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0. Imtroduction. There are various inleresting results concerning the
equation of the title when {kie {1, 2, 4, 8, 16}, as one can see, for example, in
[12], Section D24, These are mainly results of Cohn, Ljunggren and Mordell.
However, to the best of the author’s knowledge, besides the tables of Lal and
Dawe [107], there are no results comcerning the title equation for other
integer values of k. :

It is easy (o see that if D, k are rational integers, then

(0.1) x2-Dy*=k x,yeZ

has at most a [inite number of sclutions ([17], p. 236), but, in general, no
practical procedure is known deciding whether (0.1) has any solutions and
finding explicitly them in case it actually has. In Section 1 of the present
paper we prove that if k is a positive integer, then for the solution of (0.1) it
suffices to solve a finite number of diophantine equations

0.2) glu,v) =A% u,vek,

where ¢ is a semi-real biquadratic form with rational integer coefficients and
A is a known integer. For such equations (0.2) the p-adic method, although
no proof guarantees its effectiveness, gives a tentative decision procedure,
which is comparatively easy to apply and ‘has good chances to work for
finding all solutions to (0.2) (and, consequently, to (0.1)), if any (see the
Remark following the statement of the Theorem of Section 1 and the
references mentioned there). ' -
The ideas of Section 1 are applied to a non-trivial example in Section 2,
where it is shown that for the solution of x*—3y* =46 it suffices to solve
three equations of the form (0.2). These three equations are solved in Section
3 and in Section 4 the complete solution of x* —3y* = 46 is given. Finally, in
Section 5 some details are given concerning the computation of the
fundamental ugits in the biquadratic fields appéaring in this paper.

1. On the solation of the diophantine equation x*—Dy* = k. We prove
firstly the following '
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Lemma. Let a, b, ¢ be given non-zero integers with {(a, b, ¢) = 1 and such
that the diophantine equation
(1.1) ax*+by* +cz* =0
has a solution (x,y,z)#(0,0,0). Then, we can find integers R;, S;, T,
(i=1,2), z,, depending only on a, b, ¢, satisfying the relations
(1.2) Ri+R, Ty =258, 8,
(1.3) §2~R, T, = —bczi,

and a non-zere integer A, depending only on a, b, ¢, such that: For every non-
zere solution (x, y, =) of (1.1), rhere exist integers Q, u, v and a divisor P of 4,
so that

Px = QR u>=2S, uv+ T, v¥),

S3—-R, T, = ~acz} .

Py = Q(R, u*— 28, uv+ T, v%).
Moreover, if the greatest common divisor of (x, y, z) is bounded, then an upper
bhound for @ can be found.

Proof. Put a=ay,4% b=5by,B
that (1.1) is equivalent to

2, ¢ =¢oC?, ay, by, co square-free, so

{1.4) ' ag(Ax)? 4 by (By)* + co{Cz)* = 0
Following Nagell ([191, § 61), let us put (aq, bo) = d, (o, o) = €, (bg, ¢o) =f.
Then -
o=@ =(efN=1
and
ap =dea,, bo=dfb,, ecy=efe;, Ax=fX, By=eY, Cz=dZ.
Thus (1.4) becomes
(1.5) _ arfX*+breYi+c,dZ?=0

which has its coefficients pairwise relatively prime and square-free. By
hypothesis, (1.5) has a non-zerc solution, say (x,, y,, z;) (see the remark after
the end of the proof). In the sequel we keep this sclution fixed. As it is well-

known (see e.g. [19], formulae 20, p. 225) there exist integers u, v, relatively
prime, such that

X
da = —al_fxl uz‘“"zbl ey1 uv«l—b; €Xy .')2’
{1.6) d:o:_* a, fy u? —Zalfxluu—bl ey, v*,

Z .
td»é =a, fz,ut+by ez, 02
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where d is the gcd. of the right-hand sides and Q =(X, Y, Z). In (1.6)
multiplication of the first relation by fBC and of the second by eAC gives
respectively

dABCx = Q(~a, f* BCx; u*—2b, ¢f BCy, uv+b, ef BCx, v?),
ie.

