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Chapter 15 of Ramanujan’s Second Notebook:
Part 2, Modular forms

by

Bruce C. BernpT* (Urbana, I11) and Ronawp J. Evans (La Jolla, Calif)

Chapter 15 hgs a character different from most of the other chapters in
the second notebook because it contains very diverse topics. Moreover, the
subjects are examined at highly different levels of sophistication. In another
paper [5], we have examined the first seven sections of Chapter 15, which
contain several beautiful and original asymptotic expansions. In this paper,
we describe Sections 8-14, where modular forms, in particular, Eisenstein
series, are at centér stage.

Perhaps the most interesting theorem in Chapter 15 is found in (8.3)
below. This undoubtedly new result gives an inversion formula for a certain
modified theta-function. It may be surprising that an exact formula of-this
type exists.

Entry 11 is a beautiful and new reciprocity formula reminiscent of some
of the formuias in Chapter 14. .

Section 12 contains several results found in Ramanujan’s famous paper
[22], [23, pp. 136-162]. We mention, in particular, Entry 12(x) which is
equivalent to the very interesting identity '

H

Y. 0y (2k+1)o3(n--k) = 5i5os (2n+1), nz0,
k=0

where o (m)=3 d',m#0, and o3(0) = 1/240. Ramanujan states this

dlm
identity withcut Iproof in [22], [23, p. 146] and indicates that he has two
proofs, one of which is elementary. We have not been able to find an
elementary proof in the literature nor can we produce one ourselves. All of
the results in Section 13 can also be found in [22].
Entry 14 offers a new recursion formula for Eisenstein series. It is quite
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distinct from the most well-known recursion formula for Fisenstein series
which was discovered by Ramanujan in [22], [23, p. 140].

At the beginning of Section §, Ramanuian remarks that “If F(h) in XV 1
terminates we do not know. how far the result is true. But from the following
and simifar ways we can calculate the error in such cases.” To illustrate these
cryptic remarks, Ramanujan indicates a method for calculating the error in
the asymptotic expansion

x 1 1 o /1N 1
®.1) k21 = EE*E\[EC(E)W”{”’

as x tends to. O+, which is the case p=2 g=m=n=1 in [5 §86
Theorem 1}. In fact, he indicates that the equalities

- -] o k.’l
(8.2) J ; e kszOS CI'X)d‘C -—kzlm
n  sinh{n./2a}—sin(n./2a)
"2 /2 cosh(n:\/_Za) cos (r . /2a)
can bé used to deduce the following exact formula extending (8.1).
Entry 8. If x>0, then

o 1 1 1\ 1

®3) k§i;kzx:fa+iﬁc(5)+z
\/; i’: {cos (m/4+2m . /nkix)—e - 2/ cos(n:/4)}
2%t Jk L cosh(2r./mk/x)—cos (2. /mk/x) '

This i$ truly a remarkable formula. The: left side can be construed as a
modification of the theta-function

B(x)=1+2 ni g
k=1

Thus, Entry 8 is an analogue of the inversion formula for 0(x).

Before proving Entry 8, we first establish (8.2).

The first equality easily follows from inverting the order of summation
and integration on the left side and using a well-known 1ntegral evaluation
[13, p. 477].

To prove the second equality, we shall expand the right side into partial
fractions. An elementary calculation shows that the nonzero zeros of
cosh(n/2a)—cos(r./2a) are at a = £k*i, 1 <k < oc, and that they are
simple. Thus, if R, denotes the residue of the function on the far right side
of (8.2) at a simple pole z,, we find that

R = Fif2. .

¢

k2
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Thus, for some entire function g(a),
n  sinh{n f2_a —sin(r \/E&) _
2./2a coshin /Za) cos(m ./ 2a) -

Letting a tend to co on both sides above, we find that ¢(a) tends to 0. Hence,

g(a) is a bounded entire function, and so by Liouville’s theorem g(a) is
constant. Clearly, this constant is zero. Hence, the proof of the second
equality in (8.2 is complete.

A different proof of the second equality in (8. 2) may be found in a paper
of Glaisher [9].

Proof of Entry 8. Settlng X = wy, we restate (8.3) in the form
- &1 n /2
(8.4) : : T R ( =R,
k§1 &1 63’ 2 4

where

1 {cos (2n \/7{_/;)— sin (2 \/;?[}')__ .e" 2n /kly }
kyl  cosh(2n,/k/y)—cos (2. /k/y)
_2& =x {sinh(n\/ﬁ)msin(n\/z“a) 1}:

myK<12./2a (cosh(n . /2a)—cos (z /2a) B

where a = a, = 2k/v.
For brevity, set

i) = Ze""‘z, > 0.

