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Thus,
my, m 1 1
(4.3) y moml oo Ly, v L
Y
my,my=y My My my sy Modimg  mysy M2
my myedy mq aMy . dimy

macMy
If we majorize the inner sum trivially by (log y)/d, we obtain
1

(my, m,) d(m) -

LA = '-<. log y Z . \{\ (log y)l +log 2/(1 - i} Z .
my,my Sy mymy ms m<y M
my o eM) meMy ek g

using {4.2). But from (1.1) this last sum is (log y)**". Thus if we choose f§ so
that

we have (4.1). This leads to the value

B =3(2+log 2— /4 Tog 2+log?2)

and establishes (1.3) for every 4 < 0.617122930....

References

{11 N. G. de Bruijn, On the number of positive integers < % and free of prime factors > y,
Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), pp. 50-60.

(21 P. Erd8s, On the normal number of prime factors of p—1 and some related questions
concerning Euler's @ «function, Quart. J. Math, (Oxford Ser) 6 (1935), pp. 205~-213.

[3] P.Erd&s and R. R. Hall, On the values of Eulers qp-function, Acta Arith. 22 (1973), pp.
201206, .

[41 — - Distinct values of Euler’s p-function, Mathematika 23 (1976), pp. 1-3.

[5] G. H Hardy and 8. Ramanujan, The normal number of prime factors of a number n,
Quart. J. Math. 48 (1917), pp. 76-92.

[6] G.H. Hardy and E. M, Wright, An Introduction to the Théory of Numbers, Fourtl Ed.,
Oxford, London 1965.

{71 J. L. Nicolas, Sur la distribution des nombres entiers ayant une quantite fixée de facteurs
premiers, Acta Arith. 44 (1984), pp. 191-200,

[8] I Niven and H. 8. Zuckerman, 4n Infroduction to the Theary of Numbers, John Wiley
and Sons, New York 1960.

BELL COMMUNICATIONS RESEARCH, TNC,
MORRISTOWN, NEW JERSEY 079460, USA

CURRENT ADDRESS

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GEORGIA
ATHENS, GEORGIA 30602, USA

Received on 10.12.1984
and in revised form on [12.1985 L (1477

icm

ACTA ARITHMETICA
XLVIT (1986)

The weighted linear sieve and Selberg’s A2-method
by
G. Greaves (Cardiff)

1. Introdoction. In the weighted linear sieve we study sequences
o =.fy, depending on a real parameter X > 2, which satisfy certain
general conditions of the type described by Halberstam and Richert [5]. The
conditions specified in this paper are labelled (£}, {€2;), (R), (D) below. As
usual these are chosen with due regard to applicability on one hand (cf. the
examples provided in [5], for example), and on the other hand to the
requirements of a workable proof of a result of the type established in this
paper. The object of the exercise is to deduce, for a suitably small integer R
2 2, that the sequence ./ contains many nurmbers having no more than R
prime factors. :

In [2] the present author obtained an improvement on the results
previously known on this problem via a study of expressions of the type

(1.1) S uldyzy @ {W)- 3w},

dla nld

where w(p) was a ‘weight’ function of the type appearing in earlier
approaches to this problem (see Chapter 9 of [5], for example) and y; (d)
was the ‘characteristic’ function appearing in Iwaniec’s and Rosser’s version
(sec [7], [9]) of Brun’s sieve. Thus in the case w(p) = 0 the expression (1.1)
reduces to the corresponding expression studied in [7], [9]. In this
“unweighted” context an essentially equivalent result had been obtained by
Jurkat and Richert [10] (see also Chapter 8 of [5]), using a method in which
the well-known J12-device of Selberg played a significant rdle. In this paper
we replace the expression x; (d) in (1.1} by the expression implicit in the
paper of Jurkat and Richert. We shall see that in the problem of the
weighted linear sieve the expressions are not equivalent, in that we shall
obtain an improvement, in certain cases, upon the result in the author’s
earlier paper [2]. At the same time the result obtained falls short of that
which seems to be generally conjectured to be true, and which would be best
possible. -
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The properties we require of the set .7 = .o/y are as follows, We write

(12) ¥ :%(-g(d)m(,_of, d).

x4
a=0madd

The function ¢ will be assumed to be multiplicative and to satisfy an
assumption of the type usuval in the theory of the linear sieve:

ety .1
g 2 —
(Ql) 0 P 1 A]. ’
Q) ~L< ¥ Qﬁ’ll"_gi—log%sfiz if 2<wse.
wEp<z

These conditions imply (cf. § 3 of Ch. 2 in [5]) the form of (£);) used by some
authors, in which the denominator of the summand is replaced by p—g{p).
As usuval, we shall keep explicit track of the dependence of our estimates on
the parameter L, which will be supposed to satisfy

13 - 1< L<logy.

We introduce a “level of distribution™ y, in terms of which our results
will be stated. Theorem 1 below is independent of any hypothesis concerning
the “remainder” term R(«#,d) in (1.2). For applications, however, some
knowledge of R(«/, d) would of course be required. We would require

(R)  for the expression f(d) appearing in Theorem 1, the number y = y(X)
satisfies
| L #d) f (@R

dsy

We will see that f(d) satisfies
|f(d)] < 39,
where, as elsewhere in this paper,
vidy=3%1
sld

is the number of distinct prime factors of 4,
The “degree” g will satisfy the hypothesis

,d) < A Xflog? X.

{D) - l€a<)y when aesl.

Then, as in [2], we aim to obtain results of the type: assume (£,), (X,), (R),
(D). Then, if g < R—3g, there exists a in of with at most R prime facmrv

As usual, if repeated prime factors of a are to be counted once only in
such a result, then an extra property of ., ~such as
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there exists a constant ¢ such that

Y logp ¥ 1sAXw i

wE p<z aexf
& =0mod pz

z < X/(log XY,
would be required.