_ Px = Q(R, u® =25, uv+ T, v%),

dABC = Q(a ef ACy, t* —2a, ef ACx, uv—by e® ACy, v¥),
ie. '
Py = Q(Ryu? =28, up+ T, v%),
where the meaning of R;, 8;, T, (i=1, 2) and P is obvious.. Now
82—-R, T, =B*C*b ef*(b, ey} +a, fx}) = —B*C?b, ef *c, dz?}
= —B*C%bycy 27 = —bez?

and analogously we prove the second relation of (1.3). On the other hand, a
direct simple calculation proves (1.2).

Now consider the determinant 4° of the coefficients of 4% ww, v* in the
right-hand sides of (1.6). By the definition of d,

A'ut = 4'uw = 4'v? = 0 (mod d).

From (1, v) = 1, it follows that d|4". Since 4’ = —~2a, b, ¢, defz3, we conclude
that P = dABC is a divisor of 4 = 2a, b, ¢, def ABCz}.

Finally, since Q is a common divisor of 4x, By, Cz, it follows that if M
is an upper bound for the gecd. of x, 3, z then M(A4, B, C}) is an upper
bound for @.

By their definition, R;, S;, T (i = 1, 2), z; and 4 depend only on 4, b, ¢
and this completes the proof of the lemma.

Remark. Dedekind’s method for studying (1.1) (see eg. [19]), Theorem
113, [11], Theorem 91) is essentially an algorithm for the finding of a non-
zero solution of (1.1). Thus, a solution (xy, yy, z;) to (1.5) can be effectively
computed.

TrueoremM. Consider the diophantine equation

(Ln x2—-Dy* =k

where k and D are positive integers, no one of them a perfect square. Then we
can find a finite number of diophantine equations of the form

(1.8) glu, )=

where A is u known integer and ¢ is an integral binary biquadratic form, with
g(8, 1) = 0 having exactly two real roots, such that, if we can solve all of them,
then we can find all solutions to (1.7). '

u,veZ
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Remark. The basic thing in the above theorem is that g(3, 1) = 0 has
exactly two, real roots for every form ¢ in (1.8). For, let g be irreducible
(otherwise (1.8) is very easily solved). Then, working in @(8), we write (1.8) as
Norm (u—v8) = 4%, which is equivalent to a finite number of squations

(1.9) —08 = el el

where o runs through a finite set of algebraic integers of @ (9} with Norm (z)
= A% and ¢;, ¢, i5 a pair of fundamental units in some appropriately chosen
order of 9{%) (very often this order is Z [$], or the ring of integers of G (H):
see [2], Chapter 2, Section 3, Theorem 1). Now (1.9) is an exponential
equation in the unknowns m, n and there are two equations relating them,
which are obtained on equating the coefficients of 9% and §° in &}'+% to zero.
Thus, the p-adic method (see eg. [13], [15], [17], Chapter 23) can be
atternpted for the sclntion of (1.9).

On applying the p-adic method, a modest vse of a computer is often
indispensable (see e.g. [37], [51, [7], [8], [25]) but not always (see eg. [4],
[el, 193, [16], [24]). A different approach to (1.9) is found in [21], [22].

After solving (1.9}, ie. after finding all the algebraic integers of @ (9
which are of the shape u—p8 and have Norm equal to 47 {for the various 9s
and A’s arising from (1.8)), then we can find all solutions (x, y) to {1.7), for, as
it is seen from the proof that follows, y is expressed as a polynomial in u, v
with rational coefficients.

Proof of the Theorem. Let us put

D=¢e’d, d square-free> 1.
We work in Q (o), where
N7 if  d=2,3(mod 4),
B (1+/dy2 if d=1(mod4

so that an integral basis for Q@ (w) is Z [w]. Thus (dashes indicate conjugates),
yo|me i d=23(moda,
" l1—w if - d=1(mod 4)
and for a+bweZ [w] we have
' Norm({a+ bw) = (a+b&)) (a+ba)
far—db? if
4 +ab+(1 d)bz/ﬁt il

d= 2,3 (mod 4},
d=1(mod 4).
By (1.7}, o

(1.10) o ' Norm{a+bw}=4%. .
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where
{x, ey®) if  d= 2,3 (mod 4),
11 , b) = : ’
(1.11) (@ ) {(xn—eyz, ey i d=1 (mod 4).

Then (see the reference after {1.9)) there exists a finite subset K of Z [ew] and
a unit ¢ of Z[w], such that

Norm(p) =k  for every xe K, Norm{z)=1
and for every a+bow satisfying (1.10) we have

d+bw = +xs for some %cK and for some veZ.

