], and [7] to handle the Galois cubic casé, and hence
sometimes we shall refer the reader to these references rather than repeal
lengthy arguments that appear in the references.

Let L be a pure cubic extension of Q; ie, L= @(n'?) for some cube-
free integer n. Suppose exactly r primes are totally ramified in L/Q, and let
D; denote the discriminant of L. Then

(2.1) Dy = ~3(g,)*

where g, satisfles

with distinct primes p, = +1 (mod 3)
if n= 41 (mod 9),

with distinct primes p; = +1 {mod 3),
e="1or 2, if ng +1(mod 9

Pro Dy

2
&

dr =

I

‘3"1)1 D

{cf. [2]. Section 4). Since

L i=o( ¥ 1)

Ay | KX Pl B

it suffices to consider g, == p, ... p, with distinct primes P = L Ll(med3) in
our counting arguments. We relabel the primes as follows:
(2.3) gr= Py Pudusy --- 4, with each p;= 1 (mod 3)

and each g,= —1 (mod 3).
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For convenience we assume p; < p; if i < j, and ¢; < g; if i < j. Of course we
may have some g, < p;. We note that
(24) n=pt gt g
If { is a primitive cube root of unity, then in Q(f), each p, = m; #;, where 7,
and % are prime elements in Q({) with %; the complex conjugate of ;.

Next we let Ay denote the 3-class group of L. In [3] and [4] we have
specified algorithms for computing rank A;. In this paper we shall use the
algorithm in [4], Theorem 3.6. (Remark: The ¢ in [4] corresponds to t+u in
this paper) We thus have

(2.5) rank A, =t+u—1—rank M,,

with each ;=1 or 2.

where M, is a certain malrix of norm residue symbols. Using the notation of
[4], we let F=0Q() and K = F(n'?). Because the extension K/F is a
Kummer extension, we can replace the norm residue symbols by cubic
Hilbert symbols to obtain the following matrix M,.

M, = [m;{j]’

(—-f—j’ 1 ) for
(T 12)

X, 1
Y X f
i ((ﬁi,'z)) o

Sp fi
((CL - ) ) o

4 it j=0,

-7 s
ﬂ—jnj lf

1<i<t+u—1,0<j<u,

where

i=1,3,5,...,2u—1 and 0<j<wu,
i=24,6,...,2u and 0<j < u,

2u+lgig€rdu~1and 0<j<u

and

Each element of M, is {9 (', or £% and we view M, as a matrix over Fj.

The cubic Hilbert symbol (ﬁi—ﬂ), for example, is defined by

(“Y!i !(../.,F),,wa - ('fjt ”\),Iw,
(m) ()

where (1\?"7- K-)/-P-) is the norm residue symbol.
T

Let M, be the (¢t +uhx(u+1) matrix over ¥ whaose first (t~+u—1) rows

, . {xpn
are the same as the rows of M, and whose (t-+u,j) enfry is (&” ) for
1

0 < j < u. The product formula for Hilbert symbols implies that the product
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of the entries in each column of M, is 1. It then follows that rank M,
= rank M,. Now standard properties of cubic Hilbert symbols show that

(xf’ n) = (xj’ n) for all j.
(7) (m)

(See [8] for basic properties of Hilbert symbols.) So rows 2, 4,..., 2u are the

same as rows 1, 3,..., 2u—1, respectively. Hence we may delete rows 2,

4,..., 2u from M, to obtain a new matrix M, where M is a t x(u+ 1) maltrix
over F; with rank M = rank M, = rank M. Explicitly

(2.6) M= [mi_i] ’

where each mye W = [{% (', {*] is defined by

1I€i<n 0gjgu,

X;, 1 ) ;
(——"-«») for 1<ig<u, 0<sj<u,

(7}

(2.7 ¥ . n
("’ ) for u+l<i<gt, 0Kj<u,
{q)
{ for j=0,
(28) xjm{njﬁf for 1<j<u,
and n is given by (2.4).
We let

(2.9) ¢ =u+}—rank M.
Then the analog of equation (1.3) is
(2.10) rank Ay =t—24¢ with O<csu+l.