It remains the case that results of the desired type only follow from
Theorem 1 for certain positive values of §,. Numerical work indicates thal
values of 8y better (i.e. smaller) than those obtained in [2] follow only for
certain small values of R, which may, however, be regarded as being the
most interesting. The author’s calculations indicate that the following values

are accessible:
(1.4) 8, = 0,044560, &; = 0074267, 4, = 0.103974.

Theorem 1 involves a “weight” function w which has to satisfy certain
properties. Following Richert [12] (but with some change of notahon) we use
parameters U, V satisfying

(1.5) V<l1/4, 12<U<l,

The notation U = 1/u would accord with [12]; our V may, however, be
positive, zero or negative. The function w will be written as

V+RU > g.

(1.6) w(p) = W(log p/log ),
where p is prime and p < y. Define
W(l)=U-V.
Write
(1.7 m = max{V, (1-U)/2}.
We will require
W(l) if U<r=l,
8 ocwin<d TV if 1/3s: U,
('} sWi < t—m if <t<1/3and t > m,
Q-9 if Os t.

As in [2] we notate

ywol= Y 1+ 2 1
Hap<p¥ o
PapzyY

for the number of prime factors of a, where multiple prime factors p of a are
counted multiply only if p > yv.

Of the four lines appearing on the right of (1.8), the first two appear for
reasons already featuring in [12], the third for considerations of a type
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appearing in [2], and the last because of requirements imposed by our use of
the A2-method.

Our Theorem 1 involves a function h somewhat smaller than the
function playing a corresponding rdle in [2]. For integers i = | deline

" (dx, .. dx,
hi (xw S) = J ‘e ’A-g—]i———;z"
J AL X

R;
where the region R; is given by the conditions:
X< X <. ..<xy < /s,
Ighxgt.bxp €1 i 1gj<d,
l<3x+x s+ .o +%, x<u,
X+x+ . xfu=1

Thus, as in [2],
" dx_l
hl (JC, §)= m—y
Xy u
x<xy< /s
1/3<x1<u,.\:+.\'1 +u=1

but for i> 1 we now have

b= f h"‘l(?i—%’r"”l)?i"ti

s<nd<t

(the condition 3 <t applying regardless of the parity of i). Now define

hix,s)= Y hy(x,s) when O0<x<l1<s,
K51

the summation being finite.
I we specify

H(x,8)= 3 hgy-y{x,s) when 0O<x<1<s
k31
and
H(x,5)=h{x,5)=0 when x>1,

then these functions are characterized by the integral equations

‘ dt

h(x, s} = g o)A

(x, ) f 1 l)rql,
s<h3<i .
H(x, s) == hy(x, $)+ f h(uﬂ—-,t_l)nﬂm,
t—~1°" t—1

s<3<t
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The statement of our principal theorem is now, verbally although not in
content, similar to Theorem 1 in [2]. In the theorem, and elsewhere, p(a)
denotes the least prime factor of a.

ThEoREM 1. Assume (Q), (©,), (D). Then there exists f(d) with
0< f(d) <3 (to be described) such that

Y wipa)

s
vy @y SR

115
> 2 X [] (lwgg’l){-.#(W)+0(—L—y)}~l > wd) f @R, ),
dEy

PRy logll‘s

where v, y(a), w, W are as described above, y is Euler’s constant, and

1 1/2

W(l)— d 1 de

MW= — jw;&r J W(t){ﬁ-—h(r, 1)}}—{.
1/2 i}

The O-constant may depend on U as well as on A, and A,.
The proof of Theorem 1 is an assembly of the results of Lemmas 1, 5

and 6.
In making an application of Theorem 1 it will be necessary to estimate

an expression
1j4

[ W(eyh(s, Vit

[

(the function h(t, 1) vanishing when ¢ > 1/4). We postpone our account of
these estimations until Section 5.

The author’s approach to the questions involved in handling the
function h is by passing to the moments

1 1
(1.9) ho(s) = [x"h(x, s)dx, H,(s)= {x"H(x, s)dx.
b 0

As in [2], these can be related to the solutions of the differential-difference
problems

i{sJ(S)}+J(S+I)——~0 (Re(s) > 0), sJ(si—» 1 as §—0,
(1.10) '
a{{*"f’(s>}—sr<s+n=o Re(®) > 0), stI'()—>—1 as s—0,
A
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where the function I’ is not asserted to be the derivative of a function 1. We
write

Jo = (=1 ()/nY, i, = (= 1" T (/R

so that i,, j, are representable by mtegrals as in [2]. The moments (1.9) are
then determined as follows.

Tneorem 2. Let i, j, be as above and let h,, H, be defined as in (1.9).
Define

B, = 2" (A1) (o —fus 1)

1/2
D, =2"" Y n+1)(iy—iysy)s c,,=J -1i~—£dx
0

Then

jn+Bn(hn(3)_c.n_Hn) = 1 !f nz .O,
i+ Dally(3)—c,+H,)=1 ¥ nx1l,
2(’!0(3)—00+H0)+1 “:0.

The proof of Theorem 2 is by the technique used in [2], and is therefore
omitted. A rather simpler application of similar ideas leads to the foilowing
fact about the function A{x, s) itself. Here, we should define

R0, 5= lim h(x, s).

x-+0+

Turorem 3. At the point x =0 the quantity h(x, s) satisfies
h(0,s)=1—1/2J(1) f s<3,

where J(s) is as in (1.10).

This result, though not without interest, appears to have little
application to our theme other than providing a check on any numerical
method purporting to evaluate A(x, s) for small x and s.

The constant J(1) = 0.62432 99885... has been computed by a variety of
methods and authors: see [1], [3], [11], for example.

