142 B. C. Berndt and R. J. Evans

[28] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York 1973

(297 E. C. Titchmarsh, The theory of functions, second ed., Clarendon Press, Oxford 1939

[30] — The theory of the Riemann zeta-funcrion, Clarendon Press, Oxford 1951

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS 6180i

U5.A.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA AT SAN DIEGO
LA JOLLA, CALIFORNIA 92053

US.A

Received on 25. 101 1984
and in revised form on 29. 4. 1985 (1465)

ACTA ARITHMETICA

XLV {1986}

Some euclidean properties for real quadratic fields
by

DanieL B. Suarizo* (Columbus, Ohio),
Rar K. Markanpa (Merida, Venezuela) and Ezra Brown (Blacksburg, Va.)

The goal of this work is the determination of all the real quadratic
number fields which are euclidean in a strong sense. The new requirement is
that in every division the remainder can be taken to be positive.

To be more precise, let @ be the ring of integers in an algebraic number
field K (a finite algebraic extension of the field Q of rational numbers). Let %
be a set of orderings (real primes) of K. If u, fe K, the statement “u < B
(relative to %) means that f—« is positive with respect to each of the
orderings in %. We write Na as an abbreviation of Nyg(x), the absolute
norm.

DermTioN 1. K is euclidean mod % if for every o, fe @ with a > f> 0
(relutive to %), there exist x, oe ¢ satisfying o = ,8,c+g, |[Ng| < [Nf|, and ¢
= 0 (relative to %).

This notion was introduced by Eichler [3] in 1938 and was considered
recently in [7]. We have not found any further investigations of it in the
literature. If 4% is empty then K is euclidean mod % exactly when K is
euclidean in the classical sense.

One can show that if K is euclidean mod % f01 some set ¥, then K
must be euclidean. When K = Q(\/_ ) is a real quadratic field it is known
exactly when the euclidean property holds. There are 16 cases.

Tugorem 2. Suppose K = Q(\/ d) where d > 1 is a squarefree integer.
Then K i.\' euclidean if and only if d =2, 3,5, 6,7, 11, 13, 17, 19, 21, 29, 33,
37, 41, or 73,

Thu pmoi of this theorem is rather difficult, and many mathematicians
have contnbulud to the final result. Davenport [2] used reduction theory of
binary quadratic forms to show that il Q \/d is enclidean then d is
bounded, Careful calculations are then needed to classify the remammg cases.
See [1] and the discussions in [4] and [5].

* Supported in part by the NSF.
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The orderings of a number field K are given by the different embedding
homomorphisms into the reals, i: K-+ R I K = Q(0) is viewed as a subfield
of C, then there is exactly one ordering of K for each conjugate of ¢ which is
real. When K = Q(\/H} is real quadratic there are two orderings. One is
given by the inclusion map j: K —~ R and the other comes from the conjugate
7. The relevant sets of orderings here are % ={j} and # =1{j,j}. (The
properties “euclidean mod % for % = {j} and # = {j} coincide since j and
differ only by an automorphism.) Here is the main result of this paper.

Tueorem 3. Let K = Q(\/;i) where d > | is o square<frec integer.
(a) K is euclidean mod |j} if and only if d =2, 3 or 3.
(by K is euclidean mod {j, 7} if and only if d = 5.

One should recall here that Q( /5 is the real quadratic field with
smallest discriminant, and Q(/2), f?) have the next smallest
discriminants,

The proof of this theorem separates naturally into two parts. The
positive results for Q(\/d) where d =2, 3, 5 are done geometrically by
explicitly covering a fundamental domain by “good” translates. For the
negative results, each of the remaining 15 cases listed in Theorem 2 is
eliminated by applying elementary congruence methods. The full proof of
Theorem 3 is obtained by combining Propositions 5, 6, 7, 8 and 9 below. We
have been unable to find a2 more unified proofl for these negative results.

It is a pleasure to thank W. McWorter for his help in preparing the
drawings.

1. Geometric methods. Before specializing to real guadratic fields we
mention a few equivalent formulations of our euclidean property.

Provosimion 4. Let K be a number field with ving of integers €. Let 9 be
a set of orderings of K. The following statements are equivalent.

(1) K is euclidearn mod %.

(2) For every a, Be O with 8+ 0, there exist », pe & with o = fx+p,
|Nol < |NA| and of = O (relative to 4.

(3) For every we @ and meZ with m > 0, there exist x, pe (ff with o = mx
-+, |[Nol < |Nm| and ¢ = 0 (relative to ).

(4) For every Ec K there exists we (0 with [N(E—x | <1 and E—~x2z0
(relative to ).

