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ACTA ARITHMETICA
XLV (1986)

On powers of the theta-function greater thap the eighth
by

Marvin E Knopre {Philadelphia, Penn.)

L. Introduction. The powers of the classical theta-function

o

(1) & (’C) = Z em‘nzr :. 1 ) Z em‘nzr’ Imt > 0n
fa=1

n=r o

have been the object of a good deal of attention since early in the century,

“both because of their connection with the problem of the representation of

integers by sums of squares (integral powers) and because of their intrinsic
interest as modular forms (arbitrary real powers). A powerful approach to
the study of @*(r) when ¢ > 4 {and even for an interval of values s < 4, but
this is another, more complex, maitter) is to compare it with the related
Eisenstein series

. 1 - .
@ ¥,() =53 T (M)(er+d) 2,
defined for te .#, the upper half-plane. (The notation in {2) will be explained
in § 2, below.) Once one has shown that ¥, is a modular form with formal
properties precisely the same as those of @, standard results from the theory
of modular forms yield a formula for r,(n), the coefficients in the expansion
of @

o0
(3) O t) =14 Y ri(ne'™, teH.
n=1

The formula is exact when 4 < 5 <8 and asymptotic for s > 8. The major
technical difficulty in this approach is to show that ¥, is indeed a modular
form for arbitrary s > 4. (The situation is much simpler for se Z, s 2 5.) This
has been carried out in detail in [1] and {7], pp. 238-243. Petersson [6] has
computed the Fourier expansions at the parabolic cusps of the functions ¥,,
s> 4, and indeed of all Eisenstein series of real weight greater than 2 on
general finitely generated Fuchsian groups of the first kind.

As suggested above, when 4 < s < 8 @ = ¥ but this is no longer the
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case for any s> 8. Thus for 5> 8 it is of interest to determine the precise
relationship between the two functions. Toward this end it is necessary to
introduce a modular function F invariant with respect to I'g, the modular
subgroup on which both @° and ¥, are modular forms. I'g is of index 3 in
the full modular group I'{1) and it has a fundamental region with two cusps:
ioo and —1. Putting
@ (t+1)

(4) g(’E) - @4{_’:) ’
we define F(t) = f(t)g(r) and observe (§ 2) that F is not only invariant with
respect to I {F(M1) = F(r) for Me'y), but is in fact a Hauptmodul for T'y;
that is to say, F has precisely one zero of order 1 and one pole of order 1
(measured in the appropriate local variable) in a fundamental region for I,
so that every modular function with respect to I'g is a rational function in F.
In fact il can be shown from properties of ® that F has a zero of order 1 at
the cusp ioo, a pole of order | at the cusp —1 and no other zeros or poles in
a fundamental region.

This circumstance makes the function F especially well suited for
comparison with

S =1-g(),

Py(7) = ¥ (1)/@(z), s>4,

a modular function on I"g. The expansions of @ and ¥, at the two cusps ico
and —1 show that the only possible pole of @, in & fundamental region is at
the cusp — 1. From these properties of @, and those of F mentioned above it
follows that @, is a polynomial in F of degree equal to the order of the pole
of @, at —1. .

In a letter I received some time ago, Pierre Barrucand raised the
question of determining precisely the coefficients of this polynomial, in
particular when'it is of degree 1 (8 < s < 16). Calculation of these coefficients
in effect. determines the precise relationship between &° and ¥,; it is the
purpose of this article to carry out this determination when 8 << 5 < 16. We
prove two theorems.

Tueorem 1. For 8 < s <16 and e .,
D () =1+c(s)F (1),
where ¢(s) Is a constant depending only upon s. That is,
V(1) = @ (1) [1 +e(s) F(z)].

The statement of Theorem 2, which gives the explicit expression for ¢(s),
requires further notation. The statement is to be found in Section 3.