For each positive integer ¢, each nonnegative integer ¢ <r+1, and each
positive real number x, we obtain the following analogs of equations {1.4),
(1.5) and (1.6):

(2.11) 8, ={pure cubic extensions L of Q@ with exactly ¢

totally ramified primes and g, < x};
(2.12) Siex = {LeS,,: rank Ay =t—24¢};

. S cixl
(2.13) d,, = lim 110

X o0 ISt;xl .
Thus our goal is to determine the density d, ..

3. Certain asymptotic formmnlas for the pure cubic case. Let notations be
. the same as in Section 2. We can now employ techniques similar to those we
used in [5], Sections 3 and 4. The following lemma is the analog of Lerama 1
in [5]. ' '
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Lemma 3.1 Let g, be given by equation (2.3). Then there are 2™ pure
cubic extensions L of Q with the same discriminant Dy = —3(g,)%

Qur next step is to introduce certain characters related to the Hilbert
symbols {cf. [5], p. 198). If x; is given by equation (2.8} and » is given by
equation (2.4), then if 1 <i<y, 1 <j<u and i #j, we have

() )- 2
() (m;) () B (ms) ’

where (---)E‘L-)c—: W is the cubic power residue symbol defined by

()
Fﬁjf:ﬂ 1/3_(.xf 13
( () )xj - @)xj’
F(x}“)/F

and (W—E—)m———)@ Gal(F (xj®}/F) is the Artin symbol. Similarly
i
(J_) - (L)
(4) () .

x;\7!
L) = (‘f) . 1<j<u
for all ideals / of F relatively prime to (x;). The conductor of 4; is (p;}; in fact,
A;{(7t)) = 6(p;), where @ is a cubic Dirichlet character with conductor p;. In
the matrix M we then have

We define the characters

Gl (%")’1)“'1?((“”) for I1<i<u, 1<j<u, I#],
and
62) (%;3’3)_=,1;ff((qi)) for w+l<i<i 1<j<u.

Next we note that for 1 €igu, 1<j<u, and i+, we have
(mﬁ) - (;f;.a.,ffi) - (Ln) _ (__P_) _ ( _E_)
S\ (my) (m) () () (7)

where (’(-EL)-)E W is the cubic power residue symbol defined by

)
(ﬂpllm)/‘F)pys = (,EL) 1/3
(7!1) ' (ﬁj) S

3 Acta Avithemetics XLV (1986)
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F{pi"YF

where ( =)

)e Gal(F (p{/?)/F} is the Artin symbol. Similarly
(u) - ( _fh_)""
en {m;) .

A
co,-(I)=(€—') . Igi<uy,

We define the characters

for all ideals I of F relatively prime to (p;(1—{). The conductor of the
character «; is {p;(1—{}) for some integer [, with 0 </, <3 (cf. {17, p. 91).
Similarly we define the characters
a4 .
wJ(I):(T): u-{-l;{tﬁ._!,
for all ideals 1 of F relatively prime to (g,(1 —{)). The conductor of this w; is

(q,-(l-—(:)t") for some integer I, with 0 < 1 < 3. In the matrix M we then have

(33) (’?n)”)= wfi(m) for 1<i<u, 1<j<u, ik),
and

Xj, 1 o
(34) (TJ&“)M) = ((n) for wu+l<gigr, I1<j<u.

For j=0, we have
[t ) - p?") (e ) _ (_Q)
(m;) {m) (m;) @),

. . xO: n (: T4
Similarly ( @ ):(@) . We define the character A, with conductor
i i

(10 by Ao(h) = (%)

for all ideals I relatively prime to (1 —¢). So

(3.5) (%f)=zgf((ni;) for 1<i<u;
(3.6) N ("(‘;‘)”)ﬁg‘((q,.)) for u+rl<i<t.

