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where
e= Y 1/g;
J=r+1

Now, by letting N— +oo in
1—Fy(x)=Fy(—=x)} = {1~ Frpy y (&)= Fosg,w(—x),
we get from (4)
1A (X)~ A4 (%) < 28,
that is,
AN S 14y g (0] +28 < 272870 4 20

A passage to the limit, as r— + oo, yields (12).
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On the distribution of the values of Euler’s function
by

CarL PoMmEeRANCE* (Athens, Ga.)

1. Introduction, Let ¥ (x) denote the number of distinet values of p(n
not exceeding x, where ¢ denotes Euler’s function. Since every number of the
form p—1 where p is a prime is a value of ¢(n), the prime number theorem
immediately gives that V(x) is at least of order of magnitude xflog x, On the
other hand it is relatively easy to see that V(x) = o{x) since most values of
¢ (n) are divisible by a high power of 2 and most integers are not (see Niven
and Zuckerman [8], Th. 11.9).

In 1935, Erdss [2] showed that

(1.5) V(x) = O(x/(log x)' 7%

for every ¢ > 0. This result was improved in 1973 by Erdss and Hall [3] to
x e P —

(1.2) V(x) = O(B«gw;exp(B\/log log x))

for every B >2./2/log 2. In 1976, Erdss and Hall [4] obtained the lower
bound '

_x 2)
(1.3) Vix)» ion xexp{A(log log log x)*} |
for every 4 < 1/log 16. (For positive f(x), g(x) the notation f(x)> g(x) is
equivalent to g (x) = O(f(x))) In [4], Erdts and Hall state that they do not
know which of (1.2), (1.3) is nearer to the truth about V(x).
In this paper, I prove an upper bound for ¥ (x) of the same shape as the
lower bound (1.3).

TueoREM. For every € > (log 4—2 log(2—log 2))™* = 1.175018095. ..,

X
1. o e f 2) .
(14) V(x) O(log xexp‘C(iog log log x) ,).

* Research supported in part by an NSF gramt.
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In fact a slightly stronger result can be proved. Namely, by an argument
outlined below, (1.4) holds for every

C > (2—2 log(e—1))"* = 1090096128 ...,

Concerning the lower bound {1.3), a very minor alteration in the Erdds-
Hall proof immediately gives (1.3) for every A < I/log 9 = 0455119613 .... In
addition, another improvement can be made and this is discussed below.
Probably there is an asymptotic formula for ¥(x), but I do not know what
function to suggest as a choice.

2. Proof of the theorem. We begin with some notation. The letter p shall
always denote a prime. Let :

Qm= Y 1, oeMm=31.
Plmazi plu
Define w(x) by the equation
X
V(9 =5 v @

and let
Wix) = sup w(y.
2gyEx

Let § be an arbitrary but fixed number with

log 2
@2.1) 1—3%w< B<1.

Corresponding to the choice of 8, let k 3> 3 be a fixed large integer and & > 0
fixed- such that

iy
1-f

The proof is organized into five lemmas and a final argument. The first
four lemras treat cases that turn out to be negligible. The heart of the procf
can be found in the fifth lemma and in its exploitation in the final argument.

Before the first lemma, we record that from [6], Th. 328, there is an
absclute constant ¢ such that if p(n) < x and x > 3, then

(2.2)

(1-9)

(2.3) n < ¢x log log x.

Lemma 1. The number Vi (x) of distinct values of @ (n) < x such that either
{) Q) < k+1, (i) n < xflog x, or (il}) d*|n for some d = log x is o(V(x))
Proof. From [6], Th. 437, and (2.3) the number of ¢(n) in category (i)
is O(x(log log x***/log x). The number of ¢(n) in category (ii) is obviously
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O(x/log x), while the number of ¢(n) in category (i1} is O (xlog log x/log x),

" from (2.3). Our lemma thus follows from (1.3).