Thus, by (8.2} and (8.5), with a = 2k/y,

du - 1
(=8.6) R=2 Z { W {u) cos (ZT:ku/y)-']TmZ—r—ﬁ;}

k=1

=2

k

J
T W (uy) cos (2rku) du — 1 }
e

1

b8
o,

Now, for y ='0, !

@0 Fowr=§ F e § T oo §
k=1

k=1f=1 i=1k=1 =1e7roq
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By (8.6} and (8.7), the proposed formula (8.4) now becomes

[=.9)

(8.8) }0_31 W (ky)— 1u g@__l =2 z {J f(uy)cos(Zrcku)duw——-uM}
k=1 \/ \/ky

Let O < & < 1. Applying the Poisson summation formula [29, p. 443), we
deduce that
(8.9) Y wiky) = j:[f updu+2 3§ (uy)cos (2nku) du.

k=1 k=t g
From (8.2},

[ ¥ (uy) du = =/(6y).
0
Hence, by (8.9),

(8.10) Z W (ky)—m/6y) = Zw

o

f ¥ (uy) cos (2mku) du .

By (8.8) and (8.10j, it remains to prove that

(8.11) —?‘lr—%\l—;% B_‘O+ m 2 Z {f\/J (uty) cos (2mku) di.l—'—:};:::}.

From {30, p. 22, equation (2.6.3)], for u >0,

1 1 1 1
W(uy) = ~5+5~\/~u_—y+w-;;~//(ﬂ).

Thér.efore,

{(8.12) ftp {uy)cos (thkzrj du

L &

3 .
= ml jcos(anu) dut+1 cos (2rrk) du -+ J‘cos (21:"1\ 4) s (L) du.
uy

2 Vw Vuy

0

The first term on the right side of (8.12) gives to (8.11) the contribution

. &, sin(2mke)
8.13 lim —2 =
{ ) 2—0+ kzl 4‘ k . e—=+0+

1e—[e]-H = —4,

ZRIY — bm

where we have used a familiar Fourier series [30, p. 15, equation (2.1.7)]. The
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third expression on the right side of (8.12) contributes to (8.11)

i = (cos{2mku) ( )
8.14 hm 2 du =10,
( ) a—lul(;ri k; j \/;y w uy

which can be seen after two integrations by parts. By (8.11)-(8.14), it remains
to prove that

D2y .2 {j'cos(anu) 1 }
8.15 —— 1 du — .
®19 PR IR | P 2 Jk

Now [13, p. 395],

2rtku) /
JCOS( k) du = Jcosu du —W

0

Using this in (8,15), we find that (8.15) becomes

lim 2}

(®.16) L1/ = J‘cos(%tku) ’
. 20+ k=1

£ -\/u

We shall again apply the Poisson summation formula. Let 0 <e < 1
< N and suppose N is not an integer. Then

1 cos (2rku)

®17 Zﬁf 7 2>3f N

&

The left side of (8.17) may be written as
N

Jd([“]f?‘;) _[d-u [Z-I- TE’%Z“ s
Ju Ju 2) u

t4

Using this in (8.17) and letting N tend to oo, we deduce that

[u] u cos(?.nku)
5 | o —du=2 E J - du,

(8.18) Je "

where letting N tend to oo inside the summation sign is justified by two
integrations by parts. Combining {8.16} and (8.18), we see that we must show
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that

1CO
5(1/2)=§J‘ 1;2 : ’
0

But this last formula follows immediately from a well-known representation
for {(s) found in Titchmarsh’s treatise [30, p. 14, equation (2.1.5)]. Hence, the
proof of (8.3} is complete.

In the sequel, we shall set

O Fe®= 3 ke

LEh=1

where x>0 and m and n are nonnegative integers. Without loss of
generality, assume that m2r In [5, § 6 Theorem 1], an asymptotic
expansion is given for F,, ,(x) as x tends to 0+. Ramanujan begins Section 9
with the special case p=g =1, ms n of [5 §6, Theorem 1]. He then
defines, for jg| < I,
0 a 3k ﬁ
L=l-my kq M=1+240):1k—‘q _1~5042k =

: k=1
The functions L, M, and N were thoroughly studied in a famous paper [22],
[23, pp. 136-162] of Ramanujan, where L, M, and N are denoted by P, Q,
and R, respectively. We now show that L, M, and N are essentially the
Eisenstein series of weights 2, 4, and 6, respectively, on the full modular

group I'(1). To see this, first let g = exp(2mit), where t is in the upper half-

plane 3, and write

: o kv uo
-2 ®,(q) = Z

k= 1

(?‘) ez:rirt
ay, »
r= 1

o0 [
Z Z eijkt —_

> k*. Next recall that the Fourier

kir

expansions of the Eisenstein series E, (1), where » is an even positive integer,
are given by [26,.p. 194]

where we put jk =r and where o,(r) =

.