In principle, the method of proof of these theorems applies to all s > 8,
but the details are more complex when s> 16. T am indebted to M.
Barrucand for his stimulating and extensive correspondence.
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2. The modular forms. That @ (z) has no zeros in # and is a modular
form of weight 1/2 on Iy, with multiplier system v, relatied to the Jacobi
symbol (v§ = 1), are familiar facts, consequences of the connection of @& (7}
with the Dedekind function n{z) ([2], Chapter 3):

2

n(7) is a modular form of weight 1/2 on the full modular group I'(1). More
explicitly, #(r) satisfies ([2], Chapter 3)

(6 pletl) = e (), g1 =e " tip(),

(5) & (1) =#n* (T—tl—)/n(w 1), tex.

for Te #'. (Here and elsewhere in this article we adopt the convention that

(N —mgargz<n, z¢=izfexp(ikargz)

for complex = and arbitrary real k) The following functional equations for
@ (1) result immediately from (5) and (6):

(%) (M) =vo{Mi{ecr+ D20 (T), e #,

o
for all M = 1)EF o As a consequence of (8) vy satisfies a “consistency
¢t

condition” in weight 1/2; we shall comment further about this in Section 4.
In the definition (2) of ¥, we have written v, for vy, the multiplier
system of weight s/2 connected with @*(r). The summation in (2} is to be

£k
taken over all M m( d)e ' with distinct lower rows; that is, over all
(4

pairs of rational integers ¢, d with (¢, d) =1 and c+d odd. For s> 4 the
series converges absolutely and this guarantees that analytic difficulties do.
not arise in showing that, like @5 ¥, is an entire modular form of weight s/2
and multiplier system v, on I'g. Nevertheless, when 5 is not an infeger the
proof contains formal difficulties; these have been worked out in detail in [1]
and [7]. These same problems are evident here in our derivation (§ 5) of the
expansion, in explicit form, of ¥, at the cusp —1.

It is not too hard to prove from (5) and (6) that the functions f (1), g (z)
defined by (4) satisfy the relations

S+ =f{1), glr+2)=9g()
fi=1xr=g@), g(=17) =Sz}

Since Iy js generated by the two transformations §% t—t7+2 and T:
17— —1/7, it follows that the function F(7) = f(zyg(r) is invariant with
respect to I'y. Furthermore, it can be shown from the definitions (4) and the
expansion (1) of @(x) at the cusp ico that

® fge (@~ 1, g1
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as y =Imt— +o0. Since F{t+2) = F(r), this implies that the expansion of

F(z} at ico has the form
1oy F(7) = 16e™ +higher powers of &™*.

To determine the behavior of F(z) at the cusp —1 consider the
function F(—1—1/1) at ico. From {4),

I O N T A )]
I BT Ao
and
Fat1) = 1mglr+1) = /(2o ()
Hence,

r()=r1-2)-1 (-3 1)

F=Rf F=Y9) | a@ . g@] _
- g(ﬂl/r){”g(ml/r)}“ f(r){”f(r)}“a(”'

Now

-9, g):_g(fw):_i

¢ f( i) 7 I
50 that -

_gG+l) 1 g@? g(f___

A e T S (. A A

On the other hand, by (9) and the periodicity of fand g, G has an expansion
of the form

Gty = —

1+ positive powers of &**
162 (¢"* + higher powers of ")

1 .. . _ )
= -1z 4 e ™™ 4+ nonnegative powers of ™,

This, in turn, assumes the form

1
Gt) = ~T° ~ariT4 ponnegative powcrs of e,

since G{r+1) = G (z) implies that only even powers of €™ appear. Thus,

1

i . :
e g 2E(= 1k 1) ive -1+
RT=L /DYt nonnegative powers of 2™~ UGE+1)

. the expansion of F at —1.

'
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3. Proof of Theorem 1. The proof entails comparison of @, and F at
the two cusps ioc and —1 in the fundamental region. The behavior of F at
these cusps has been determined in Section 2. We turn to the behavior of &,
at icc, It follows readily from the definitions (1) and (2} that &(z) —~1 and
¥ (1)1 as ©—ico. Since we also know that @ (r+2) = @,(z), &, has the
expansion at icc:

@ (1} = 1+ positive powers of 2™,

valid in %" By (10), then, @ (1)—[1+¢(s)
the choice of ¢{s).