We adopt several notations which are becoming standard in this subject,
some of which have been mentioned already and others of which will be
defined as they appear. In particular we denote P(z) = [T p for the product

ez
of primes less than z. The least and greatest prime factors of an integer n > 1

are denoted by p(n), g(n} respectively: our convention is g(1)=1, p(l)
= oo. We set

(1.11) Vi =[] {l—g@—)}.

p<z r
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2. Basic identities and inequalities. For squarefree d we adopt a standard
notation

@1) d=pips..p;
5 being prime. Let

P1>pa> .. > Py,

B, =Bi(pi~1, -+ P1)
be, for the moment, arbitrary. Then we define a “characteristic” function x4 by

{2.2) twd =1 if p<B when 1<i<yv,

so that in particular y,(1) = 1. Following a notation used by Halberstam
and Richert [6] define an associated function ¥4 by

(2.3) To () =07 Zy(d)=z(d/p(d)—x(d) when d>1.

Here p(d) = p,. the smallest prime factor of d. Observe that

(24) otherwise.

_ 1 if B,<p, and py< B, when 1 €i<gv=—1,

(d) = 0
The ‘Fundamental Identity’ of combinatorial sieve methods may now be
writter, for squarefree A, as

235) Yuldod =3 pdzdod+ Y pd7a® Y ulb) e,

dl4 di 4 LR t]d:q(t) < pld)

where ¢(t) denotes the greatest prime factor of ¢, and ¢ is an arbitrary
arithmetic function.

The identity (2.5} is almost obvious. The divisors d of A either satisfy
p; < B; for all i, or else there is a least j for which p; > B;, in which case we
write d = &t with

d=pips--.pp L= PjeyoPye
Now (2.5) follows. Alternatively, see the discussion in [6].
In this paper, as in [2], [6], the choice of the function ¢ in the identity
(2.5) will be of the type
(2.6) @d)=W(l)~- ZIZW(P).
pld
In the unweighted sieve, where o (d) == 1, the quantity in (2.5) is
1' if 4=1,

d[A



78 ) G. Greaves

In the case when A =(a, P(z)) we shall also use the abbreviation
(2.8) S(a, z) =6 {(a, PQ)},

which is 1 if a = 1 or if @ has no prime factors less than z, and is O for other
values of a. In the weighted sieve, the analogous quantities are, following a
notation of [2],

Wy if A=1,
(2.9) A{A, W), w) =3 plde{d)=L{wip)  if A=p,
a4 0 otherwise,

the last identity following by the characteristic property of the Mdibius
function . Note the equation

(2100 A{{a, P}, W(h), w}=W(l)S(@, 2+ ¥ w(p)Sap, 2,

Plia,Piz))
which follows directly using (2.6), (2.7), (2.8).
The familiar “Buchstab™ identity
(2.11) Sta,z)=1- Y S(a/p,p)
pl{a.Pizn

obtainable by writing d = pd’, where g{d') < p, whenever d > 1 in (2.7), is a
special case of the “fundamental” (2.5), which may in turn be considered as
following from multiple applications of (2.11).

We shall also need to refer to the identity

(212 EZ H(® @8y = 4 {48, W(1)— %W(P), w}
HA/S P :

when J|A; this is an immediate extension of (2.9).

Our initial construction is closely relatéd to that of [2], but we give an
essentially self-contained treatment here. Using the Buchstab identity (2.11)
we obtain, for the quantity in (2.10), the identity

A {{a, P(z)), W(L), w}

{ - a \_ 2
Y AW w(p)}S(pgp) mpZ{qﬂW(p)S(pq,q),

plusp<tz

= W{l)—

wherein ¢ as well as p denotes a prime., Define
(2.13) 4, {{a, P(2)), W(1), w}

_ W —wions (2 o ) ey
¥ [lwm w(pl),s(plpz,pz) w(pz)s(plpz,pl)J,

pipgla 2
pa<py<z¥<pip

icm
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the departure from [2] lying in the use of the exponent 2 in the conditions of

summation; this will be related to the quadratic nature of the A%-method
employed in this paper. Since

a a
S(An P):S("u 1)_ Z S(_a_v Q),
P, P glafpig<p rag
the quantity

(214 Z(a, 2} = A{a, P{2), W(1), w}— A4, {(a. P(2)), W(L), w}

satisfies the relation

(2.15) Zla,z) =X, + X,
where
Si=Wl)- ¥ IW()—-w(p),
@216 pe )
L= % [{W(n-w(pl)}s (—3---, pz)—w(pz) s (ffw pl)J.
pLpalas PiP2 (W)

[PRF SRR TR
The basic inequality of the method is as follows.

Lemma 1. Suppose w satisfies the conditions (1.8) and suppose z = yY.
Then if Zia, z) >0 we have

Vald) SR Za, 2) < wipla).

Let p{a) = Q,{a) < Q4 (a) denote the two smallest prime factors of a. If
Q%(a)Q,(a) = y then the sum X, is empty (because no two prime factors of a
can satisfy p3 p, < ). The result of Lemma 1 is then inherited via (2.15) from
the properties of Richert’s expression (2,16} this point was discussed ab initio
in [2] in spite of having been fully covered in [12], [5]. If Q2 (a)Q,(a) < y
then the terms S(a/p, p5, py) in (2.13) are zero (because otherwise we should
have p, =Q (@), p(=Q5(«¢), contrary to the conditions of summation
¥ < p3py). Because of (2.14) we obtain

Z(a, 2) < A{{a, P); W)},

and the conclusion of Lemma 1 follows because of the definition (2.9) of 4
and the fact that, from (1.8), (1.7), (1.6), w(p)> 0 implies p> y", so if
vy {@) > R we should have from (1.5) that

az yV~|-,RU = yg,

contrary to (D). .
Combinatorial sieves rest on an application of the “fundamental”
identity (2.5) in the case when

A =(a, P(2)).
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In [2] the present author followed Rosser and Iwaniec in spec1fymg, for
squarefree d=>1,

(2.17) x, @ =1< hp*()<y when h|d and 2{v(h).