93)  Ey(t)=1-24 f o1 (K) €2 — 3j(my) = 1 — 244, (q)— 3/(ny)
k=1

and

2n X ,
O BO=1-5 % o B =120,

nk=1 n

n> 2,

where y = Im t > 0 and where B, denotes the nth Bernoulli numbet, Hence
L= E2(1)+3/(1ty) M = E, (1), and N = Eg4(1).

icm
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Ramanujan next claims that if m+n is an odd, positive integer, then the
function F,, ,(x) of (8.1) can be evaluated exactly in terms of L, M, and N.
First, observe that, by setting jk =r in the definition of F,,,(x), we obtain

mnx) ZI‘ Om— n(r T

Thus, with x = —2nir, F, ,(x) is essentially an n-fold derivative of an

Eisenstein series of even weight f m—n is odd. f m—n=1 and n = 1, then

F. .(x) is clearly a multiple of an n-fold derivative of L. Suppose now that

m—n is odd and > 1. By a theorem in Rankin’s text [26, p. 199] each

modular form of even positive weight can be expressed as a polynomial in
rag

E, (1) and E4(z). Thus, ¥ a,-,(r)e™"™ can be so expressed, and since F,, ,(x)

is, up to a factor of +1, an n-fold derivative of the function above, then
F...(x) can be represented as a polynomial in M, N, and their derivatives.

Extry 10 (i) (first part). For each positive integer nz= 2, -

B,, B,, = rikee
2 Ezn() 4; + Z O 1 (k) €3
k=1

can be expressed as a polynomial in M and N.
This statement was verified in Section 9 where we appealed to Rankin’s
book {26, p. 199]. See also (14.2) and Entry 14 below.
EntrY 10 (i) (second part). For each positive integer n,
. ©  kgk nlj B o gl g
folx) = Z '(‘fl_k_)“i—ﬁn'g" - 2n+ Z —1_—k

k=1 dn 2 q

can be expressed as a polynomial in M and N. Here §; = 1/2 and 5, =1 if
nz2

Proof. By (9.3) and (94),
o anqk 1 4 BZn
,c;(l—q")2 ”“i?c'idz( n ())
where

[y | E () +3f(my) =L, if n=1,
)= Ey, (T}a if n>t.

Thus, for n 2z 1,

1 d B;n 5 E3} BZM
j;r(x)an(t}EE;aE{( n( )) —n—gz—('ﬂd’n ZH{T)'

By the aforementioned theorem in [26, p. 199], it suffices to prove that F,(z)

3 - Acta Arithmeliva XLVIL.2
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is a modular form on I'(1) of weight 2r+2. We must therefore show that
[28, equation (5), p. 80]

(10.1) Fu(~1/0)=1**2F, (1), te#.
Recall that for V& = (ar+b){ct+d)e I'(1) [27, pp. 50, 68]

(10.2) % (V) = {(‘-'T*d)zE?(f)—ﬁn‘lic(cr+d), if =1,
T e d T Ey (), ' a1,
By (102), if n> 1,

2

4n T
-B—Z—F‘,,(—l/r) = —E(2m2"—1E2"(7)+12"E’2,,('r))
nl 5o bit\ ,,
+g T El(t)_? T EZH(T)

. n . "
=t (—%EZn(T)ﬁ'gEf (T)E.’Zn(r))

4n
=,L_2n+2___F (‘E)
Bln "

This proves (10.1) for n > 1. A similar argument can be used for the case
n=1.

ft\lterna_tive]y, for n > 1, (10.1) follows from the theorem [2.0, pp. 16,17]
that if f(z) is a modular form of weight k, then f (1) —(rik/12) E¥ () f(z) is a
modular form of weight k-+2. : '

Ramanujan did not consider the case n =1 in Entry 10 (i).