For v=2N+j, je {0, 1} the last equation becomes
(1.12) a+bw = +us' 2V,
Now we put

we! = s+tw, & =mtnw, s,t,m neZ,

Norm(s+tw) =k, Norm(m+nw)=1,

and s, ¢t run through a finite set of values. Then (1.12} becomes d+bw =
+(s 4 tw) (m+ nw)®. Equating the coefficients of e in both sides and using
(1.11) we get

+ey? = fm? 4 2smn+tdn® il
+2ep* = tm? +2(s+ ) mn+{s-+(d+3)t/4)n*  if

d= 2.3 (med 4).
d=1 (mod 4),

which can be written respectively _
(1.13) —~(tm+sm)t 4 kn? + utey® = 0
(1.14) —(tm+(s+ 1) +kn? + 2prey* = 0

(d= 2,3 (mod 4)),
(d =1 (mod 4))

(4= £1). In these equatnons the unknowns are the quantities raised to the
square, Since, clearly, (m, n) = 1.it follows that the g.cd. of the unknowns is
1 in beth equations.

First consider {1,13). We apply the lemma with —1, k, pte in place of 4,

b, e, respeetively. Then,
(115) P{m-+sn)'=Q (R, u2~281ub-|-’1"lvz'j,
' Pn = Q (R, u*—28, uv+ Ty v?)

where (u, v) = 1. Here R, S;, T, (i=1,2) depend on k and te, __thcrefére
they run through a finite set of integral values. Note also that, in view of the
lemma, P and Q are bounded. Solving (1.15) for m, » and substituting in
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m? —dn® = 1 gives
[(Rl-st)u —2(Sy —s8y)uv+(T —s ) v* 1P —
~d(Ry tu? =28, tuv+ T, 1v%)* = 47

where A = Pr/Q. Thus we were led to an equation of the form (1.8), where
g(u, v) is the lefi-hand side of the last equation.
Now we study the roots of ¢g{9, 1) == 0. This equation is equivalent to
the pair of quadratic equations

[R, — R, (s+viw)] 92 =2[8; =S, (s+ vi)] 8+ [T — Ty (s +vtew)] =0,

v= 11,
In view of {1.3) we have
—R, T, = —pekz}, S3

from which, taking also into account (1.2), we find that the discriminants of
the above quadratic equations are

~Ry Ty = prezi

2uvet’*zfo(s+vot), v=+1, —1.

The product of these two discrimnants is —de”*z7 dk < 0, which means
that g(%, 1) = 0 has exactly two real roots.

In case of (1.14) we are led in an analogous way to a finite number of
equations

[(ZRI“2SR2""R2IT)N2—2(2S5“2582"‘8‘2 f)uv+
QT =25T; ~ T 0] —d(Ry tu* =25, tuv+ T t3)% = A2,

where now A = 2Pt/Q and d = (20— 1)%. This is an equation of the form (1.8) 8
and the solutions of g(&, 1) = 0 are the roots of

[R, — Ry (s+ta)] 82 —2[8, =S, (s+ t)] §+[T; — Ty (s +1cw)] = 0

and of the equation that results from this one on replacing w by w'. As

before, we find that the discriminants of the two quadratic equations are
2uttez}d?(s+tew) and  —2u?ez?d*(s+ 1)

whose product is —4t*e®z$dk < 0, Thus, again g(9, {) = 0 has exactly two

real roots and this completes the proof.
2. An application. The diophantine equation
(2.1 x* - 3y* = 46

treated by the method of Section 1.
A special case of (2.1) is

2.2) L X4 —4X? Y24 Y4 = 46,
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The biquadratic form in the left-hand side of (2.2) arises in the study of the
following problem (communicated to the author by R. J..Stroeker): Prove
that the product of three integers taken from any set of four consecutive
positive integers is never a square. This is closely related to some problems
on products of integers originated to P. Erdés, R. L. Graham and J. L.