Proof. We show (1)— (3} — (4)—~ (2) = (1). First note that (2)-(1) is
trivial. (1) — (3): Let ae " and me Z with m > 0 be given. Since @ is dense in
K relative to each ordering, we can choose ks Z so that a+km > 0 for every
ordering. Let o' = o+ (k+1}m Then o = m (relative to %) and from (1) we
find %', ¢ with o' == nnd’ 4+ g where |[Np| < [Nm| and ¢ 2 0 (relative to %). With
w=x'—(k+1) we find & = mx-+g as required.
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(3) = {4). Given ¢{eK we can express & = o/m where ae® and me Z,
m> 0. Let 2, ge @ be the values given in (3). Then &é—x = g/m fulﬁls the
conditions.

(4)—(2). Given «, fie 0 let x & ¢ be the value given in (4) using f =a/B.
Setting ¢ = x—fix the conditions are satisfied. m

Consequently, if ¥~ = % are sets of orderings of K, and K is euclidean
mod %, then K must also be euclidean mod ¥". In particular, if K is
euclidean mod %4 for some 4, then K is euclidean in the classical sense.

Let us now restrict attention to the case K = Q(,/d). As usual we take
d > 1 to be a square-free integer. The ring of integers @ has a Z-basis {1, 8}

where o
{\/d if
1+ /dy2  if

The standard embedding of K into the real plane R? is provided by
sending ae K to (x, e R*. Then K becomes a dense subset of R? and the
ring (¢ becomes the Z-lattice generated by the vectors (1, 1) and {0, &). The
norm function N on K extends to N: R*-+ R by setting N ((x, ¥)) = xy.

Define the subsets V, =V, o« ¥V = R? as lollows:

d 2 1 (mod4),
d= 1(mod4).

V= {{x, p)eR* |xy] < 1},
W =1{(x,»eR* |xy| <1 and x 20},

Vo= {{x, eR* |xy{ <1, x20 and y > 0}

Then ¥V is bounded by the hyperbolas xy = 1 and xy = —1, V; is the right
half of ¥ and ¥, is the upper half of V,. We often identify K with its image
in R? and simply write o rather than (z, &). For instance if pe ¢ we write
geV, to mean that [Neol <1, ¢= 0 and g = 0.

Property {4} of Proposition 4 furnishes geometric criteria which imply
our euclidean properties. For example, K is euclidean mod {j} if the
translates =+ V, for xe @ cover the whole plane B (It is not clear that the
converse holds. Compare [6], pp. 74-75.) In order to see that a given e R?
lies in one of these translates, we may freely add elements of @ to & So we
may assume & lies in a fundamental domain, like

D={r(l, )+3(0, HeR*: 0<r<1 and 0<s < 1},
The next resulf is a simple illustration of these ideas.
Proposimion 5. Q(ﬁ and Q| \/3 are euclidean mod (j}.

Proof. The easier case Q(,/5) is left as an exercise. A stronger result is

proved in Proposition 6. For @( \/ZE ) see Figure 1. In this picture, the points
of (@ are the intersection points of the two systems of parallel lines. The

-region ¥, is shaded.

4 - Acta Arithmetios XLVH.I
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The fundamental domain D (cutlined in the fgure) is essentially the
rectangle spanned by 1 and 6, but some care should be taken with the
boundary points. A short calculation shows that the regions labelled 1, I, 111
cover D, after translation. That is, D < ¥V, u(14 F) w {8+ W).

Remark. In each of these two cases one can find a connected
fundamental domain {with either smooth or polygona! boundary} which is
entirely contained within the region V. Is there a convex [undamental
domain in W7

The next two propositions use the same ideas but are more difficult since
infinitely many translates are involved.

PropostTioN 6. @(\/5) is euclidean mod {j, 7).

Proof. In the embedding of @(,/3) into R?, the ring € goes to the Z-
lattice spanned by | and 8, where @ m(1+\/§)/2. In order to exploit the
syminetry, we use the fundamental domain 0¥ based on the vectors (0 and 0.
See Figure 2 for a picture, where the region ¥, is shaded. Both D' and V, are
symmetric about the line y = x.

Now consider the portion of D' covered by the three translates V,,
~@-+V, and ~20+V,, This portion is the shaded area in Figure 3.

By symmetry we need only cover the half of D’ lying above the line y
= x. So we still need to cover the triangular region OAB in Figure 3. Here
the edge OA is included in the region, but edges AB and OB are not (since
they are already covered).