ENtRY 11, If o, f> 0 and of = 72, then
12 1 1= 1
4,21 k2 sinh® (k) J’Z,El K2 smhZ (B

2% S K Log(l—e~24)~28 3 k2 Log(i—e- 4 = LB _af
= L, K og{l—e™ ) = s 2,

Proof. By an elementary calculation,

€0 _ o 1 oo )
(111 k; k?*Log(l—e~ 2% = . SO kE o2k

i=1J k=1

» 1 g™ 2 Qe 12 cosha)
= - 7 -+ — [ p— _-—__,_..__'Z_...
Z {(1 ~e” Y (l—e 2”’)3} 4j§1j sinh® (o)

(11
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With (11._1) as motivation, we define

Jf(z) = meot (nz)( 2 COSh(o:z))‘

zZsinh?(xz)  zsinh?(xz)

We shall integrate f over a suitable rectangle, to be described later, and
apply the residue theorem. We write R, to denote the residue of a specified
function at z.

First, f has simple poles at each nonzero integer k with

R — 1 +2acosh(ak)
k7 k2 sinh?{ok)  k sinh (ok)’

By (11.1), the sum of all such residues is equal to

< 1 < 2 - 2ok
2‘221 R SR k) IGack;k Log({l—e™2%),

Secondly, let f,(z) =p(z)/q(z), where p(z)=ncot(nz) and g(2)
= z2ginh?(az). The function f;{z) has double poles at z = ikm/a, for each
nonzero integer k. To calculate the residue at ikm/«, we shall use a formula
from Churchill's text [6, p. 160] for the residue of a double pole.
Accordingly,

. _ 29/ (inkfa) _2p(imk/e) q"" (ink/e)
(11.3) R ==y~ 3 iq (imkfa)}

Elementary calculations yield
plinkja) = meot(Bki), P (inkfa) = —n2csc? (Bki),
g’ (itkfa) = —2r% k%, and. ¢ (inkfo) = 120mki.
Using these values in (11.3), we find that
R = — 1 ﬁ?.coth(ﬁk_)__
Frkfs k2 sinh? (8k) B
Thus, the sum of all such residues is

© 1 4 Z coth (ﬁk)
(11.4) Mzk; k* sinh? (ﬁk)_EkZ:l o

Consider a function F{z) = p(2)/q{2). where p and g are analytic at zq,
plzo) # 0, and ¢ has a zero of order 3 at z,. Then a somewhat lengthy, but
routine, exercise shows that

(11.5) R, = 30" (z0) 3P (20 4™ (20)_3p(zo)4(z) | 3plzo) {9 (20)}° _
. 0 qm (ZO) 2 {qm (zo)}_z 10{ qm (ZO)}JA 8 ]( qm (.ZO)}3
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Now set  f3(z)=p(z)/g(z), where p(z} = 2noccot(nz)coshinz) and q(z)
= zsinh®(2z). The function f(z) has triple poles at z = imk/w, for each
nonzero integer k. Elementary calculations yield

plinkfo) = —2(~ D nuicoth(Bk),  p'{ink/e) = 2( — 1) n® wosch® (fk),
p"(ink/fe) = 4(— 1) n* i cseh? (k) coth (k) — 2 — 1) e i coth (Bk),
g (imkfo) = 6(~ \mt ki, ¢ (inkju) = 24(— 1) a?,
and
g (ink/a) = 60~ 1) ne* ki,
Using these values in (11.5), we find, after much simplification, that
Rinese = gkﬁ csch? (Bk) coth (Bk) +£5csch2 {fk) +E?k—5 coth(Bk).

Thus, the sum of all such residues, by (11.1), is equal to

- o = 1 4 2 coth(Bk)
11.6) —-18 K Log(l—e 244 e e g
(116 ﬁk; og(l—e™ 24 k=1kzsinh2(ﬁk)+/j R; R

Lastly, / has a pole of order 5 at the origin. We have

1 rz rnz? 171 @z 7Ta%22 2
fir-a(L22 (L e e )

+%(_1 +acz cx323+ (1 oz tadz? M
sz 3 a5 v N e T 360 T

Hence,

e’ n o on? af wi+ B2
117 Ry=maf— e B T V4 @ HF
(117) o ’t( 15779 150:2) 5 15

Consider next

1 .
Iy= 5 J-f (2)dz,
Oy

where Cy is a positively oriented rectangle with sides parallel to the
coordinate axes and passing through the points i“([\/ﬁ]-i-]/m and
in(N+1/2)/a, where N is a positive integer. Note that Cy is free of poles
of f. Estimating the integrand on the vertical and horizontal sides separately,

icm
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we find that

(11.8) Iy < JNe 2™y /N) = o(1),

as N tends to oo, '
Apply the residue theorem to Iy and then let N tend to oo, Using (11.2),
(11.4). (11.6), (11.7), and {11.8), we deduce that

24} 1 [+4]
0=27F 160 Y k®Log(l—e~ 2%
,; i sinh? (ak) {”‘,E, og(l—e™5
o 1 o B 'Otﬂ a2+f)’2
o K2 Log(1—e~ 2420 _ ,
T2 2 e 108 X K Log(l—em 4o -

k=1

which is readily seen to be equivalent to the proposed identity.