Seifridge (see [23], cspecmlly p. 37). The above problem is easily reduced in
proving that

{2.3) X4 dX? Y24 Y4 = =2

has only the solutions given by (X, |¥]) = (1, 1).
Easy congruence-arguments show that the diophantine equation

(24) X*—dX?Y + Y =¢, ol <100

has solutions only when ce{~47, —32, —2,1, 16,46, 81}. The cases
¢ = —32, 16, 81 are trivially reduced to the cases ¢ =~2,1, 1, respectively.
For ¢ =1 it suffices to solve

2.5 x*=3y* =1,

This can be solved by a method suggested in Section 1 (of the solution
of {2.1) below). Alternatively, using a result by [junggren [14] we know
that (2.5) has at most two solutions with x, y positive integers. Since
{(x, vy =(2, 1), (7, 2) are solutions to (2.5), these are the only ones.

There 15 a rather elementary solution of (2.4) when ¢= —2 and it is
hoped that ip a future paper by R. J. Stroeker and the author this solution
will be presented together with a solution of the case ¢ = —47.

The case ¢ = 46 remains in (2.5) and, clearly, it suffices to solve (2.1) on
applying the ideas of Section 1.

Let = \/ 3. In Q{w) we have the ideal equation
(x+y2 @0} (x ~ ¥ ) = (1 +0)* (24 30) (2~ 30).

Therefore (x-y* w) = (1 +w)(2- 30)) The fundamental unit in @{cw) is 24 w.
On supposing x > 0 we have x+y?w > 0, therefore

(2.6) xtyto = (T+w)2+ oy im+nw), j=0or1

where m~ hw is a unit, so that (m, 3n) =1 and m, n are of opposite partitics.

I) If j=0 then +y* = m?+14mn-+3n* and the lower sign n‘nphes an
impossible mod 23 relation. The upper sign :mphes

(2.7). (M- Tn+p)(m-+Tn=y) = 460>,
Since m+7n and y are odd, we may put (m+Tn+y, m+Tn—y) ='2d, d odd.

Let p be a prime divisor of d. Then pjm+7n. On the other hand p%d6én?, so
that p|n. Therefore pjn and plm; a contradiction. Thus (m+7Tn+y, m+7n—p)

3~ Acla Arithmetiva XLVI {1986)
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=2 and without loss of generality we may suppose that m+7n+y
= 0 (mod 4). Now it follows from (2.7) that either

(2.8)

mATnty =e0? m+Tn—y=c2% n=2w, e¢=+1, (46u,t)=1

or
(29)
m+Tn+y =edu?, m+Tn—y =460, n=2uw, e=+1, (2u, 23v)=1.

From (2.8) we get m = 46u* — ldsuv+v?, ¢n = 2auv. On replacing eu by u we
get, in view of m?—3n* =1, -

(2.10) (4612 — 1duv + v —3 (2uv)* = 1,
ie.

(2.10) Norm (s —ud) = 1,

where .

(2.11) (82— 148446)* —3(28)* = 0

and this equation has exactly two real roots.
From (2.9) we get as before

(2.12) (2u* — 14up +230%)* — 3 (2u)* = 1.

Modulo 8 it is seen that u is even and then, modulo 16, that 4ju. Now, by
(2.12), (2u? — 14uv +23v%)+ 2uvew is a unit of Q(w) with an even coefficient of
o, so that it must be + an even power of 2+¢. Thus, we may write

(2.13) 2u? — 14uv + 23v% = &(a® +3b%), e==1
where a+bcw is some unit of §{w). By (2.13),,
—1 = ¢{a*+3b*(mod 8).

If e = 1 then a= 2 (mod 4) and b is odd. Since 4y, it follows that (2.13), is
impossible. If & = —1 then by (2.13);, a®+3b% = 1 (mod 4), so that 4 is odd
_and b is even, By (2.13),

uv = gab,

U —a

b v v

=

, (u,vy=1, wv odd.

Then u = By, b = Bv, a = — Ay, v = Ay and substitution in (2.13), gives
(A*+2BY) pu* —14ABuv +(23A4* +3BHv? = (,

which is impossibie, since the discriminant of this form in u, v is —234*
-6B*< 0. ‘

I) If j=1 then by (2.6), 9m?+34mn+27n® = +)?, which is written
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(9m+17n)* —46n* = +(3y)% clearly impossible mod 23 with the lower sign.
Therefore :

(2.14) (9m+ 17n+3y) Om+17n—3y) = 46n.

Let n# 0 (mod 3). Then (9m+17n, 3y) = 1 so that there are essentially two
cases to be considered:

(215) 9m+17n+3y =92u% 9Im+1Tn—3y = 2% n=2up, (46u,v)=1,
(2.16) Om+17n—3y = 4602, - L (u, 230) = L.