LEmma 2. The number Vy(x) of disktincr values of ©(n) € x such that n is
divisible by a prime p>expi(log 0} with Q(p—1) < (1-¥8loglogp is

o( a W(x)).
log x

Proof Let & denote the set of primes p with p> exp{(log x)ﬂ"} and
Qp-1) < (1—8)loglog p. M @(n) < x and nis divisible by a prime pe &, we
may assume from Lemma 1 that n=mp where pfm and @(m)> 1.
Therefore @(n) = (p— 1) @(m) and p < x/2+ 1. The number of distinct values
of @(n) < x associated in this way to p is thus at most V(x/(p—l)) and so

24) ACEED) V<_’f—1)+o(V(x))
pS;cé.%/+1 p—
- ¥ X w(x/p—1))+0(V (x))

pr/Zg:l— = ])1og(x/(p—~ 1))

pe

< xWix) Y ! +o({V(x)).

pSxj2+1 (p—1)log (x/(P - 1))
ped

From Erdss [2], there is a & =&(3)> 0 such that the number of
members of & up to z is O(z/(log 2)'*¥). For notational sirplicity, let y
= f*. We have by partial summation

%2
1 < dt
<
p-<.;§2+ L (p=Dlog(x/(p—1)) t(log x—log t)(log ¢
pes

expillogx)?}

)1+¢5'

xj2

dt
t{log x—log t)log ¢

< (log x)77

eapfilogx ¥y
= (log %)~ ' "7 [log log t—log(log x—log t)]:f,f{cmgxm

log log x
R T T TR .
(10g x)l-b—y&

From (2.4), we thus have ¥, (x) = o{xW (x)log x). . .
For i = 1, let P;(n) denote the ith largest prime factor of n if Q(n) = i.

Otherwise, let P;(n) = 1.

5 — Actn Arithmetiee XLVIL 1
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LEMMA 3. The number Vi (x) of distinct values of ¢(n) € x such that
(2.5) P(n) > expi(log x)* 'flog log x}  for i=1,... k
is o{xW(x)/log x). :

Proof. Let n be such that @(n)< x and (2.5) holds. Let pi = P

From Lemma 1 we may assume that p,, ..., px. are distinct. From Lemma 2,
we may assume that )

Qip—1)>(1-d)loglogp, for i=1,.., k.
Therefore from (2.2)

k . 1'—.k .
Qom)z Y Qp;~1)> (1-06) - log log x—k log log log x
i=1 -
> 2 log 1
/logz £ 08 x

for x large. From Nicolas [7], the number of integers m < x with
Qm) > (2/log 2)log log x is O(x/log x) = o(V(x)). The lemma thus follows.
It is to be remarked that Lemma 3 could equally well exploit Lemma 1
in [3] rather than the Nicolas result.
LemMa 4. The number V,(x) of distinct values of ¢(n) € x where n is
divisible by a number m = expi(log x}"’k} with Py (m) < mPE8 s o (1 (x),
Proof. The number of m<z with P,(m) < m'ooes 5 at most
¥(z, z'182%) where ¥(x, y) denotes the number of n< x with Py(n) < y.

From de Bruijn [1], we have

Wz, 2180 = 2 exp {—(1 +o(1))log log x log log log x}
uniformly for z > exp{(log log x)*}. Therefore, by partial summation, the
number of n < cxloglogx divisible by such an m exp{(log x)*1 is
o{V(x)).

Lemma 5. The number Vi(x) of distinct palues of p(m < x such that

(2.6)  Pi(n) S expl(log x)¥ " ‘loglog x}  forsome i=1,... k
sal‘i@ﬁes .

k2 x(log log x) i
V. < e e | vy
A ES j:/:x og » W (exp!{(log x) HFo(V(x).