This may appear more familiar in the form
(2.18) X d)=1 < PYiPasiey . D1 < ¥
where d is expressed as in (2.1), In this paper we use ideas from the paper

when 1<i<v,

[107 of Jurkat and Richert in specifying y as follows: define y(1) = 1, and for

squarefree d > 1 say y(d) =1 if the two conditions

(219) (8)  hld, 20v(h) = hp*(h) < Vs

(2.20) (b} hld.v(h) <1jm = hp? (h) <

both hold. In all other cases define’ ¥ (d) = 0. Thus the numbers B, of (2.2) are
given by
(2.21)
(2.22)

<y i < 1/m or if 2|i,
i>1/m and 2 Fi.

p<B < plp_,.
Bi=+w if

Here the parameter. m > 0 is that of (1.7).
The next lemma sets up a decomposition of Z{a,
approach.

Lemma 2. The quantity % (a, z) defined in (2.14) satisﬁés the identity

z) appropriate to our

(223) Z(aa Z) == El ((1, z)+£2 (a:- Z)+E3 ((1, z)+)34(a, 2‘)5
where '
(2.24) Zi{a, )= Y u(d)i(doeld),
dl{a, P(z))
- y 12
(225 Zi(a,zv= 3 w(PL® [{W(l)—w'(p)}s((—), (-) )
plia, P2} 4 P
' a
+ . S T r
ql%p v (pq p)J
< pigip<y
(2.26) Zi(a, z) = > G5, ¥ ) ed),
lia, P(:)) t(a, P(p(BN
24%8); 351;( RN
(2.27) Za(a, z} == Z p@7,0) Y u@oe(s).

H(a, Ppidy)

icm
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The definition (2.14) of Z(a, z)-and the fundamental identity (2.5) for the
quantity A defined in (2.9) give

(228) Z(a, 2 =Zi(a, 2+ Y u@®iE Y
8|(a, Pz t[{a, P{p(3))}
— Ay {(a. P(1)), W(z), w).

Here, the terms with v(d) = 1 sum to ~ 3§, say, where, because of (2.4), (2.18),
(2.12), (2.10), we have

) EwmmmmmGLm}~z mmsﬂ—-mﬂ.
rylta, Plz)) 1 Palaipy hp

y<ﬂ1 Pa<py
In the Lemma, the term Z,(a, z) is provided by the identity
(2.29) —Zy(a, 2) = Ay {(a, P(2)), W(l), wl+S,,

where A is as in (2.13). The conditions of summation therein imply y < p?,
0 (2.29) follows from an application

1/2
GG )-Gor 2 56
p p p \/mg:_q<p pq .

of the Buchstab identity, valid when y < p°.
The terms in (2.28) with v(d) > 1 provide the terms £5(a, z), Z,(a, z) in
Lemma 2, whose proof is now complete. .

1 (1)

3. Application of the A*-method. To obtain a lower bound for
Y Zia, 2
asd

from Lemma 2, we shall derive, from the 1*-method, suitable bounds for the
second and third sums in (2.23).
It will be convenient to denote (as usual)

ol s ={0fd: aes?, a= 0 mod 6}.
We shall need to refer to 11 when 5p?(8) > y. In this case we have, when

d <8,
(3.1) b3

s g
dy & 0modd

= (Xo a)/a)?w(»lmw )

as a consequence of '(1.2), since ¢ is multiplicative, and (d, 8) = 1 in our case.
We shall refer to a multiplicative function ¢,, given by

3.2 o gd=od i W, p=1.
| 2n(p)= 0.

G~ Auty Arithmetica XLVIL, |
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This satisfies

g Q@RI 00 F i 2<wse
' w

wEg<z - q

since (cf. {2.3.8) 1 [5])

(33) —d,—L<

pylog p
(3.4) _rYPER
follows from (€),).

Lemma 3. Suppose that a “‘wei_c)hr“ f(p) satigfies

fim<s/f)= i p<y/é,

1 : —
<4 (1 o?j& ) i p<Juid,
fp=0 iy p<)y

12 where ¢ > (. For brevity denote, when bla,

= (a/d, P(//3),

and suppose that 6 < y

and suppose that

J¥/8 < pld)
so that (3.1} applies. Denote
(3.5)  Aldy 1,11 =58, Jyjo)+ Y [(0)S(afdp, /¥/3)
pllajdzp< vip/H

as in (2.10). Then

Q() JANAY] ( L )
,,;.f A4 1.1 < V((S) ){14—08 'ﬁ)’g—;)}ﬁ'ﬁf(h),

a =mod &

where V (-} is as in (1.11) and

E@) = Y dysld)) Ays(da) R(s7, [dy, d3]3)

dydy

=0( T 13" R, db)),

A< pfd

the symbol A being as defined below. The constant implied by the symbol O,
may depend on ¢,
We use the non-negative expression

(3.6) ' [ Y A} =0,
. dital

icm
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where, as usual in Selberg's method (cf. Chapter 3 of [5]),

_ ol )
(37) Ae(d) Q,k(d)ngm (n)g (),
{nd)=1
with
gin) = g(n)o™(n),

¢* being the muliiplicative function “conjugate” Lo p:

e*(n) =]Tip—elp),

nln

and with the usual normalisation

(3.8) Cel = ¥ 12 {mgn),
HE X
so that ‘
AP =1.
When V' < p < \/,‘é we need to study the expression
C.p
L+ (p) =Cy 3w q(m—»~-—- Y urngn)
nE X ( )nﬁ VEfp
{npy=1
| .
T e +C, -‘"——"5»—” S mgom
nEvx U) "< VEfp
{nopy=1 {m,=1

= (] w2 {m) g (m).

v ‘ﬂ/p< mv-. wa
{m,m=

In this sum, the condition {m, p) = 1 is expressible by rcplacmg 2 by gp.
as defined in (3.2). Because of (3.3) we infer from the last equation in § 5.3 of