Finally we note that the (j, ) entry for 1 <j<u is determined from a
knowledge of the other entries in the jth column because of the product
formula. (Remark: By comparing the matrices M and M 2, we nole that for
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fixed j with 0<j <wu, the product of the squares of the (i.j) entries for
1 € i< u times the product of the (i, j} entries for u+1 <i < equals 1)

Now let G be an arbitrary ¢ x (u+ 1) matrix with entries in W such that
for fixed j with 0 <j < u, the product of the squares of the (i, j) entries for
1 < i< u times the product of the (i, j) entries for u+1 <7<t equals 1, Let

3.1 S, (G)="LeS,,: the matrix M associated to L equals G|

(cl. equations (2.6) and {2.11)). Suppose we consider one pure cubic field L, in
S,.AG). We may write L, = Q(n} ') where

ry = (T (gL (g
with each p}’ = 1(mod 3), each ¢{'= —1(mod 3), and 1 € «}' < 2 for each i. As
usual we suppose p < pj if i < j, and g;' < ¢f if i < j. However we may have
some g’ < pY. So we write the prime factorization of n, in the following way:

ny =Py . (p)¥  with primes pi < ... < p,

1 € « < 2 for cach i, and exactly u of the p{ = 1{mod 3). if pi = 1(mod 3), we
recall that p} =77 in Q({). Now let

(3.8)  §,..(G, Ly) = {L=Q(n'™)e §,(G): n has prime divisors
Py < ... < p, owith p,= pi{mod3) for 1 <i<1j.

We shall obtain asymptotic formulas for |S,. (G, L;)| and |S,(G)|. (Remark:
Our asymptotic formula for |S,..(G, L)) will be the appropriate analog of
Lemma 3 in [5])

Now suppose p, # 3 and p; # 3 are rational primes with p, < p;; and
suppose 1 < 4, <2 and 1 € a, < 2. If p, [resp, pid is congruent to 1(mod 3),
recall that p, = m, %, [resp., p, = m; &, in Q({). Suppose that at least one of p,
and p, is congruent to 1({mod3). Then we define

3.9 .
(A (m), o {(m))e Wx W if  p=p=1(mod 3),
By Prs 1) = Ap)eWw if  p.=1(mod3), p= —1(mod 3),
1“":" ())eW i po= —1{mod3), py= 1 (mod 3).

We also define | '

1 {mod 3},
—1 (mod 3).

i

a; i
(3.10) By (P) = {’10 () ¥ p

A;! ((Pr)) if p

Now suppose L=@Q(n'%), where n=p{' ... p’ with primes p; < ... <p,
and 1 < g <2 for each i. Then from equations (3.1) through (3.10), we see
that Le S,.(G, Ly) if and only if

(i) p;= pi(mod 3) for 1 /<15

]
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{ii) 'hak,al(p,c, m) = haba,(p,", ) for 1<k < <1 whenever at least one of
o and p, is congruent to 1{mod3); and

i) A, (p) = ha;(pj) for 1 €1t

Suppose at least one of p, and p; is congruent to 1(mod 3). We define
ool oo (Pes P) = ha i, i)

5{' /3 (p ’ p) = {
ear i T 0 otherwise.

If both p, = —10mod 3} and p; = —1{mod 3), we define d, , (p. p) = 1.
For | €1 t. we define

! if hu, (m) = ha;(f’;);

) =
(P %0 otherwise.

Then we have

(301} 18, (G, Ly
1
= 3 Zﬂ 2 Yy ... ¥ Y,
pr&xtt T ppepyypp - D Pr— 1 SO SXpLpy ey
Py imed 3) paw p'z(mnd 3 n a‘:p;(mml 3)
where
2 j“‘l
(312) Y:r = Z 5tl_f(pj) n (')“ij-“j (pij! pj) fOl’ .] = 25 3“‘ ot
ij"'*l

”j=1

(ef. [5], equations (4) and (5)). Then we can proceed to obtain the following
analog of Lemma 3 in [5].
© Lemma 3.2.

1S:x(G, L))

_ 1 1 x(loglogxy™! x (log log x)' ~*
7. =D+ T (t—1)! log x -+ log x ,

where t is the number of totally ramified primes in L/Q, and u is the number of

these torally ramijied primes that are congruent to 1(mod 3),

Bemark. The formula for |S,.(G, Ly)| is valid for every rx(u+1)
matrix G having the properties listed in the discussion preceding equation
{3.7), and the formula is valid for every L, in 84 (0G).