To determine the behavior of &, at —1 we consider separately ¥, and
& at —1. By [2], pp. 46-48, & has the expansion at —1:

VF(7) ] — { as 7 icc, regardless of

Gt =(+1"12 i b,exp {2mi(n-+1/8)(— 1/(z + 1))},

n=0

bo = 26",

From this it follows that for real s

(12) @ (1) = (t+1)"928 Y ¢,"  t=expl—2mifr+1)},
n= 0 )

with

(13) g = 26 5 ),

Thus &° has a zero of exact order 5/8 in the local variable ¢ at the cusp —1.
On the other hand, standard results on Eisenstein series ([3], pp. 278-281)
show that W,(t1}— 0 as t approaches vertically any parabolic cusp
inequivalent to ico under I'y. In specific terms, at —1 ¥, has the expansion
(14) Wo(r) =@+ 17 Y datt
nt+x>0

where %[0, 1) is determined from the multiplier system vq. In this instance,
% = 5/8—[s/8]. (For real x, [x] denotes the largest integer < x,) Note that
x=58—1>0"for 8<s< 16 and x =0 for s =16.

It now follows from (12), (13) and (14) that at —1 @, has the expansion

=43
Y drt, B <s< 16,
P (1) = " .
72y die, s =16,
n=1
For § « 5 < 16, then, at -1
P, (r) = ft~ '+ nonnegative powers of 1,
where the constant f§ = f(s) is given by
dy =dpjcy, 8<s< 16,
1 =
(15 P {dg =dyjey, 8= 16.
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Choose c(s) = — 162 f(s); then H (1) = @53{t)—[I-Fec(s) F(z}] is bounded as t
- —1, vertically, so that H(t), a bounded modular function, is constant.
Since H(z)— 0 as t— ico, H(r)= 0 and Theorem 1 follows.

4. Multiplier systems. Theorem 2, to be stated in Section 5 below,
presents an explicit formula for c¢(s). The determination of c¢(s), while
straightforward in principle, is cousiderably more involved than the simple
proof of Theorem 1. Since c¢(s) = — 162 B(s) we must calculate the constant
[(s) occurring in (15) and this, in turn, amounts to calculation of d, for 8 < s
< 16 and d; for s =16, We require a result of H. Petersson on muitiplier
systems connected with arbitrary real weight.

Let I be a discrete group of 2x2 matrices with real entries and
determinant 1 (ie. I" acts on .#) and k a real number, We say a complex-
valued function v on I' is a nwltiplier system of weight k on I' provided
(M) =11dor M in I and

(16} v{M; My)(est+ds)* = V(Mﬂ”{Mz)(CL Myt+d, ) (cst+dy),

*
for all M,, M,el, where My =M, M, and M, = ( Z), | <i<3 The
¢ dy

identity (16) is called the “consistency condition (in weight k)" for v.

* #® ® ok % K
With X = ( _ ), Y= ( ), XY = ( ) and k a real number, define
Xy Xz Y1 Ya £y 73

(X1 Yo+ (py 1+ p2)*
(zyT+z)F

(17 6. (X, ¥)=0o(X, ¥} =

Then (16) can be rewritten as

V(M M) =a(My, My)v(M}v(M,).

It is worth noting that when k is an integer 6(X, ¥)= 1, so that the
consistency condition reduces to v(M, M,)=v(M,}v(M,). For all real
e (X, ¥) = 1. The result of Petersson 1§ :

LemMa 3 ([5]. p. 379). For A a real 2 x2 matrix and v a multiplier system
of weight k on the discrete group I', let v* be the function defined on A™'T'A
by

6(AMA™!, A) -
O‘(A,M) , McA™'IA4.

Then v* is a multiplier system of weight k on the group A™* I'A.
In the proof of Lemma 3 we shall make use of the following result,
which is also required in the derivation of Theorem 2 ([5], p. 378).
Lemma 4. If X, ¥, Z are real 2 x2 matrices of determinant > 0, then

a(X, Y)o (XY, Z)
a(Y, Z)

(18) VE(M) =v(AMA™)—

) o(X, ¥Z) =

icm
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Remarks. It is clear from the definition (17) that |¢(X, Y)| = 1. Thus
[v* (M) = 1 follows from [v(AMA™")| = 1 and Lemma 3 will follow if we can
show that v* satisfies (16) with I’ replaced by A~ I'd. When k is an integer
(18} reduces to v*(M)=v{AMA™!) and there is nothing to prove. For
arbitrary real k, however, this result is not widely known and we therefore
include a proof. In order to avoid diversion from our main purpose — the
proof of Theorem 2 — we postpone the proofs of Lemmas 3 and 4 until
Section ©.