[57 that
L
“JMM o } log -\/Y){l +0 (l—é\:)}

1 in {1.3})

() g (m) = lo [Ny ) iy |
\\fi“*%:l-\\xl (I)q’ n{‘l"’“{.’p(@} C8 P logp
1

{1, p) =
et ’}"’“{Ho( Ll .gloer 1+o( =)
p olog x log p log x log p

where we have used (3.4},

and (we specified L3>

whence

S+ Aup) = 2{1
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We compare the expression A{A,, 1,f}, as given in (3.5), with the
expression (3.6). If 4; =1 then the two expressions are equal {to 1), for the
familiar teason that in this case the sume defining 4,;(d) in (3.7) is empty
when d > 1. If A; is a prime p then

A{A(‘}’ 11f} = .f(P)-

while the expressien (3.6) is

_ . 4logip | L
g -0 EIP, Y i
l)vyfd(l)'f'iy/ﬁ(p)l Ing(y/(‘i){l +0, (log J})}

in the case when p > °. In all other cases the A expression on the left of (3.5)
is zero, so in all cases we have

A%mlJ}s{z.@A@V%+o(fL)}

ditej& og y

It is well known (see § 5.3 of [5]) how (1.2), (&), (Q;) now lead via (3.1) and

) \ Xo(ds .
VO NAa@P=Y{ ¥ Ax(dl]lx(dz)}{ L:lfS 1+Rw,d5)}
aEnUsguc!rﬁ dla d {dq.d3}l=d ;

to the result of Lemma 3.

Next, we verify that the conditions (1.8) specified for the function w
bring the sums X,(a, z), £3(a, 2) of Lemma 2 into the ambit of Lemma 3,
and alsc ensure that X, (a, z) is non-negative.

Levma 4. When w satisfies (1.8) we have
@ if piry <Y, P2 < Pi» Y < pi then

log? p,
log®(y/p1)

(i) when 2 fv{8) = 3 and %,(0} = 1, in the sense described in (24), (2.21),
(2.22), and when a prime q satisfies ¢ < p(d) we have

3.9 wip <4

{W)—wip},

(3.10) mwswm~%wm,
4logg W)~ Y w(p)}
(3.11) w(g) < Ho i gt < /8,

{log y— 3} log p}?

nls
(iti) when 2|v(8) 2 2 and 3,(0) = 1 we have
Z wip) < W(1).

plé
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Observe first that (i) holds in the case when p, = yY, since the condition
pip, <y gives pp <y U2 and the required inequality is satisfied since
(1.8) shows tbat the expressions on both sides equal zero.

In the case when p, < y¥ write

x = log p/log y = log, p,,

the logarithm of p, to the base y. Because of {1.8), to prove (3.9) it suffices to
show
U-x

(3.12)  wipy) &,«-iw;-_ “=+4 logip,  when

Fw Py < VM < py < y/p3.

Since

_‘{{ U-x] _2WU=x)-(l-0{<0 i 2U-l<x<l,
dx (1 —x)* (1—x)? >0 if x< 2U—1,

the function of x in (3.12) has no local minima and it suffices to check (3.12)
in the cases p; =y'* and p,p} =y. When pip, =y the inequality (3.12)
reduces to

(3.13) wip) € U—x=W({1)—w(p).

In fact whenever pip, < y we have, from (1.8),
1-U
2w(p)+wim) < Z(IOgy 172---'—~~~_:Z~«~~)+(1ogyp; -~V U-V=Ww(),

so (3.13) holds as required. On the other hand when p, =y'"* the

requirement (3.12) reduces to one specified in (1.8).

The structure of our proof of {ii) is similar. We may write, as in (2.1},
(3.14) d=pipp..Pyn PP R4

Since F,(6) =1 and 2fv=v(8) >3 we have by (24), (221), (2.22) that
v < 1/m and

(315 pi<yi P <y PiPre Py-aPier <YK Py Py-1 PY

which conditions need not all be distincl.
I py> y¥ we have wip)=W(1) from (1.8), but p,< "'~ from
(3.15), whence (1.8) gives w(p) = 0 when j 2 2, and (3.10) follows in this case,
Observe that (3.15), (3.14) imply, when g% < /9, that

Y 2 2 y V"
B N ( e, v < (,._) ,
D1 Dy M pv) qg

80 that
(3.16) 5 yl - 2 q‘h‘v.
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If p; <yY then write

log, 6 =Y log, p = x.

pl&

Because of (3.15), (1.8) we have

(3.17) Y wip) € x—vm
plé

where m = max |V, (1-Uy2} as in (1.7). To establish (3.11) it therefore
suffices to show

(3.18) wig) €~y 4 logl g

when ¢* < y/§ and (3.16) holds. As before it suffices to check (3.18) when é
takes the extreme values

| vigt, yUla®) T
When & = y/g* the inequality (3.18) reduces to
wig) € U—V+vm—x,

Because of (3.17) the proof of this inequality under the conditions (3.15) will
also establish (3.10). In fact we have, using (3.15),
wig)+x <log,g—m~+log,(p;...p) < l—=m < U—=V4ym,

because m= V and vm =z 2m 2 1-U.
It remains to check (3.18) when y/é = (y/q?)¥*. We require

U—V4+vm—14+(1—x)}

‘. : 2
A7 4logy g

wig) <
when
2
1—-x= ;(1 -2 log, q).
Since mz=(1-UY2, m=V, v 23 we have
UmVavm—1zUt(p-m—12U~-142mz 0,
The iﬁequality (3.11) will thus follow if

4v logZg
g d
wa < 573 log, 9)

This follows from {1.8) since
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The proof of (i) is related to that of (ii). Since v = v(8) 2 2 we have

PyoePymiz Pomz < .