‘Since # is the fundamental unit of @ we see that the points 62" for me Z
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lic on the hyperbola xy =1 and are in the first quadrant. The Proposition
will be proved once we establish the following:

Cram. The union of all —67*"+V, for m =0, 1, 2, ... covers the region
OAB. _

For given m, consider the region D'~ (—87 2"+ V), which is shaded in
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Figure 4. This shaded region is bounded by the vertical line x = ~— 3" and
the hyperbola (x+872")(y+0" 2™ = 1. Let G,, and H,, be the intersections of
the line AB with this bounding line and hyperbola, respectively.

¥

Fig. 4

The points A4, G,, H,. B all have y<oordinate —1-+8. Let the x-
coordinates be 4, g, h,, 0, respectively. A calculation shows that g, < ¢, ,
< My < g for every m 2 0. Ao gy < a and limg,, = limh,, =0 as m— .
These facts show that the shaded regions do overlap appropriately. In other
words, every point in the region 0AB does lie in one of the translates —¢ 2"
-+ V;, proving the claim. m

ProposiTiON 7. Q(ﬁ) is euclidean mod {j}.
Proof. Embedding into R? as usual, the ring ¢" becomes the Z-lattice

spanned by 1 and 6 where § = \/3 It is convenient to use the fundamental

domain D’ based on the vectors .1 and 0= —0, as indicated in Figure 5.

~ Now consider the portion of D' covered by the threc translates Vi

—8+V, and —(1+6)+¥;. This portion appears as the shaded region in
Figure 6. ‘

There remain two uncovered pieces. The region POR in the figure can

be covered by the translate —(4+36)+ V. To see this, first compute the

coordinates

= ((1+./5-2/3)/2, (1~ /5+2./3)2),
(0, 2,/3/3),
=(0, 3(—1+4./3)2).

i
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Evaluating f(x, y) = (x+4+3\/5}(y+4—3\/§) at P, 0, R shows that these
three points do lie between the hyperbolas f(x,y) = +1.

The remaining part O4B can be covered by an infinite union of"
translates by units. The fundamental unit here is w = 2+8, which has .

norm 1.

CLaM. The union of all —w™ ™4V, for m=0, 1, 2, ... covers the region
OAB.

The proof of this claim is similar to the argument given for the previous
proposiiion, and is left to the reader, a

Surprisingly, in the two propositions above an infinite number of
translates x4+ is required. Here is a proof for the case K = Q(\/ 5)
Suppose D' is covered by some finite union of translates s+ V, for xe @,
Then therec must be one A+V, which contains an infinite number of the
points £, = (~1/n*, 1/n). The point (0, 0) must then lie in the closure of A
+ V., so that —1 is in the closure of V,. The only integers in the closure of
¥, are 0 and the units 6** for ke Z. Certainly 1 £ 0 since ¥, does not contain
any of the points P,. Therefore —A = §* for some k and — 0%+ ¥, contains
infinitely many P,. This is easily seen to be false. (See Figure 4 for the case k
< 0)

2. Congroence methods. By applying congruence arguments we can prove
that certain real quadratic fields are not euclidean mod %. By the classical
Theorem 2 we need only investigate those fields already known to be
euclidean. '

PrOPOSITION 8, Q(\/E) and Q(\/g) are not euclidean mod {j, j}.

Proof. Suppose Q(\/2) is euclidean mod {j, j}. Letting @ =\/2' we
divide 146 by 2 to get 1+6 =2x+p, where [Ng| <4, 0= 0 and g=0
Expressing ¢ = r+s0 we see that » = s = 1 (mod 2). Then r® = s2 = | {mod 8)
and therefore No = r*~2s% = 7(mod8). Since —4 < Np < 4 this forces Ng
= —1, but Ng =07 = 0. Contradiction. -

Suppose Q{,/3) is euclidean mod {7, 7} and set § = \/3: Again dividing 1

-+0 by 2 we arrive at a similar contradiction. m .

The same technique is used in the remaining cases but the details are
harder. We use the fact that K = Q(,/d) has a fundamental unit w. Every
unit of ¢ equals +w" for some neZ. Also in all our cases ¢ has uniqﬁe
factorization (since K is euclidean). Then for a given keZ we can list
explicitly all ae @ with Ne == k. '

ProposITION 9. Suppose d = 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57 or
73. Then Q(\/E) Is not euclidean mod {j}.

Proof. By Proposition 4(3), if the euclidean property fails then theré is
a counterex_ample where the divisor is some rational integer m > 1. In each
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case we provide an example of xs¢ divided by m which contradicts the
property “euclidean mod{j}”. The divisor m is chosen to be the smallest
positive rational integer which gives a counterexample. This minimal divisor
m is often related to the fundamental unit w: usually w=1 or w?