Proof Fori=1, ..., k, let V,;(x) denote the number of distinct values
of @(n) € x such that (2.6) holds for'i, but fails for j=1, ..., i—1. As in the
proof of Lemma 4, from de Bruijn [1], ¥ ; (x) = o{V(x)). Say now 2 <i g k,
@{n) < x, and (2.6) holds for i, but fails for J=1,..,i-1. Let

g=P(n)...P_,(n), m= nig.
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Since P,(m) < exp{(log x)* '/log log x}, from Lemma 4 we may assume
2.7) m < exp{(log x)* '}
From Lemma 1 and (2.7) we may assume (g, m) =1 and

X

> =Ty )} < x/2.
log x-exp|(log X '} v(a) <

(2.8) g

For a fixed g, the number of distinct values of ¢{n) < x with n = gm, (g, m)
=1, and m satisfying (2.7) is at most
min{V(-wj-c—«), V(exp{{log X 1})} )
o(q)

Thus if Y denotes a sum over g composed of i—1 primes exceeding
exp [(log x)”iﬁz/log log x} and satisfying (2.8), then

X
Vi) <L e e @)
e \x(log log x)'~
<0 e
. Xllog log 7"
log x

W (exp {(log ) 1})+0 (V(x)

1

W(exp {(log x)"i._ N+o(V(x)

W (exp {(log )P 1})+ o (V(x)).

Summing over i, we have the lemma.
Proof of the theorem. From the lemmas, we have

k-1 j ;
(1+o(1))ém; W< S &loligl——-%ﬁW(exp{(log ).
j=1

Thus for x = x,,
k-1 ' .
Wx)<2 Y (log log xy W(exp{(log x*'}).
. ) .

J
Replacing the sum with its largest term, we have for some 1 <j; < k,
J1
(2.9) W(x) < 2k(log log X! Wiexp{(log x)'}) for x 2= Xo.
We iterate the inequality (2.9). Thus there is some 1 < j, <k with
- ) n +j
W(x) < (2K B2 (fog log ' 2 W (exp [ (log %"~ %)),

After r iterations we have .
1
(2.10) W (x) < (2k) B2 (log log X)*LW (exp {{log x¥ " })
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where X,, X, are abbreviations for _
t
Z jujv: Z jpn
Lsp<v&e a=1
respectively, and each j,e{1,..., k—1}. We continue this iteration until
(log x)* ' < x,.
Thus we choose r so that
L log log log x
_ Jp = ———————=—+0(1).
,Z“l g log 3 M
Since
] t
PR 1 . ‘
2 =3T3 Y 52
1Su<v&y p=d a=1

and each j {1, ..., k~1}, we thus have

T g (log log log x)?

MV D 1
1<yt 210g2}5'

Therefore, from (2.10) we have

+ 0 (log log log x).

_(log log log x)?

2.11 ) < e
(2.11) W{x) exp{ 5oz B

+0{log log log x)}.

Since we may choose f arbitrarily close to 1 —(log 2)/2, we have the theorem.

3. An improvement. [ indicate now how the theorem can be strengthened
to the assertion that (1.4) holds for every C > (2—2 log(e— 1)}~ . Indeed, the
proof follows the same general outline as in Section 2. The first change is
that the number (log 2)/2 appearing in (2.1) is replaced with 1/e and the
number 2/log 2 appearing in (2.2) is replaced with e. Thus £ can be chosen
arbitratily close to 1-1/e.

Let w,(n) denote the number of distinct prime factors of n that exceed
log x. The next change is in Lemma 2, where we replace Q(p~-1) with
ty(p—1). From the arguments in Erdds [2], there is a 6" = &“{8) > 0 such
that the number of primes p <z with

we(p—~1)<(1-8log log p

is O{z/(log z)' **"). Thus we can use the same proof as for Lemma 2.
o The l?,st change is in the proof of Lemma 3. We replace @ with @y, but
it 18 not immediately obvious that we can write '

k
(31) mx(q’ (n)) 2 Z wx(pi"' 1)

il
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However, the numbers ¢(n) < x divisible by some d? with d > log x are
negligible as in the proof of Lemma 1. Thus we may ignore those values ¢ (n)
where (3.1) fails. Thus we will have

w(p(n) = w(e(m) > e log log x.

But from the Hardy-Ramanujan inequality [5], the number of integers
m < x with w(m)> e log log x is O{x/log x) = o(V (x)).