Consequently when v > 2 we have

m <y

Ywipl—vm< U~V

rlé

" because mz V oand (y~Umz2mz 11U, If v =2 then

wip)+wipy) < 3-2m<U=-V,

hecause m = V and m-+U =(1+U)/2 > 2/3 when U = 1/2. This completes
the proof of Lemma 4.
LeMMa 5. When o sarisfies {1.2) and w satisfies (1.6), (1.8) we have

(3.19) T (e z) = XM(5)+R (),
we
where
(320) M(?_’) S M1(Z)"“-M2(z)__‘ M3 (Z), R{Z} - Rl (Z)"“RZ(Z)
with
Ay, (d) o) old
(3.21) M= 5 HAndeded

diPiz) d

SV ((ﬁ)”jﬁ@&li&&@ {1 i, (m}_‘_)}
y3spas - P log y

(322 M@= Y

| (3.23)

N () a0 o ()
Ma() = 53%, ‘ V(_(cS) 8 log y
2w 3 R 8 € L
and
(3.24) Ri(z) = Y wldy, (dyo(d)R(/, d),
di B2
(325) Ry(zy= 3 %0 e® ¥, Ayald)iys (dz)R("ﬂT/f [dy, dz]9).
dydy

¥ P(z)
ZpvdLE 1 fm
Here V{-) is us defined in (L11), @ as in (2.6), and yx as in (2.1'9), {2.20).
In particular we have

{3.26) [R(z)| € W(1) ¥ 3R (o, Y.
d|P(z)
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The proof of this lemma uses the decomposition of X(a, z) provided by
Lemma 2. Application of (1.2) gives
(3.27) Y Zi{a, 2y = XM (2)+ R, (2).

[

For %,(a, z), part {i} of Lemma 4 shows that Lemma 3 applies to give

(3.28) Zy(a, 2y 2 ~ XM, (2)+ RP (2).

Here we have used the fact that p = p'/> when 7,(p) # 0, so that ¢*p<y

implies g < p. The O-onstant depends on the parameter U in (1.8). The
entry RY’(z) represents the contribution to R, (z), as defined in (3.25), from
the terms with § = p.

For Z(a, z) we show that the inner sum in (2,26} satisfies

(3.25) Y ko)

ti(a, P(p{é1)
1/2 1/2
< {w)- w(p)S(f,(-’f) )+ ()S(—f-,(l’) )
: ;& } 5 5 q|a;q§u")7/:$-f 1 ‘15 5
where

(3.30) Fa=w@/{w{t)— ZIW(P)}-

plé
The expression on the right of {3.30) is non-negative because of Lemma 4.
The inequality (3.29) follows because the expression on the left is expressible
via (2.12) and (2.10) as

(3.31) W{1)— Zw(p)}S(-g, z1)+

pié

a
W(Q)S (‘"—s z )
q!(n/5)2:q<21 5‘9.' .

with z; = p(d); the change to z; =./y/d increases the right side of (3.31), as
asserted, because in (2.26) we have %,(6)=1, so that p(d) > \/3)_/_5
Furthermore part (ii) of Lemma 4 applies to show that f(g) satisfies the
hypotheses of Lemma 3, which now gives

(332) Y. Iyla, 1) 2 — XM (5)+RP (2,

deof
where RY”(z) is the contribution to R, (z) from those § with v(5) = 3. Here,
for the O-term in the expression (3.23) for M, (z), we use the fact that when
%y(6) # 0 and when & is written as in (3.14) we have (cf. the argument leading
to (84.11) in [5])

y L.y 12yt
log > --log e S ~(- log y.
Py 2 Tpioapeey 203 g

Since (see (2.20)).v is bounded by 1/m when 2 }v(8), this shows that the
parameter & in the current application of Lemma 3 depends only on U < 1.
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For Z4(a, z) in Lemma 2 part (iii) of Lemma 4 gives, via (2,12}, that
Xi(a, 2) = 0.

With (3.27), (3.28), (3.32), this completes the proof of (3.19).
To deduce (3.26} we use the fact (cf. § 3.1 in [5]) that

R,@ <W() Y 70 L IR, ),
} dasyld
dlp(\%’;{fg)

together with the facts that the expression of a given d ad 8d' with 7,{é) = 1,
d|P(./y/0) is, if it exists, unique and implies x,{d) = 0.

#M(z)
2(f=1im

4. The approximate identity for the main term. In this section we prove
the following result.

Lemma 6. Suppose that the multiplicative function ¢ satisfies (), (Q3),
and that the weight function w satisfies {1.6), {1.8), where U, V sarigfy (1.5).
Then the quantity M (z) defined in (3.20) is estimated by

L1/5
“.1) M(yY) = 2 V(.V){'ﬂ’ (W)+0 (Ejgrg;)},

where (W) is as stated in Theorem 1 and V() is as in (L.11).
Actually, the estimate (4.1) holds good for M (z) for ail z satisfying
yma\aw.l-‘-zvi <z <y,

as an examination of the proof would show.

The proof of Lemma -6 will follow from Lemmas 8 and -12 below.

We will handle M(z) by replacing the quantities M,(z), M;(z),
appearing in (3.22), (3.23), by certain essentially equivalent expressions. This
equivalence is based on the fact that, in the range of the relevant parameters
allowed in Lemma 7 below, the (unweighted) upper bound sieve of Rosser
and Iwaniec gives the same bound as does the A’-method of Seiberg
employved in the proof of Lemma 3. _

The Rosser-Iwaniec functions yz,° are defined as usual, by specifying
%5(1) = 1 and, when d > 1, |u(d)| =1,

1 if hp2(M <y when k|d and 2 fv(h),
+ = 4
“-2) xy () {0 otherwise,
~ 1 if hp*(h) < y when h|d and 2{v(h),
(43) 1y (@) = {() otherwise.