5. We can now state and prove

- 16"'(%}"2

= ST

-1 -1
TueoreM 2. Let A = ( I 0). Then the constant c(s) is given by the
2 ==
(200 cls)= 5

Jormula
sf2—1
) .

xi d-s? 2* W(A_E;Md.—a)
d=1 0<3<a0(A, A Md.—a)

dodd

— 2ni(s/8— 1)d/d
s

Jor 8 <5< 16.

In (20) Z’ indicates that the summation is taken over integers § such

' *
that (5, dy= 1. Also M, _; =(; a) =MA, where Mely thus
V*(A™t M, _;) is defined. When s'is a multiple of 8, then ¥, = 1 and ¢ = 1, so
that (20) simplifies considerably when g = 16.

Proof of Theorem 2. The proof requires Lemmas 3 and 4 and the
Lipschitz summation formula [4];
e—nu;‘Z(zTE)}.
e k=mp T

@ e.‘limn

Z (n+%)i~—1825i(n+x}r=
nptx>0
for tes, A>1 and 0 < »% < 1. We note that the calculations we carry out
here are valid as long as s> 4.
From the definition (2) of ¥, and the consistency conditions (16) applied
to v=y, (k=g/2), we find that

!XJ

‘P‘(t-—l-l-z N

e=1ds -

dler+d)™Y3,

where '5'* indicates that the summation is to be taken over ¢, de Z such
that (¢, d) = 1 and ¢+d is odd. Such pairs of integers form precisely the set

: *
of distinct lower rows of ¢lements of I'y. Thus, M ;= (: d)e Iy, with an

appropriate choice of upper row. (That the choice does not affect the value
of v,(M,,) follows from the consistency conditions for v, and the fact that
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v (§% =1) Let A = (HI _(1]), so that Ael'(1) and A(co) = —1. We have

s = Vs (M)
WS(AT) = TS’Z{ I2+ Z Z CAT+d l.fdz 3[2}

c=ld=—w
Since

T (Mg, A) = (cAr+dP2 @ [(d— ) 1= 172,

we may rewrite the above expression as

— 82 -sf2 SRR
¥ (A) =1 {r + Y Z,,,a(Mc,d,

c= ] d= -

Fs (Mc,d) }

A ld—yr—el¥ |

From the definition of v,

V(Mo ) 0(M, g A) = v (A7 My A)o (4, A7 M, A),

~

so that, replacing d—c¢ by d, we have

: oy m” V*(A“lM it A)
4 = 5/2 -2 § cd+¢
R R o & vl

e=ld=—w
where Y indicates summation over de Z such that (¢, dy =1 and d is odd.
A caleulation shows that M, 4.4 = M, ., so that

— 52 —si2 H‘ -\7* (A -1 Md, )
(22) "-'Ps (A‘C') T { + czl d_Z_ " A A Ml —c) (d'&' C)s“/Z

We note that A7 M, . =A™ ' M, 4., Ae A7 ' Tg A = Ty(2).

We want to observe that the summand in (22} is unchanged if we
replace (¢, 4) by (~c¢, —d). Suppose 47' M, _.v has denominator d't-c'
and write A™' M, _.= M, _.. Then, by the definition of s we have

oA, A1 My _)(de =0 = (yA™H M, T+ 8 (d =),
so that the summand in (22) is equal to
(23). VE(My_ o H A My 1) 2 (' e — )2,

@
(Here we have used 4 = C 0) .) But by the consistency conditions (16) for v¥,

the expression (23) remains invariant if we replace {d, ¢) by (—d, —¢), since

this replaces (d', —¢") by (—d', ¢'}. Thus {22) becomes

i:‘k (Aml M(l,—c)
CATTM, e~

(24 P, (A7) =" {**f2+ DN

¢= s iSoo(4
c# ()
But we claim that

VAT My g)o(d, A7 My o) 7 = 7,
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from which follows

; X i (A“ 1 M, _ )
) ¥, (Ar) = o2 s_ d.~c s
| ;%2 f:d},;: (A, A My _ ) (e ="

‘where the interchange of the double sum is justified by absolute convergence.