We shall briefly describe in an intuitive way how the factors in the main
term in Lemma 32 arise (cf. [5], p. 202 Each 3 ,‘,J(plj, p) =1 with
probability 1/9 if py=p;= L{mod3), with probability 1 if p, = p =
—1(mod3), and with probability' 1/3 otherwise. Each & ( _uj i

- ’ aj [)J) == 1 with
probability . 1/3. All of these & terms combine to contribute the factor

. : 2
4...1 v
- 1347 Bach sum Y, contributes a factor of 2, but each congruence
. : : aj=1 ] ’
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condition p; = p;(mod 3) contributes a factor of 1/2. We thus get the factor
271(1/2) = 1/2. Finally we note that

T o1 1 x(loglogxy~*
{t -1} log x '

pyo-ppEX
Py sy

The actual proof of Lemma 3.2 is quite lengthy, but the ideas required are
the same as those used in proving Lemma 3 in [5]; hence we refer the reader
to [5] for details. We remark that a key part of the proof is showing that
x(loglog x)'~*"
log x )
From equations (3.7) and (3.8) and from the remark following Lemma
3.2, we have the following result.

various character sums are o(

t
CoroLrary 3.3. |5, (G) ~( )lS,:x(G, L)), where (

t
u u
coefficient (£l ((t—w).

Now recall that G is a ¢ x(u+ 1) matrix with entries in W = {{% %, {7}
such that for fixed j with 0 <j < u, the product of the squares of the (7, j)
entries for 1 € < u times the product of the (i, /) entries for u+1<i<1t
equals 1. Thus G is determined by the entries in its first (t—1) rows, and

) is the binomial

those entries can be arbitrary elements of W. For t a positive integer,

nonnegative integers 1 < t and ¢ < u+ 1, and x a positive real number, we let

(3.13) Stuem = Kg S4.(0).

where G ranges over all these special 1 x{u+ 1) matrices such that rank G =
u+1—c when G is viewed as & matrix over Fy. Then

(314) |S(.u.c;x| ~ N!“‘ 1+ 1,0 lSr;x(G)Iw

where N, .+1. is the number of {t—1) x{t+1) matrices over F; with rank
=u+1—c. (When t=1, we define Ng,p.=1 if c=u+l; otherwise
Ngu+1,e = 0) Finally using equations (2.9) through (2.12) and equation (3.13),
we have ‘

!
(3.[5) |S¢‘¢;x| = Z |Sr,u.r;x|
u=0
and
LT ‘
(3.16) 1S = 3, 81
e=0 .

4. Density results for pure cubic case. We let notations be as in previous
sections. OQur goal in this section is to compute the density d,, given by
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equation (2.13) and to compute lim d,,. From Lemma 3.2, Corollary 3.3, and
| Sl ]

formulas (3.14) through (3.16), we have

’ N,_ 1 x(loglogx)~1!
4.1 Siernd ~ (f) = Latle
“.H ! !’c’l ”§0 uf 234 DD (t—1 log x
and
Ly N 1 x(loglogxy~!
42 S, ~ () (—1lutle | i
4.2) Sl Eo [,;, ) 2307 DR (p ) log x
We recall that N,_y .. is the number of (r—1) x(u+1) matrices over F;
i+1
with rank = u+1—c. Now we nole that Y N,_j 41, = 379" the total
. =0

number of (r—1) x (u+1) matrices over Fy. Hence formula (4.2) becomes

i

1 1 x(loglogx)y™!
(4.3 8, ~ ’) '
) i ,,gﬂ (u 2 (-1 log x

t
Now if we sum all binomial coefficients, we have Z (r) =2'. So formula
i

(4.3) becomes -~ o u=0

1 x(loglogx)™!

(44) lSr:xl ~ 2"_1'
(t—1}! log x

Then using equation {2.13) and formulas (4.1} and (4.4), we have

!
(45) df.c = Z br.u ,ﬂ—l,u*—l.c:
u=0

where
46 by = (')»2-'

H
and

Nl-—l,u+ 1,
(4.7) -t 10 = '37;:1“55,7,7)5

I
We note that b, , is a binomial probability, and Y b, = 1. Also /.,
) o u=9Q |
is the probability that a randomly selected (t—1}x(u+1) matrix over F,
has rank =wu+1—c. I c>u+1, then fi_ o .=0 I ¢ =u+1, theﬁ

W e

LICISIIEN ) I=CHINS FUBKS Uf PUIC LWL jreies P

Srovmrte =37YTOTD 0 e u, we can use [10] to get

f _ 1 u-c (3u+1_3i)(3t~l—i_~1)
i=latle - Dk D S (3E+1_1)