For our convenience we also define a function xJ (d) by x;"(l) =1 and,
when d > 1, lp(d) = 1,

1. it hp* (W) < y when h|d and 2 yv(h) < 1/m,
(44) B = {0 - otherwise. :
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Then the function x, defined in (2.19), (2.20) is expressible as

(4.5) %y (d) = xy () %3 (d).
Note that
(4.6) Xy (3} = 2y {d) 73 10) it 2rv(d),

for then x; (8/p(3)) =y, (), and (4.6) follows using (2.3). Also
Xy (@) # 0 = 2 v < m.

The property of ;7 that we invoke is as follows.
LemMa 7. When g satisfies (), () and 0< s <3 we have

Iy v Ly
pdg @etd) \/_,,,{1 L0 ( /)}
aip i d _ log™ y /.

The upper bound in Lemma 7 is, even with the belter error term
O(log™'y), a special case of. the result of [9]. As stated, the resull
follows using the techniques described in [8]. For our convenience we have
taken s =2 in an expression F{s) V(') on the right, the sum on the left
being in fact independent of s when 0« s <3,

In the next lemma and elsewhere we decompose d, when pld and |u(d)|
=1, as

Lemma 8. The quantity M(z) defined in (3.20) satisfies the upproximute
identity

s
(4.8) Mz} = M*(2) {1 + 0 (log )} )
where .
‘ Do(dyy, (4
4.9) M*(@z) = } “—@'g(‘g)ﬁ"&)— W)~ X wip) ¥ @}
d|P{z) : pld

with dy as in (47) and ¥* as in (4.4).
The first stage in proving Lemma 8 is to use Lemma 7 (with y replaced
by ¥/8) in the expressions for M,(z) and M;(z) in Lemma 5. We obtain

M, (2) 4+ M;y(z)
5 % die(d old) 5 u(r)xy,d(rgr){1+o< Lus )}

i

Lidlela)pla) plxyall)eln) .
diF(e) d 1| Pptd) log!/

24y s im

over ¢ is then mdependent of & when ¢ = \/ y/d $0 when Fyld) # () we may
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take ¢ = p{d) as stated. This establishes (4.8) with, however, M* (z) expressed

@10y M*(0) = wld) x, () o () @ {dl)

d|Piz) d

Lol o p) e

e d 1| P(ptetn) f
2wy € 1/m

where
@11 ptd) = W(l)—~ 3 w(p)

rld
as in (2.6).
Because of (4.5), (4.6), (4.2), (4.3), this can be rewritten as
5 K (d) x5 (d) p{d) 37 {d) g (d}

diPiz) d

412)  M*(z) =

LY e T E0BeE

b :IP(mdn de
This can be expressed us
(4.13) M@y =W(1) ) gi(d)+ F wp) 3. g,
| P(z) p<z Pl Pz)

It remains to show that this expression is identical to that appearing in (4.9).

In the expression (4.12), the coefficient of W(l) is obtained by replacing
@(d) by W(1). Then we apply the “fundamental identity” (2.5), in which we
take ' '

tm=x¥ A=Pi); eld=y (dold/d.

This shows that in (4.13) we have

d)y; (deld
(4.14) g, (d) = E_(_?XMJ_E(E’QEL)_,

We use similar principles to show that in (4.13) we hax}e
(4.15) dy(d) = —p(d)od) x5 (d) x5 (dy)/d,

with d; as in (4.7). It is almost immediate that this is admissible for those
pairs p, d with dy =1 (so that p is the fargest prime factor of d = pd;). To see
this, observe that in (4.12) there is a solitary term with d = 1; in every cher
term we can write-d = pd, (possibly with d; = 1), In each of these terms in
{4.12) there is a summand —w(p) corresponding to each occurrence of a
summand W({l), because of (4.11). Consequently we have, in (4.13), the
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equation

gi(d)= —g,(d when d,=1.

This establishes (4.15) in the case &, = 1.

An argument similar to that just used shows that it is sufficient to
establish (4.15) in the case when 2 yv{d,), since the result in the contrary case
will follow from it. In those terms in (4.12) with v{d;} = 2k, d # d; wrie
d=4d, pd, as in (4.7). Correspordling to each summand W(1)- Z w(g) in

Ny
(4.12) there is a summand —w(p) (there being no terms with )‘fﬁi‘ (l¢l1) = ),

Then (4.14) will follow in the case when v(d,} = 2k~ 1.
When 2 fv(d,) we have

T (d) = ¥ (pdy) Thiipey (d2)-
In (4.13) we now have, from (4.12), {4.11),
gp(d) = pldy) x} (pd Y (p, d)w{p)

where
W(p, dy) = Z #(dz)X}"/(pal)(‘lz)X; (d)g(d)/d
da1P(p)
d=dypiy

#O) 2y (@0 odr)

+ 2

#(dz)z;”fl(pdl)(dl) Z

43 P(p) 1| P{pld)) d
d=dypdy
= Y uld)xy (@deldyd,
dztPla
da=dypdy

by the “fundamental identity” (2.5). Hence

gp(d) = — ()t (pdy) 2y (d) o)/,
and (4.15) follows since

a¥(pd)) = 28(dy)  when 2 }v(d,).

This completes the proof of Lemma 8.

In the remainder of this section our treatment is closely relaled to the
corresponding details in the article [6] of Halberstam and Richert. We follow
them in denoting

(4.16) T (g, )= T ) o(d) 17" ()

dlPeylin
The following “Reduction Lemma” is a case of Lemma 5 in [6].
A continuous analogue of Lemma 9 was provided by the present author as
" Lemma 5,1 in [2]. The ensuing arguments in this section could also be
arranged as in [2], instead of as below.
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Lesmma 9. The sum defined in (4.16) satisfies
2 t 1/3
E_(_;Q.(L) T (y’ (:Vt_) )-}—O(V(y“s) 10g‘”5 y)’

Ty, yM = X :

115 < ple) e = it
v{t) Svibod 2

where the O-constant may depend upon s 2 1.
Essentially, the proof of Lemma 9 provided in [6] rests upon repeated
use of identities of Buchstab’s type to express the left side in terms of T-
functions for which the estimates are of the elementary type provided by
Lemma 7 (and by the analogous result for T (y, \/ ). There are some’
complications, relating to the occurrence of non-squarefree moduli in the
resulting expressions, which are, it is shown in {6], absorbed by the error
term in our Lemma 9.
We will need the following identity.
Lemma 10. Define
bmy= 3,
din
 4lmjd)< yfipn)
Then b(l) =1, and if n> 1 then
. ={-3€y(n} if np(w) < ¥/p,

0 otherwise.

p(d) %y ().