Another proof of Entry 11 may be constructed from resuits in Berndt's
paper [3, Theorems 2.2, 2.16] together with {11.1).

For other beautiful theorems in the same spirit as Entry 11, see Chapter
14 in the second notebook [24], [4].

Entry 12. Let L, M, and N be as defined in Section 9, and recall thar
E, (), n> 2, and ®,(y) are defined by (94) and (9.2), respectively. Define the
discriminunt function A(t) by

A (T) =g ]’I (lqu)24! g = 227:1':, Te #.
k=1 ,

Then, for |g| < 1, _
(i) M>—N* = 17284 (1),
(i) Eg(t) = M?,
(i) E,o(z) = MN,
(iv) Ei4(r) = M?N,
o kl qk ) MM.LZ
RN (e
_ k* ¢ LM-N
LI s R T
o k6 qk . MZ__LN
(vii) k;(l—q")z =50
2 kgt LM*—MN
(viii) k; T~ 70

x

G0 LY (- DRk D TR = 3 (1 (2 1P g,
k== < k=0 )
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and
(2f< l)q (2k—1)°g¢*

—g> 1

() M E kZ1

Proofs of (t)—(vm). Formulas (i}-(iv) are very well known and are
special cases of the general theorem [26, p. 199] which we applied in Section
9. In particular, (i}-(iv) can be found in [26, pp. 195, 197, equations (6.1.8),
(6.1.9), and (6.1.14)]. These formulas were also derived by Ramanujan in
[22], [23, p. 141]

Formulas (v}-(viii) are originally due to Ramanujan, and proofs can be
found in his paper [22], [23, pp. 141, 142].

First proof of (ix). This formula is a special case of a general formula
established by Ramanujan in Chapter 16 [24, vol. 2, p. 202], [1, Entry 35(i}].

Second proof of (ix). Rearranging in (ix), we find that

ra)

2, o(he’ i (— 1)%(2k+ 1) g+ 112

iz k=0

M[,_i

Z _1)k(2k+1) qk(k-l- 12 Z (_1)k(2k+1)3 qk(k+1),'2}‘

0, on both sides, we find that
o(n—3c(n—1)+50(n—-3)—To(n—6+...=0,

Equating coefficients of ¢", n =
(12.1)
if n is not a triangular number, while if n = r(r+1)/2 is a triangular number,
(12.2) og(mM~—3o(n—0+5cn—3)~Ta(n—-0)+ ...

=2 {(~= 12+ 1)~ (~ 1@ +1)%}

(=0 + (2 +1)

-1 : kz

Thus, formula (ix) is equivalent to the arithmetic identities evinced in (12.1)
and (12.2). These identities are due to Glaisher [10] in 1884, although they
are really consequences of a formula proven seven years earlier by Halphen
[16]. Hence, appealing to the theorem of Glaisher and Halphen, we have
shown (ix).

For generalizations of Entry 12(ix), see two additional papers of Glaisher
[11], [12]. For further references to the literature, consult Dickson’s history
[7, p. 289].

Proof of (x). If

il

o
f@y= % a,q", q=e*",
=0

icm
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define Tunctions f,,, f,, and f; by

fm(f)=f(2r)=§ B, S0 =) = 3 ana™
and Y
Ll = fle+ 1) = 3 a(-1r e

Then Entry 12(x) may be rewritten in the form

(12.3) N,—N, =21M(L; — Ly).
If w == {14 1)/2, observe that
I-21/1 H;: — e I'(1).
Thus, from (10.2), we readily find that
L,t+1)=L,(t), Lo(t+1)=0Ly(r), Lj{r+1}= Lo(1),
Lo (—1/7) =312 Lo(D) +3t/(m), Lol —1/7) = 472 Lo (o) + 120/},
Ly (—1/7) = ©% L, (¢) -+ 127/(mi),
N, (t+1) =N, (), Not+1)=N,(x), N(z+1l)= No(r),
— 11y =" No(r), No(—1/1) =64° N, (1), Ni(—1/7) =18 N (7).
Next, define
Xp=L —L,, Xg=4L, Ly, X, =L¢—~4L,,
Z,=N; =Ny, Zy=64N_,—N,, Z;=No—64N_.