3{11—c+ I+ 1y, 3(r~:)(n—c+ 1)~ (u=—cu—c+ 1)j2

Q= DT 17, 30— ¥ Dia—c+ 23 x

U= (1 _3£—u—1)(1m31‘+1“1)
L S Ty
e (1_‘31'—11-1)(1_31‘4-1—:)
i=0 (1-3771)

= 3—c(c+t-u—2)

We let j=u+1—i. Then for 0 e <y,

u+1 _a=} a2—j={r-uw
(4.8) f;—1,u+1.c33_£(c+’—w2] H (1-37)0 -3 )

j=e+1 (1"'3"’:_“‘2]

So we obtain the following result.

TueoreMm 4.1, Let t be a positive integer. Let d,, be the density of pure
cubic extensions of @ with t totally ramified primes having 3-class rank equal
to t—2+c¢ among all pure cubic fields with t totally ramified  primes. Here
0<Lcgt+ 1. Then

d!,c = Z (t)_z—l '.f;—l,u-t-l,ca
1]

y=0 M

where (r) = ()t —1); fiv tu+1,c IS given by equation (4.8) if 0 < c <y
U .

] '3—-(!—1}(u+l) if
1—1lu+i,ec 0 z_f

e=u+1;
c>u+l,

in Table II in the appendix, we list some values for d,. Suppose we
have a pure cubic field with exactly ¢ totally ramified primes. For t =1, ¢ is
equally likely to be 1 or 2, and hence the 3-class rank is equally likely to be
0 or 1. For t = 2 and 3, the 3-class rank is most likely to be t-—-1.Fort =24,
the 3-class rank is most likely to be t—2. '

It remains to determine the behavior of d,. as t becomes large. Before
computing limd,,, we examine certain subclasses of pure cubic fields. For

i—ren

0o <t, we let

S = { Le§,,.: exactly v of the totally ramified primes

in L/Q are not congruent to 1(mod3)}.
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- Then we let
5S¢ = LeS®: the 3-class rank of L is r—24¢.
We define the density 4% by

NG
49) A = lim o

So A® tells us how likely it is for a pure cubic field with exactly ¢ totally
ramified primes, exactly » of which are not congruent to 1{mod 3), to have 3-
class rank equal to i—2+4c. From Sections 2 and 3 we see that we can
replace 1S by [S,;-veud- (See equation (3.13)) Also we can replace (S{1)] by
Y ISy~ ne:- Then from Lemma 3.2, Corollary 3.3, and formulas (3.14), (4.7),

and (4.9), we get
(410) . Agnc) =ﬁ—lz-—v+1c~

i ¢ € i—v, then using equation (4.8), we get
t=p-ki g 2= j-u
@11 g ooty

— 3—c(c+u—2} H

e T

- (e 1 3“( Hl)(l_:; e 1) (l_m'J,"l‘li)
I e A 1__ - o -
[j=111. )] (1 36 ttu- 1)(1 et _'.(1_3"1

We now have the following result.

Proposimion 4.2. Let t be a positive integer and v a nonnegative integer
with v < t. Ler AY) be the density of pure cubic extensions of Q with iotc‘zll‘y
ramified primes, v of which are not congruent to 1(mod 3), having 3-class rank
equal to t —2+c among all pure cubic fields with t totally ramified primes, v of
which are not congruent to 1{mod3). Here 0 < ¢ < r+1. Then 4% is given by
equation (4.11) if ¢ < t—v; 4 = 3~¢-Du-r+d) ch =t—v+1; and A? =0 if
¢> t—v+ 1. Furthermore if ¢ and v are fixed, then

o

g-elete~2) H (1__3-—_1)

i=etp=1

lim 4% =

o IT (-39 *
: i=1

(If ¢ =0, the factor n (t=3"7) is omitted.)
J=
Remark. In SCCUOH 1 we observed that Galois cubic fields with exactly
t ramified primes have 3-class ranks =t—1+¢ with density ], given by
- Proposition 1.1. Also lim d;, is given by Corollary 1.2. Suppose we let v = 1

[ae =]
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and ¢ = ¢~ 1 in Proposition 4.2. S¢ we are considering pure cubic fields with
exactly r totally ramified primes, exactly one of which is not congruent to
1{mod3). Such fields have 3-class ranks equal to r—1+4¢" with density
AL, From Corollary 1.2 and Proposition 4.2, we have the interesting
result that lim 482, = limd;, for ¢/ =0, 1, 2,... Furthermore by induction

=0 teren

one can even show that A%}, | =d . for all rand 0 < ¢’ <t—1. So as far as
our densities of 3-class ranks are concerned, the set of pure cubic fields with
exactly ¢ totally ramified primes, exactly one of which is not congruent to
1{mod 3), provides a perfect analog to the set of Galois cubic fields with
exactly ¢ ramified primes.