The proof of this identity is almost identical to that of a corresponding.
identity for x, established in [6], which may in turn be regarded as an
arithmetisation of Lemma 5.2 in [2]. The function y, shares the properties of
the function y, necessary to make the proof of Lemma 10 a straightforward
exercise to the reader of [6]. :

In the next lemma we adopt the abbreviation, used in {6],

s* =T, 4" (>1.

LemMA 11, When z = y¥ the quantity M*(z) appearing in Lemma 8 is
expressible as

MOH = WIHT 0= T AW - e (X)
Cp g gyl r r
- 1&@.@5@{ . (z)ﬁ_ o L (:?..)}
p«%“ r 1 P "|P(y§2|\’(ﬂ) R pn
< p{ny=< y{(pn)

+O(V{y)log™ ¥%y).

The proof of this lemma is analogous to that of equation (6.15) in [6],
to which we refer the reader for discussion of details. In this proof, the
coefficient of W (1) is exactly as in {6]. The remaining contribution to M* (;)
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is expressible as
Hizy= % pldie(dyy (d)w(p)*(dy/d,

d|P(z)

where d has been expressed as d = d, pdy as in (4.7). This can be rewritten as
. o (- )\’(ff 1)
1) eld) @by i) g BUD O Ly (@)

wip)o(p
Z N i

ez p dy1Pi) d, d i Pip) dy
plap)>p

The inner sum over d, is expressible via Lemma 9 as

f‘-)w(ﬂ_&. ):_ £2ne , (L AW e
T pd.’ P ) 7 dy pt HO(Vplog™'# p).

= p !
)= Wid  p)
ey =v(dy hmed 2

The conditions of summation imply x, (d, p} = 1, hence

HE = 3 M0 y sdeldp@ 5 B0 (d:”)

ez p dl Pz d P ples f
< pid) gty = pi(d
P i qfry< p/(tp)
vif) = vidimod 2

+0(Viylog™ ' y),

wherein ¢ also necessarily divides P(z), since z = y¥, Writing f = n, we then

obtain
Hiz) = 3 WPL0) wlneln) . (V) S ) @
p<z P 2% plmn| Piz) n bt dln ¥
2{v(m) g{n/d) < pfi pm

+0(V(y)log™ ' y),

the terms with (d, 1) > 1 being dealt with as in [6], and Lemma 11 follows
after an application of Lemma 10.

In Lemma 11, the factor ¥, (n) is O if v(n) > 1/m; this is a consequence of
{ 24) with our specification (2.22), of which we have already taken advaniage
I our treatment of the O-erm in (3.23), This fact is, however, no longer
relevant, because from (1.8) we have that w (p) is zero if p < yY" Accordingly,
on cstimating sums by Integrals in the established way {cf. Lemma 4.4 in [”’k2],
for example) we obtain the concluding result of this seetion, as follows.

LemMa 12, The quantity M*(yY) appearing in Lemma 11 i expressible as

1/8
M*(pY) = 2¢7 V(y){ H(W)+0 (,_E;m_.
: log? y

where V(y) s as in (1.11) and #(W) is as in Theorem 1.
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As indicated previously, Lemma 6 follows from Lemmas § and 12, and
with Lemmas 1 and 5 completes the proof of Theorem 1.

8, MNumerical estimations, For applications, e.g. to the result stated in
(1.4), it is necessary to make an appropriate choice of U, V and then estimate
the expression . 7 (W)} of Theorem [ (from below). The considerations relating
1o the choice of parameters differ from those in 2], because (¢f. Theorem 1)
it is not now the case that f(r, 1) exceeds 1/1—# for small 1; in fact
Theorem 3 indicates that h(r} is always less than 1/5.

For R =2, 3,4, ... we atlempt to maximise g subject to the constraints
required in Section 1, denoting the optimal value by

AR = R"'(Sn

The constraints are that . # (W) > 0, with U, ¥ chosen subject to (1.5) and W
satisfying (1.8). The caleulations of .# (W) were carried out using Theorem 2
and the methods outlined in [4] for the numerical inversion of the moment
map, using information derived from an implementation of the algorithms
described in [3]. A large computer was employed, and a search conducted
for the best choice of U, ¥ for each R. Equality was chosen in the upper
bound for W specified in (1.8), save that in the (unimportant) interval where

O tmm< SU-D1?

we took Wi =10, for simplicity. It appeared that only for R <4 does an
improvement results upon that derived by the methods of [2]. For these R
the optimal choice appears to equal (or to lie very close to) those given by

the equations

2V U = 1;
The solution U of this system was calculated and found to satisfy
U= 09702933 ..,

This leads to 1he values of Jp stated in (1.4). o

It appears to be difficult to make any particularly perceptive comment
on the fact that when R 2 § our calculations indicate that the method of this
paper does not improve upon that of {2]. It is certainly the case that the
methods of Section 3 yield better bounds for the expiessions Z,(a, =),
¥, (a, 2) of Lemma 2 than do the combinatorial methods of {2], provided the
constraints (1.8) are satisfied; when R is large we are however led to values of
the relevant parameters for which these constraints, in particular the

requirement

(W) = 0.

Wi st—-(1—-Uy2 f (1-Uy2<t<143,

are significantly more stringent than the corresponding requirements in [2].
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