Next, let n= 0 (mod 3). Then, by 9m*+34mn+ 27n* = y? it follows that 3|y,
therefore 9n. Put y = 3y, and n = 9n,, so that (2.14) becomes

Om+1Tn+3y = 4u?, n= 2uw,

(."n‘]' 17”1 +y1)(m+ 17”1 _yl) = 46”%,

where the factors in the left-hand side are relatively prime. Thus, there are
essentially two cases to be considered:

(21T m+1Tn +y, =92u% m+17n, 3, =20% n, = v, (46u,v) =1, ‘

(218) m+17n +y, =4, m+17n, -y, =460%, 0, = 2w, (2u,23v) =1,
Consider (2.15): 9m =46u*—34up+v> and mod 3 it is seen that

u+v =0 (mod 3). Thus, we put v = 3w—u, so that

(2.19) m = wi—12wu+%% n=6wu—2u®

and substitution in m*—3n® =1 gives

(2.20) {(W? = 12wu 4 9u?)* — 3 (6wu— 2u?)? = 1,
ie. '

(2.20) Norm(w-—~ud) =1,

where

{2.21) (92~ 128+9)*—3({69-2)* =0

(exactly two real roots).

Now consider (2.16): 9m = 2u*—34ur+23p* and mod 3 we sec that
u= v (mod 3). Put u = v+ 3w so that m = 2w?*— 10wy —v? and n = 6w+ 20%
As in the case of (2.12), we see that +(m-nw) is a square of a unit a4+ bw of
Q(w), so that '

(222 2w ~10wu—v* =e(a*+3b%), e

On the other hand, m?>—3n® =1 implies 4w*—40w?p—12w? b2 — 52w0° —
~11v* =1 and mod 8 it is seen that w is odd. Since v is odd we easily
see mod 16 that we = 1 (mod 4). Then, by (222);, —1 = £(a®+3b?) (mod 8).

eab = 3wp + 0%,
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Ifz =1 then a= 2 (mod 4) and b is odd, so that (2.22), is impossible rhod 4, )
If £ = —1 then a®>+3b%=1(mod 4) and a is odd, b is even. By (2.22),,
Em"—3w+u=£s (Ju'a V):—‘-' 1! 244 Odd’
, v —b v -

so that a = Ay, v=Av, b= —Bv, w=(Bu- Av)/3, Substitution in (2.22),
gives (9A4%+2B%) u—34ABuv+ (2342 +27B%v? =0, which is impossible
since the discriminant of this form in g, v is negative.

Next consider (2.17): m = 46u” —34uv+v%, n=18uv and m*—3n*= 1
gives

(223) _ (v* —34vu -+ 46u?)* ~ 3 (18w)* = 1,
ie.

(2.23) Norm (v—ud) = 1

where :

(2.24) (92 ~348+46)2~3(189)% = 1

{exactly two real roots).
" Finally, (2.18) js impossible, as it is seen when we work as in the case
of (2.16).

Thus, in order to solve (2.1).it suffices to solve (2.10), (2.20) and (2.23).

3. The solution of (2.10), (2.20) and (2.23). As in Section 2, w =./3.
Consider (2.10). Put ® = (6+14w)"/2, so that in (2.11) § = T+ o +@. We
work in the order Z[1, w, @, w@3}. By (2.10)

(3.1 (v—Tu)—uw—u@ = +:si'eh,

where &;, & is a pair of fuondamental units. Such a pair is (see Section 3)

g =17+4w+1460 + 80w, &, =2+w.

Now we work p-adically with p = 61. A calculation shows that
(32) £°=1+61300-210w), &%= —1-61- 27w (mod 61%).