The claim that v¥(A4™' M, g)o(4, A~ M o =1 is immediate from the
definitions of v¥ and o.

Let Ut =t +1. In the inner sum of (25) we put ¢ = 6+dm, where me Z
and J runs through a reduced remdue systemn modulo d. Then M, ..
=My sU™™ and A7 My ;= A "My _Ume A" lgd = FO(Z), since
Uely(2). We shall use the consistency condition (16} for v¥ in the form

V(M M) = o (M, My)vi(M)v¥(M,),
for My, MyeI'y(2). With M, =A"'M, _,;, M, =U"", this gives
VE(ATE My o) = (AT M, U
=0 (A7 My, —s, UT™vMA™ Md AU

On the other hand, Lemma 4 with X =4, Y =A47' M, _;, Z = U ™" states

that

o(A, 4™ M, _5)a(My _;, U™")
0"(‘4_1Md,_.5, v ’

M =1, so that

oA, A~

1Md,--5 U—m) =

But by the definition (17) ¢(M, -5, U™
vE(AT My o4, AT M, U™
=0 (A, A7 My _)vE(UT™vE(ATI My ).

" From these cogsiderations the expression (25) for ¥ (At) takes the form

U
{(dt—5—dmy®’

FOTHATI My )
W (A1) = 1%? ; g O
5%}3 02:‘3@ a(d, 4 1Md,—6) m=
[+11

— o

where Z indicates that (8, ) = 1. .

Define » by v¥{U) = ¢**, 0 < % < 1. (This is the same constant x that
appears in {14).) By the consistency condition (16) for v¥ we have v¥(U™"
= g7 Mm% for meZ. Thus (25) becomes :

‘ , '17"‘ (A—-l Md w&) o0 eZmimu
(26) W, (A7) = 1 i i
( %3 oszaca o(d, A7 My _5) =t (dz—8—dm)?
Rewrite the inner sum as
o0 BZm‘mx

~5/Z
S o a2

6 -~ Acln Arithmetizn XLY1 (1986}
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apply the Lipschitz summation formmula (21} with t replaced by t—48/d and -
{26) takes the form

e—nis/d(zn)sfz Ts,,z z d—s,’2 Z’
I'(s/2) d>0 o<y G4,

dodd

ok -1
@7 ¥,(40) = %%x

% Z (-t 3¢)712 ™ 1 Pt + x)e = b
n+x>0
- ,E.sjl Z a, e%?ti(n'i'w)t-

n+x>0
Here we have defined

—m.s,'d-(zﬁ)q,/”

(28) a,=1ua,(s) = (5/2

( +X)"/2 1

xS 4y VEAT M, ) .
3:-'9 oss<a 0(A AFIMd,—a)
Ol

= 2nil{n+a}Sid

Replace © by 4 't = —(z+1)"!
n--arg(t+1), we have

(“('H" 1)*1)*72 = e"i“"z('c-}- 1)~92

in (27); since arg(—(t+1)7 %) =

so that (27) becomes

(29) !Ps(r)': gmisl2 (T‘+ 1)-—3,’2 Z (I,,,(S) eZm'(rr+x)1:‘

ntu>0

The expansion {29) with a,(s) given by (28) is nothing more than an explicit
form of the expansion (14) for ¥, (). Comparison shows that d, = ¢%/2g,
Recall that » =5/8—1 for 8 < s < 16 and »x =0 for s = 16 and further that
_ 1626-“1:1&’4 2—sd0’
62 - tis{4 —sd

8 <5< 16,

(9= ~162ﬁ(sJ={ e t6

by (15) and (13). The formula (20) follows since d,, =™/ g - the proof of
Theorem 2 is complete.