In equation (4.11) if we keep ¢ fixed but require v -+ oo in a certain way
when t — oo, we obtain the following result.

Prorosrmion 4.3, Ler notations be as in Proposition 4.2, Suppose o is a
jtxed real number wirh 0 <a <1 If et v <, then

{1 if =0,

lim 49 = .
M=% i e>o0.

Ty
Remark. So for example if « = 1/4 in Proposition 4.3, then vz ar
means that the number of totally ramified primes not congruent to 1 (mod 3)
is at least 1/4 of the number of totally ramified primes. Since the 3-class rank
is t—2+4-¢ with density A% for a pure cubic field with exactly ¢ totally
ramified primes, exactly v of which are not congruent to 1(mod3), we se¢
from Proposition 4.3 that the 3-class rank is very likely to be r—2 if t1is
large and v = at for some fixed a > 0.
We finally return to the calculation of limd, .. Here we must consider
1=
ali nonnegative integers u and v such that u+v =1r. However Proposition 4.3
is a key resuit we shall need for our calculation. We start with equations (4.5)
through (4.7). We let X, be the random variable which takes on the value u
(for 0<u<1{) with probability b, (see equation (4.6)). A standard
calculation shows that the binomial random variable X, has expected value
t/2 and standard deviation /— t/2. For large t, X, is approximately normally

distributed. Since the standard deviation f t/2 is much smaller than the
expected value 1/2 for large ¢, then if

B(j)= Y b, (the cumulative probability for X,

IESTEF)
we can choose ¢ sufficiently large so that (1—B,(31/4)) is arbitrarily small.
Now we write d,. = R; + R, with ‘

R= ¥

[LENTRET Y=

ha‘u .fr- T+ i.c
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Table [. Values of ],

Ry = z br,u.ﬁ—l.u-l—l.c' ¢ 0 \ 7 3 4 3
HA<ust ; . k
Suppose ¢ > O is given. We choose a positive number 7; so that for 1 > 7, ; f-ggg;’gg _—
{1—-B,(3t/4)) < ¢/2. 3 855967 142661 001372
4 845400 152642 001957 1.9x 1078
Then since f,_ .41, 1. we have 5 841921 155911 002165 2Bx107%  29x 1070
[ 840766 156995 002236 31x 107 43x107'" 49x1071?
Ry< 2 hu=1-B(1/4) < &/2. 7 | 840381 157355 02260  32x10°° 48x107: 73x107'S
My <ust 8 840253 157475 002268 33x10°°%  50x1071% B2x107'?
Now suppose ¢ > 0. With v = t—u, we see that v > /4 in the sum R,. So 9 | 840210 gz’”zg ggi%;g 3-2“0: 2?*12:1: Z?xig:i:
from equation (4.10) and Proposition 4.3, we can choose a positive number E? 840196 4573 D02272 - 3310 axl o
T, so that for t 2 T, fioq+1c < &/2 for all 0 u<3t/4 if ¢> 0. Then for 15 840189 157535 WI272 33x10°F  S1x10°'0 86x 1071
1z T, :
Ri< S by, (e/2) = (/2) B (31/4) < /2 20 240189 157535 002272 33x107%  51x107'" Bex 107V
L of =] e of L .
0<us3n4 :
we . o 840189 157533 002272 33x107°  51x10710 86 107!S
Then for ¢t = max(T}, To), d,. = Ry + Ry < ¢ if ¢ > 0. If ¢ = 0, then we choose
T, so that for t2 T, fiojuele> 1—(/2) for 0<ug /4. Then for
t 2z max(Ty, 1),
Ri> T bl /2)) In Table 11, r denotes the number of totally ramified primes in a
! 0<ug 34 . E \ pure cubic field; ¢ is the integer such that the 3-class rank of the pure

cubic field is {—2+c¢; and d,, is the density defined by equation (2.13),
= (1~(¢/2)) B, (3t/4) > (1~(5/2){1 —-(8/2)) > 1 ~&. Also d, , = limd,,. '