Then the foregoing equalities readily imply that
Xu:p{T_I—l):—Xoo(T): XO(T+1)= -"_Xl(r):

X {z++1) = - X,(1),
(124) X (—1/t)= —12Xo(t), Xo(—1/1)= —1>X,(1),
g (~17) = —12 Xy (1),
and
Z (t+1)=~Z (1), Zolt+l)= -2 (),
Zy(+1) = —Z, (),
(125)  Zo(~1n)=—1"Z(x), Zo(~1/1)=—1°Z,(1),

Z (-l =—1"Z, ().
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Let M, denote the space of modular forms of weight k on the modular
subgroup I'(2). If §(r) =7+1 and T'(z) = — 1/, then generators of I'(2) are

[8, p. 245]
S*(r} and TS*T(1)=tA—2t+1).

Using these generators and (12.4), we may easily verify that X,, X, eM,.
Suppose that k is even. Then [26, pp. 104, 105] dim M, = 1 +4 k. Moreover,
since

(12.6) Xo=3-24g"2472¢+ ...

and

(12.7) X, =48¢*4+192¢°2 + ...

are obviously linearly independent in M,, we conclude that X%2
X§P7 Xy, o X X¥271 X¥2 form a basis for M,. Now suppose that

feM, and that f(r) = 0(g*%), as g tends to 0. Then from (12.6) and (12.7),
fl@y=0.

In our situation, we take k = 6. Clearly, MX e Mg, and, from (12.5), we
may verify that Z, e My. From Z, = 1008¢'/>+245952¢%% + ..., (12.7), and
the definition of M, we find that 2IMX_ —Z_ = o(¢*?) as g tends to O,
Hence, 2IMX —Z, =0, and (12.3) is proved.

We are very grateful to D. W. Masser for supplying us with the proof
above. Another proof of Entry 12(x) based upon the theory of modular forms
on I'y(2) was constructed for us by A. O. L. Atkin.

Entry 12(x) was stated by Ramanujan in [22], [23, p. 146] without
proof. Ramanujan indicated that he had two proofs, one of which was
elementary, while the other used elliptic functions. However, he provided no
hints to either proof, It is very unlikely that the proofs of Masser and Atkin
are the same as either of Ramanujan’s proofs. In her thesis, Ramamani [21,
p. 59] has given a proof of Entry 12(x) that uses the theory of elliptic
functions. Entry 12(x) is equivalent to the elegant identity

Y 0, (Zk+ ) oy(n—k) =5kgos(2n+1), n3=0,
k=0
where ¢3(0) = 1/240. It would be nice to have an elementary proof of this
identity and hence of Eniry 12(x) as well.
In his paper [22], [23, pp. 136-162], Ramanujan studies

13

E,.__.,(?’l) == Z a,.(k)(r_q(nmk),

k=0

where r and s are odd, positive integers and o,,(0) =1 (—m). He establishes
an asymptotic formula for X, (n) as n tends to oo with an error term. He,
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however, conjectured a better error term [22], [23, p. 136, equation (3}]. This
conjecture remained unproved until . 1978 when Levitt [19] proved
Ramanujar’s conjecture in his thesis. In some instances, Ramanujan showed
that the error term is identically equal to 0. Levitt [19] established necessary
and sufficient conditions for the vanishing of the error term and so showed
that the instances of such found by Ramanujan are exhaustive. Such a
theorem was also found by Grosjean [14], [15] who has made a systematic
study of recursion formulas connected with Z,  (n).

A nice survey paper on convolutions invelving o, (n) has been written by
Lehmer [17]. For other papers in this area, consult [18, section A30T.