The rest of the proof proceeds in exactly the same way. We finally arrive
at (2.11) where f > 1—~1/e is arbitrary, which proves the stronger assertion.

4. An improved lower bound. Let 0< f <1 and consider the set of
integers M, of the form (p,—1)(p,—1)...(p;—1) where j< k, the p's are
primes, and for each i =2, ...,

(pi—1...(p-1 — 1) < exp{(log p)}.
Further suppose that uniformly for all k < 100 log log log y,

(4.1) Z (mh mz) 4'(10g y)lm-q-(,(l)
' S Mg Ry m, m,
ml,mstk )
holds for all y 2 20. Then from the proof given in [4] it follows that (1.3)
holds for all 4 < —~1/(2 log f).
It is remarked in [4] that

v o) o o )
my Moy iy My
holds where there is no requirement that wm,, m,e M,. Thus (4.1) holds
with f = 1/3 and so the proof in [4] gives (1.3) for all 4 < 1/log 9.
By using the restriction m,, mye M,, we can show (4.1) for a larger
choice of § and thus prove (1.3) for larger values of A. We begin by making
the harmless requirement that the primes p; used in the construction of the

set M, be “normal” primes in that
w(p—1)» Qp,— 1)~ log log p;.

Thus if me M,, then (as in Section 3)

—

w(m)x Q(m) ~ log log m

NTog

for some j< k, so that (where d(m) counts the number of divisors qf m)
d(m)  (log m)itt AL~ fdloe2

We shall therefore assume that if me M, and m <y, then

(4.2) d(m) < {log y)=¥ =0,
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Thus,
my, m 1 1
(4.3) y moml oo Ly, v L
Y
my,my=y My My my sy Modimg  mysy M2
my myedy mq aMy . dimy

macMy
If we majorize the inner sum trivially by (log y)/d, we obtain
1

(my, m,) d(m) -

LA = '-<. log y Z . \{\ (log y)l +log 2/(1 - i} Z .
my,my Sy mymy ms m<y M
my o eM) meMy ek g

using {4.2). But from (1.1) this last sum is (log y)**". Thus if we choose f§ so
that

we have (4.1). This leads to the value

B =3(2+log 2— /4 Tog 2+log?2)

and establishes (1.3) for every 4 < 0.617122930....
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The weighted linear sieve and Selberg’s A2-method
by
G. Greaves (Cardiff)

1. Introdoction. In the weighted linear sieve we study sequences
o =.fy, depending on a real parameter X > 2, which satisfy certain
general conditions of the type described by Halberstam and Richert [5]. The
conditions specified in this paper are labelled (£}, {€2;), (R), (D) below. As
usual these are chosen with due regard to applicability on one hand (cf. the
examples provided in [5], for example), and on the other hand to the
requirements of a workable proof of a result of the type established in this
paper. The object of the exercise is to deduce, for a suitably small integer R
2 2, that the sequence ./ contains many nurmbers having no more than R
prime factors. :

In [2] the present author obtained an improvement on the results
previously known on this problem via a study of expressions of the type

(1.1) S uldyzy @ {W)- 3w},

dla nld

where w(p) was a ‘weight’ function of the type appearing in earlier
approaches to this problem (see Chapter 9 of [5], for example) and y; (d)
was the ‘characteristic’ function appearing in Iwaniec’s and Rosser’s version
(sec [7], [9]) of Brun’s sieve. Thus in the case w(p) = 0 the expression (1.1)
reduces to the corresponding expression studied in [7], [9]. In this
“unweighted” context an essentially equivalent result had been obtained by
Jurkat and Richert [10] (see also Chapter 8 of [5]), using a method in which
the well-known J12-device of Selberg played a significant rdle. In this paper
we replace the expression x; (d) in (1.1} by the expression implicit in the
paper of Jurkat and Richert. We shall see that in the problem of the
weighted linear sieve the expressions are not equivalent, in that we shall
obtain an improvement, in certain cases, upon the result in the author’s
earlier paper [2]. At the same time the result obtained falls short of that
which seems to be generally conjectured to be true, and which would be best
possible. -