= 1{modm). The following table lists the relevant cases.

d w m 2

6 5420 4 236
7 8430 7 46
11 10438 3 2+20
13 1+8 3 1+26
17 3420 4 2436
19 170+ 398 13 106
21 240 3 2426
25 248 5 2+448
33 19+ 8¢ 11 2+70 "
37 5420 3 26
41 274108 4 2430
57 131446 3 2+30
73 943 +2500 6 24138

For illustration we indicate the steps in two typical cases, d =19
and d =41,

When d =19 then @ = Z+Z& where 0=./19. Suppose Q(8) is
euclidean mod [j}. Then there exist x, ge (" with 108 = 13x+¢ where [Ng|
< 169 and ¢ 2 0. Suppose ¢ == r+s0. Then Ng = N(100) = 11{(med 13). For
each of the 26 possibilities k = 11(mod13) with —169 < k < 169, consider
the equation Ng =r®—19s* = k. Some cases are quickly eliminated by
working locally {i.e., examining the equation over the p-adic completions for
various primes p). The remaining cases are: k = —67, —15, —2, 24, 102

" Each of these is eliminated using the unique factorization in ¢.

For example suppose No = 24. Factoring 2 and 3 in. @ we find 2 = —oF
where ¢ = 13+30, and 3 = —t% where 7 = 4+06. Here 2 is ramified since &
= (unit)-¢. Because Ng = 2%-3, unique factorization implies that either g
= (unit)-¢? T = (unit)- 207 or ¢ = (unit) ¢ T = (unit)- 267. Every umt is some
+w” and the sign is determined since g > Q: either @=w"'2¢7 or
o = —w" 2¢%, for some nsZ. Since w = 1 {mod 13) it follows that g = 2gt
or —20%(mod13). Multiplying these out we find that neither possibility
agrees with the hypothesis that ¢ = 108(mod 13).

Let us move on to the case d=41 and ¢'=Z+2Z0 where now 0
= (1+\/!1'i)/2. If Q(0) is euclidean mod {j} there must exist x, ¢ & with 2.
430 = dx-+¢ where |Ng| < 16 and ¢ > 0. Suppose ¢ = r+s6. Then No = r*
+rs—10s? = N(2+30) = 0(mod4). For each of the 7 possible k with k
= 0(mod4) and —16 < k < 16, we examine the equation r-+rs—10s* = k.
After. checking the local conditions, we are left with the possibilities Ng

= +4, +8.
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Suppose for example that Ng = +4. Since 2 =z% where fc' = 34-6,
umque factorization implies that up to a unit factor, ¢ must equal =2, i or

* Slnce ¢ > 0 this unit factor is w” for some neZ. Now w= 27+10() 50

that w? = 1(mod4). Hence, ¢=n? n% 7% wr? wn%, or wiw(mod4),

Multiplying these out we find that none of them is compatible with the
hypothesis ¢ = 2+ 38(mod 4).

The rest of the cases in this proposition are settle:d by similar
calculatlons =
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On the lrank of ideal class groups
of certain number fields

by

Kivoaxr Iimura (Tokyo)

Introduction. Throughout this paper we shall fix an odd prime number L
Let Z and Z; denote the ring of rational integers and of l-adic integers
respectively. Let K be a nonabelian Galois extension of the rational numbers
Q satisfying the following conditions.

(2) The degree (K:Q) is nl with nj{/—1, ns 1. _

(b) The Galois group G of K over @ is generated by two elements ¢ and
7 with the relations

where r is a rational integer of order n in the multiplicative group (Z/IZ)*,

Let T {resp. S) be the subgroup of G generated by 1 (resp. o), anq let L
(resp. k) be the fixed field of T (resp. §). Then k/Q is a pyc]ic extension of
degree n, whose Galois group is generated by the restricufm of 7 to k."Also
L/Q is a non-Galois extension of degree [, with Galois closure K. An

important example of this situation is L= Q({/— ). k=Q(), and K = L-k,
where £ is a primitive fth root of unity and m is an lh power~free rational
integer; such a field is called a pure field of degree 1.

Let H (L) denote the Iclass group of L, ie., the Sylow I-subgroup of the
ideal class group of L. The lrank of H(L) is defined to be the J.aumber of
invariants of H (L) divisible by I, which we call rank H(L). The main purpose
of the paper is to establish lower bounds for rank H (L) (see Theorem 2.3 in
§2) by making use of the genus number formula found by Jaulent ([11],
Theorem 3). In particular in the pure field case L= Q(!/m),
[#£3, one of our lower bounds in the corollary to Theorem 2:3 is
equal to the number of distinct prime factors = +1(mod ) of m; this is an
extension of one¢ of the results in [1] which was a consequence of rational
genus theory. Also we shall illustrate ‘this Theorem 2.3 with some examples in
Section 4, one of which says that if p = (ch+ch)eo+ey) with 12 5 and ¢,