Entry 13. Let @,(q) be defined as in Entry 12. Then, for |g| < 1, -
({) 691+65520d,, (q) = 441 M3 +250N?,
(i} 3617+16320®,5(q) = 1617M*+2000M N2,
(iii) 43867 —28728 ®,,(q) = 38367M> N -+ 55003,
(iv) 174611+ 132004,,(g) = 53361 M° +121250M2 N?,
(v) 77683 —5520,,(q) = S5T183M* N + 20500M N>,
(vi) 236364091+ 131040¢,;(g)
= 49679091 M + 176400000M3 N2 4+ 10285000N*,
(vi) 657931 — 24 ®,5 (q) = 392931 M3 N 4 265000M2 N3,
(viii) 3392780147 4 6960 @, ()
= 489693897 M7 + 2507636250M* N2 4 395450000 M N,
(ix) 1723168255201 — 171864 O,4(g)
= 815806500201 M° N -+ 881340705000M> N3 + 26021050000N 3,

and

(x) 7709321041217 + 32640 &4, (q) = 764412173217 M®
+5323905468000M5 N2+ 1621003400000M2 N+,

Note.
dL_PB-M  dM _LM-N
- 12 Y9~ T3 Ty 2

ExamrLes. Define, for |g| < 1,

qjm (Q) = Z jrks qjk' N

Jek=1

(Thus, ®o,(q) = S,(g)) Then .
@) 20736®, s (g) = 15LM>+ 108 M 202 N —4MN - I,
(i) 1728 ¥, +(g) = 2LM*~MN~I’ N,
and
(iii) 3456 B, 4(q) = E M~3 N+3LM?~MN.
All of the foregoing results may be found in Ramanujan’s paper [22],
[23, pp. 141, 142], where the method of proof is indicated.
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Let @, and w, denote two complex numbers linearly independent over
the real numbers. Put o = muw, +nw,, where m and » are integers. Recall
that the Weierstrass ,g;)-function ¢ (2) is defined by

1
)= an#:o ( Z— U)) -‘f;i) ’

where the sum is over all pairs of integers (m, n) s (0, O).

In order to prove Entry 14, we shall need the following facts about ¢ (z)
and Fisenstein series taken from Apostol's text [2, pp. 12, 137, as well as a
lemma.

For n 21, put

(14.1) bn) = 2(2n+ 1 {(2n+2) By, (1),
where E, (1) is defined by (9.4). Then, for n = 3,
n—1
(14.2) (2n+3)(n=2b(n) =3 Y b(kib(n—1—k).
k=1

{This is a more explicit version of the first part of Entry 10(i).) Furthermore,
for |z| sufficiently small,

(143) pe) =5+ ¥ b
7 k=1

where «; =1 and o, =1, with te#. Lastly, ((z) satisfies the two
differential equations

(14.4) {9 (2} = 4p3(2)—20b(1) 9 (2)—28b(2)
and
(14.5) 0" (2) = 662 (2) — 10b(1).

In fact, (14.2) follows immediately from (14.5).
Lemma. We have

@ (z) =30 p (2} *+240b (1) ¢ (z) + 504b(2).
Proof. Differentiating (14.5) twice, we find that

(14.6) W () = 120" 2+ 120 (2) " (2).
Also, by (14.5),

(14.7) 12@(2) pp""(2) = 720> {2} — 120b(1) g2 (2},
and by (14.4),

(14.8) 7262 (z) = 184" (2)* + 3605 (1) 02 () + 5045 (2).
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Substituting {14.8) into (14.7), we have
(14.9) 1262{2) 42" (2) = 182" (2)+ 240b (1) yo (z) + 504b (2).
Substituting (14.9) into (14.6), we complete the proof.
Il nis an even positive integer, Ramanujan now defines
{ )m‘z 1B S e 1 qk
8§ = e IV S
n 2” ( 1) kgl 1—'qk H

where |¢| < 1 and B, denotes the nth Bernoulli number. If n> 1 and ¢
= exp(2mit), with Te.#, then, by (9.4),

(___ 1)" 1 B
SZn == m—— 4” 2" 2n( )
Furthermore, from (14.1),
2n)!
(14.10) Sonta = 2(:5 sz b(m, nz L.

In Entry 14, Ramanujan provides a recursion formula for S,,., which is
different from (14.2). It should be remarked that in his paper [22], [23, p.
140, cquutlon (22)], where a different definition of §, is used, Ramanujan
gives a very ingenious proof of (14.2). Rankin [25] has given an elementary

~ proof of (14.2) as well as some other recursion formulas for §,,. His paper

also contains other references to the literature. However, the recursion
formula of Entry 14, which is incompletely stated by Ramanujan [24, vol, 2,
p. 1917 in his notebooks, does not appear to have been given elsewhere in
the literature.

Entry 14. If n is an even integer exceeding 4, then

(n+2 (n+3)

n—2
e e 8 = =2 )S S,
nin—1) "2 0( a JoTrR

[~ 241 (” 2

" (-3 =5K) (=8 = 58) =5 =2+ 3)} S S

k=1
where the dash ' on the summation sign indicates that if (n—2)/4 is an integer,
then the last term of the sum is to be multiplied by 1/2.