So for ¢t 2 max{T}, T;), we have d,, = Ry + R, 2 R, > 1—¢ if ¢ =0. Hence o

we have our final result. '

TuroreMm 4.4. Let notations be as in Theorem 4.1. Then Table 11, Values of d,

limd,, = Ly e=0, e 0 ! 2 3 4 5
toen 0 i e>0. {
1 0 500000 500000
Remark. Galois cubic fields and pure cubic fields present an interesting 2 166667 527778 296296 009259 o
contrast. For every ¢2 0, limd], > 0 in the Galois cubic case. ssible 3 -333333 483025 177012 006611 1.9x1
Yozt A o 0 So all possible 4 | 488160 403880 104140 003797  14x107% 44x107°
o . -t -
3-class ranks r—1+c¢ for 0 < ¢ <1 occur with densities that do not go o 5 619782 317720 060444 002046 80 10_: 33107 ;
Zero as t — oo, Yet in'the pure cubic case limd, , = . 6 J24413 239735 034769 001079 42x107°  18x107
_ P © ,IS ve = 0 for all ¢ >0, and hence 7 803828 175718 019888 000564 22x107° 9610710
for the 3-class ranks greater than t—2, the densities go (o zero as t— o, 8 862217 126155 011333 000294 1LIx107® 49%107'°
9 904203 0R9203 006441 000153 56x1077 2510710
10 933914 062353 03653 000080 28x1077  1.2x1071°
APPENDIX :
15 990389 009399 000209 30x107°  94x107%  40x107'R
In Table I, r denotes the number of ramified primes in a Galois cubic ;

: : * —? -10 . - 13
field; ¢ is the integer such that the 3-class rank of the Galois cubic field is 2(? 994683 001305 800012 1210 3x10 1.3x10
t—1+c; and dj, is the density defined by equation (1.6). Also d,,, = lim d. . o | 1.00000 0 o 0 0 0

[adv ¢l .
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Galois representations of Iwasawa modules
by

Rosert Gowp and Manonar Mapan (Columbus, Ohio)

1. Introduction. A finite group of automorphisms of an algebraic function
ficld of one variable over the complex numbers operates in a natural way
on the space of holomorphic differentials. The representation thus obtained
was given by Chevalley and Weil [1]. Iwasawa [5] obtained analogous
results for p-adic galois representations in number fields. In his sitvation,
L/K is a finite p-extension of Z -fields of CM-type and Gal{L/K) operates on
Ap, the minus part of the pclass group of L. Iwasawa determined the
representation on A; &, @, (Th. 4, Th. 5). His immediate object was to give
a proof of a theorem of Kida [6]. The classical Riemann—Hurwitz genus
formula and the well-known orthogonality relations on characters are the
critical tools in the treatment of Chevalley and Weil. Kida's theorem is an
analogue of the genus formula and it can be proved easily. In Section 2, we
give a unified proof of Iwasawa's two theorems in the spirit of Chevalley and
Weil, This is Theorern 2. In the special case when [L:K] = p, we determine
even the integral representations, i.e. the structure of 4; as a Z,[G]-module,
G = Gal(L/K). This gives in parlicular the basis for induction in the proof of
Theorem 2. - :

In Section 3, we determine the modular representations in the case when
I/K is a cyclic p-extension and the module consists of elements of order
dividing p in A;. This result is analogous to the one proved in [4] for
function fields.

To generalize Theorem 1 to arbitrary p-exiensions is an interesting open
problert. For the special case when G is cyclic of order p? the
indecomposable Z,[Gl-modules have been classified. Using this, we have
been able to extend Theorem 1 to this case, Theorem 4 in Section 4.

We are particularly indebted to Alfredo Jones for the information
summarized in Table 1.

2. Let p be an odd prime. Let @, be the unique cyclic extension of
degree p"~! contained in the cyclotomic field of p™th roots of unity and Q,
= ) @, A Z,field is the composite of @, with a finite extension of Q.

n»0