Put m=60M+r, n=30N+s5 0<r <59, 0<5<29. By (3.1}
(um7u)~uw¥u@ = +¢&} &} (mod 61),

- therefore in (e} the coefficient of @w must be zero (mod 61) and the
cocfficients of w and ® must be congruent (mod 61). A search in the
computer showed that the only pairs {r, s) satisfying both conditions
are (r; 5) = {0, 0), (30, 15). The second pair must be rejected, for, in this case
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m is even and n is odd. On the other hand, &?=1, s2= ~1 {mod 4),
therefore by (3.1),

(v—-Tu)—uw—ul = +¢, = +(2+ ) (mod 4),

clearly impossible. .
Thus, m = 60M, n=30N and in view of (3.2) we have the 6l-adic
expansions .
M=[1+612( )1+ 612( Yo -+[61-30M +612( )]@ -+
+[—61-21M+61%( }]Pw,
+e3% = [14+612( )]+[61-2IN+61%( Yo

where every ( ) above stands for some 61-adic integer. Then, equatmg of the
coefficients in (3.1) gives the 6l-adic system

~2AM+  +61()=0, |-21
30M+2IN+61( ) =0, 30

By a well-known result of Skolem ([20], p. 180; see also footmote p. 500
of [3]) (M, N)=1(0,0) is the only solution of the system, proving that
{m, n) = (0, 0) is the only solution of (3.1).
We conclude therefore that (u, v) = (0, 1) is the only solution to (2.10).
For the solution of (2.20) and (2.23) we work in Q(®), where now
O = (54 +34w)""* and

9_{6+3w+@

0
27[ = 0 (mod 61).

in case of (2.207-(2.21),
in case of (2.232.24).

We work p-adically as before, but now it is convenient to take p = 11. A pair
of fundamental units in the order Z[1, w, @, Gw] is

£y =863+498w+810 +470w,
{see Section 5), with
g =1+11(20 +50w),

17+ 9% +36

& = 2""0}

gi=—1-11-30 (mod 11%).
(2.20} and (2.23") are respectively equivalent to
(33)  (w—6u)—3ud—u® = +elel, (v—1Tu)—%uc—3uOnm = +&"el,

In both cases we put m == SM+r, n=5N+5,0 < r, s <4 and we see that in
&} ¢ the coefficient of @w is zero (mod 11) and the coefiicient of ¢« is 3 times
the coefficient of & (mod 11). It is readily seen that (r, s) = (0, Q) is the only
pair satisfying both conditions and as before we find an 11-adic system in
M, N, which has as its only solution (M, N) = (0, 0). Thus, in both relations
(3.3) we have (m, n) = (0, 0), proving that (u, w) = (0, +1) is the only solution
to (220) and (u, v) = (0, +1) is the only solution to {2.23). :
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4. The complete sclution of x*—3y* = 46. We return to Section 2. From
(210} 4 =0, v =1 and then (2.8} implies n=0, m+y =0, m—y = £ 2, s0
that [y =1 and [x] =7

From (2.20), u =0, [w| =1 {{t| = 3) and then from (2.19), n =0, m =1,
while. from (2.15) 3m+y =0, 3m—y =26, ie. y=—3 and |x/ =17. In an
analogous way, (2.23) produces the solution y = =3, |x| =17.

We have thus proved the following

TugoreMm. The only solutions to x*—3y* =46 are given by (x|, |
=(7,1), (17, 3). ' '

CoroLLARY. The only solutions to X*—4X? Y24+ Y* =46 are given by

_ (X1, 1Y) = (1, 3), (3, 1).
5. The fundamental units in the orders of Section 3. Consider the bi-

quadratic field K=0(@), &= \/a+b\/m, where a, b, meZ, m>0,
ﬂéQ, a+bﬁ> 0, ct-«bﬂ < 0. For any ze K we denote by o, a”, "
its algebraic conjugates {¢" is real and o”, @ are complex-conjugates). We
have used the following result of Berwick [1], conveniently formulated here
(see also [26]): Let R be an order of K containing the ring of integers of
Q(ﬁ]. Then, the set E ={e: sunit of R, e > 1, ¢l < 1, |8"| € 1) Is a diserere
non-emply set. Let ¢y be the minimum element of E and ¢, > 1 the fundamentul
unit of Q(ﬁ). Then &7 = +eq or £1. If g8 = +1 and 8, <&, and
\/‘géR, then €, &, is a pair of fundamental units in R.

The above theorem can be immediately applied for the quartic fields
appearing in Section 3. The search of the units ¢, was made with the aid of a
personal computer (Apple). The algorithm used is similar (but rather simpler)
to that used in [25]. In both cases the g, found satisfied g, &) = 1.

Alternatively, we can use Theorem 7 of Section 12 of Nagell [18]. Note
that in Nagell's notation, the Q(®) s of this paper belong to class 7
{Théoréme 4 of [18]).
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