Proof. First, rewrite Entry 14 in the form

(n+2)(n+3) 8,42 _ 2053_4- Sp-3
2 n!

ltn- 2)/4) _ s
Y {(n-+3—5k) (n~-8§—5k)—5(k—2)( (k+3)} (;;;c)'z(n—Zk__kz)[’

k=1
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where n is even and at least 6, With n =2(m+1), where m = 2, the last
equality may be rewritten as

(14.11) (m+2@2m+5b(m+1)=10b(1) b(m—1)

[m2] [m)2]
+10 3 k(m—k)b{k)b(m—k)—(2m*—m) 3 b{k) b{m —k),
R=1 k=1

where (14.10) has been employed. Now (14.2) can be written in the lorm

[mf2)
(14.12) 2m+5)(m~1)b(m+1) =6 Y blkyblin—~k, mz2,

k=1

where the dash ' on the summation sign indicates that if m s even, the last
summand is to be multiplied by 1/2. Using (14,12) in (14.11), we find that

(m-+2) (2m—+5yb(m+ 1) = 10b(1) h(m—1)

tmy2]
+10Y" k(m—kyb(k)b(m—k)—E2m* —m}(2m+5) (m— 1) b(m+1),

k=1

Thus, it remains to show that, for m = 2,

(1413 &02m+5)(m+1D(2m?=5m+1 Z)b'(m-% 1)

m-—1

=2b(1)bim—1)+ 3 k(m—k)b(k)b(m—k).
k=1

Subtracting 2(m+1)b(m-1) from both sides of (14.13), we sec that (14.13) is
equivalent to

(14.14)  Fsm{m-+D2m—1)2m+1)b{m+1)
m—1
=20 (N b(m=1) + 3 k(m—Kk)b(k)h(m—k}—2(m-+1)b(m-+1),
k=1
for m= 2.

Now observe that the first expression 2h(1)b(m—1) on the right side of
(14.14) is the coefficient of z°"~* in the power series for 2b(1) (2 (z), by (14.3).
Also, by (14.3), the latter two expressions on the right side of (14.14)
constitute the coefficient of z*"~? in the power series expansion for ' (z)%/4.
Lastly, the left side of (14.14) is the coefficient of z*"~2 in the expansion of
@' (2)/120. Thus, (14.14) follows from the lemma above, and this completes
the proof. '

Differentiating (14.5), we find that ©"(z) = 124 (z) ;»'(z), which yields
another recursion formula for b{n) midway in complexity between {14.2) and
(14.14).
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Some euclidean properties for real quadratic fields
by

DanieL B. Suarizo* (Columbus, Ohio),
Rar K. Markanpa (Merida, Venezuela) and Ezra Brown (Blacksburg, Va.)

The goal of this work is the determination of all the real quadratic
number fields which are euclidean in a strong sense. The new requirement is
that in every division the remainder can be taken to be positive.

To be more precise, let @ be the ring of integers in an algebraic number
field K (a finite algebraic extension of the field Q of rational numbers). Let %
be a set of orderings (real primes) of K. If u, fe K, the statement “u < B
(relative to %) means that f—« is positive with respect to each of the
orderings in %. We write Na as an abbreviation of Nyg(x), the absolute
norm.

DermTioN 1. K is euclidean mod % if for every o, fe @ with a > f> 0
(relutive to %), there exist x, oe ¢ satisfying o = ,8,c+g, |[Ng| < [Nf|, and ¢
= 0 (relative to %).

This notion was introduced by Eichler [3] in 1938 and was considered
recently in [7]. We have not found any further investigations of it in the
literature. If 4% is empty then K is euclidean mod % exactly when K is
euclidean in the classical sense.

One can show that if K is euclidean mod % f01 some set ¥, then K
must be euclidean. When K = Q(\/_ ) is a real quadratic field it is known
exactly when the euclidean property holds. There are 16 cases.

Tugorem 2. Suppose K = Q(\/ d) where d > 1 is a squarefree integer.
Then K i.\' euclidean if and only if d =2, 3,5, 6,7, 11, 13, 17, 19, 21, 29, 33,
37, 41, or 73,

Thu pmoi of this theorem is rather difficult, and many mathematicians
have contnbulud to the final result. Davenport [2] used reduction theory of
binary quadratic forms to show that il Q \/d is enclidean then d is
bounded, Careful calculations are then needed to classify the remammg cases.
See [1] and the discussions in [4] and [5].
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