6. Proof of Lemmss 3 and 4, We begin with the proof of Lemma 4. Let
X, Y have lower Tows X, T+X,, y; T+y,, respectively, as in (17). Denote the
lower rows of XY, YZ and XYZ by x\t+x), v,t+), and x4 x5,
respectively. From the definition (17) it follows that

(ys Zr+y.)f (2 T+ 2"
(Yit+yo)

(%3 YZ7 + %0 () 1+ y5)f
() = + x5

(30a)  er2)=

b

(30b) o(X,YZ) =
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and

4 AV | 3
(306) : U(XY, Z)‘ =(x1 ZT+x2} (21T+22)

(x] T+ x5

Next observe that since ¢ (X, Y) is analytic in # and |o(X, Y)| =
is independent of t in #". Hence,

(% YZtr+ x5 (3 Zr+y2)*
(x1 Zt+ x4}

o(X,Y)

(30d) o(X, ¥) =

- To verify (19) we simply form the products ¢(X, YZ)o(Y, Z) and
g(X, Vo (XY, Z), using the expressions (30a)-(30d). In both instances we
obtain »

(%1 YZr+ X2 (s Zr+ o) (21 T+ 20)
CRRTA '

The identity {(19) follows.

We turn now to the proof of Lemma 3. We must show that for
M, Mye A~ ' I'd, M3 = M| M,, the relation (16) holds with v replaced by v¥.
This amounts to showing that

V(M| M) = (M, Ma)v¥{(M)v: (M),
for M;, MyeA~'T'A. By definition of v*, ,
G(AM, M, A~ 1, A)
o(A, M, M;)

(31) VE(M; M) = v(AM, M, A™Y)

But by the consistency condition (16) for v on I,
v(AMlM;,, Y my(AM AT AMATY
=g(AM, A7, AM, A" Yv(AM, A" Yv(AM;A™Y).
Thus by the definition (18) of v* the right-hand side of (31) becomes
O-(A: Ml)G(A’ MZ)
c(AM, A", Aya(AM, A™1, A)

a(AMlA VAM, AT Yo (AM M, AT A)
o(4, M; M,) ’

V(M) v* (M)

Now by Lemma 4,

A, M AM, M
(A, M1M2)=a( o 1 2)

(M, M;) ’

so that {31) becomes
V(M| M) = o (M, Ma)v*(M)v* (M) x

o(A, Moo (AM, A1, AM, A" Yo (AM, MZA_l,,é)}
o(AM A, A)o(AM, A, Ao (AM,, M)) '
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The proof will be complete if we show that the expression in braces is =1,
By lLemma 4, with X =AM, Y=M,A"" and Z =4,

(M, A", A)o(AM,, M,)
a{AM, M, A™ ") ’

and again, with X=AM A", Y =4 and Z=M, A7, it follows that

o(AM, A7, A)o(dM,, My A™Y)
(A, My A7 '

G(AM, M, A7, A) =

J(AMA L AM, A™Y) =

o(A, Myyo(M, A, A) . _
) = , after the obvious cancellations
Henoe & ) = rd Mo A~ Yo (A M, AL, A)
are made. But Lemma 4, once again, with X = Z = A, ¥ = ¥, 4™, implies

that

a{A, My)o{M, A", A)
ald, My A™Y

G(AM, A7, A) =
This completes the proof.

7. Concluding remarks. We can make use of the expression (28) for a,{s)
‘to show that — in contradistinction to the situation when s <8 ~ for s> 8
the equation ¥,(t) = @°(c) never occurs. Since the zero of @*(r) at the cusp
1 has exact order 5/8, it is sufficient to prove that ay(s) # 0 for 8 ks and
a,(s) # 0 for 8s. (Thus the order of the zero of P, [r) at —1 is at most 1,
while for (1) the order of the zero at —1 is > 1 for s> 8.)

In fact, we shall show simply from (28) that a,{s) # O for all n and 5 = 6.
By the triangle inequality,

(2my** 12— - :
32 > A+ 1-| Y d9? Ol
2 -0 ez ez O
. dadd

But,

\Z A7 N < Y dtg d) 3 odmaat <g(s/2-—1

o “"’ P ot
Hence by {32),

82
] > T4 2=L2-1)) >

as long as s 2 6. This proof is to be found as wéll in [8].
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