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= rank i (W), Therefore the first lower bound for rank H (Q({/E)) in the
corollary to Theorem 2.3 becomes 2+ rank H (k)'® —rank i (W} in particular

this says that the [-class group H (Q({/;'))) is not cyclic.
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LeVeque’s superelliptic equafion over function fields
by

R. C. Mason (Cambridge) and B. Brinpza (Debrecen)

1. Introduction. In a letter to Mordell written in 1925, later published,
Siegel [9] proved that the hyperelliptic equation y* = g{x) has only finitely
many solutions in integers x and y: ¢ denotes a polynomial with integer
coefficients, possessing at least three simple zeros. Siegel's later investigations
revealed his celebrated theorem [10] concerning the solutions of any
polynomial equation F(x, y) = 0: he proved that there are only finitely many
integer solutions, unless the curve associated with F has genus zerc and no
more than two infinite valuations, Siegel's proof was ineffective: he employed
both the Mordell-Weil theorem and his own theorem on the approximation
of algebraic numbers by rationals, which was a development of the
pioneering work of Thue. In 1964 LeVeque [3] generalized Siegel's result on
the hyperelliptic equation to prove that the superelliptic equation y™ = f(x}
has only finitely many solutions in any ring of algebraic integers, unless of
course it falls into the exceptional cases predicted by Siegel's general
theorem. The conditions on f and m equivalent'to the exceptional cases are
given below (). LeVeque’s result was incffective. In 1968 Baker proved the
first general effective result on Diophantine equations by employing his
celebrated lower bound for linear forms in logarithms: he effectively solved
first the Thue equation, and then the hyperelliptic and certain superelliptic
equations [1]. Baker’s bounds were improved by SprindZuk [11], [12].
LeVeque's theorem of 1964 was recently made completely effective by
Brindza {2].

This paper is devoted to establishing a bound on the solutions of
LeVeque's equation. in the analogous case of function fields. Let k denote an
algebraically closed field of characteristic zero, and k(z) the rational function
field over k. Let us consider the set of solutions X, Y in the ring of
polynomials k[z] of the hyperelliptic equation ¥? = G(X), where G is a
polynomial with coefficients in k[z] and possessing at least three simple
zeros. It is plainly possible for this equation to have infinitely many
solutions, for example if the coefficients of G actually lie in k. However, it is
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possible to bound the degrees of the polynomial solutions X and ¥ and
Schmidt [9] succeeded in doing so in 1978. Schmidt’s approach was
developed from the work of Osgood, and his from Kolchin, on algebraic
differential equations. In 1981 Mason discovered an entirely new approach to
eguations over function fields [4]. By means of a fundamental inequality (see
Lemma 1 below) he was able to establish bounds on the degrees of the
solutions which greatly improved on those of Schmidt [5]. Moreover, the
method actually led to an algorithm by which all the solutions of the
hyperelliptic equation in k[z] could be determined.

. Now let K denote an arbitrary finite extension of the rational function
field k(z), of genus gy, say. Corresponding to K is an algebraic curve C
defined over k, where the points of C correspond to valuations on K. We
shall blur the distinction between points of C and the valuations; moreover,
we shali assume that the valuations are additive with value group Z. If S is a
finite subset of C, then we can consider the ring @y of elements o of K'with
v{a} 2 0 for v outside S; that is, all the poles of « lie in S§. We shall be
concerned with the solutions in (g of the equation

(%) Y™ = F(X),
where F I8 a polynomial with coefficients in K. The notion on K
corresponding to ‘degree’ on k[z] is ‘height’: we define

Hylo) = —Z min {0, v(a))

For a polynomial f over K and a valuation v, we define ¢v(F) to be the
smallest of the v{x) as o ranges over the coefficients of F: the height of F is
then defined as above. The final ingredient needed before stating our theorem
is some information on the factorisation of F which corresponds to certain

invariants on the curve associated with (x). We suppose that L is a finite.

extension of K in which F factorises completely, say
n
F(X)=a[](X-a)",
i=1

where o, ..., «, are distinct. Let us write 1, =m/(m, r) for i =1, ..
shall prove the following theorem.

Tueorem. Provided that (t,,...,t) is not a permutation of eirher
L., )or (2,2,1,..., 1) (N, all the solutions X, Y in G of (%) satisfy
Hy(X) < 78Hy (F)+ 129, + 6|5,

where (8| denotes the cardinality of S. Furthermore, in the exceptwnal cases
(4), we can find an extension field K’ of K and a set of valuations §' on K’ sich
that (+} has a family of solutions in Cg of unbounded he1ght

It is easy to see that the exceptions covered- by (4) are in exact

., n We
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correspondence with those discovered by Siegel in [10]: the curve associated
with (*) then has genus zero, and the infinite valuations number one and two
respectively. Our bound may be compared with those of Schmidt, 10¢{H (F}
+gx+15]) and Mason, 26Hg(F)+8gg+41S|, both for the hyperelliptic
equation. It should also be mentioned that, by using the fundamental
inequality in a different way, Mason was able to establish ([6], p. 120)
bounds on the heights of all the solutions in K, not just those in (%, of the
superelliptic equation (), subject to certain degree restrictions.

In the next section we shall recall the fundamental inequality first
proved by Mason in 1983, together with a genus estimate which will be of
considerable value here. The proof of the theorem will then follow from an
indirect application of the fundamental inequality. The axact form in which
the inequality is applied depends on the integers ¢y, ..., #,: there are three
cases to consider, the first two are disposed of in Section 3 and the third in
Section 4.

2. Preliminaries. The following inequality bas formed the crucial step in
the effective resolutions of the various families of equations over function
fields. Proofs of the inequality may be found in-[5] or [6], p. 14:

Lemma 1. Suppose that vy, v, and vy, are non-zerc elements of K with y,
+y,+7v3 = 0. Let us further suppose that there is a finite set ¥ of valuations
on K such that v{y,) = v{y;) = v{y,) for v outside ¥". Then either y/y, lies in
k, in which case Hy(y /y2)) =0 or

Hy (y1/72) <[ #1429, 2.

In the case of the Thue equation f(X, ¥) =y, the inequality is applied
directly to the identity

' (X —oy Yoty — o3} + (X —aty Vo —ot) +(X —oi3 ¥) {0y —a3) = 0

where each X —a; Y is a factor of the binary form f A direct application is
also made in the case of the hyperelliptic equation (see § 4). However, in the
case of the superelliptic equation an indirect approach yields much better
bounds (see § 3). In the proof it wilt be necessary to factorise F partially by
adjoining some of the zeros «y, ..., &,, and in order to employ Lemma 1 we
need a bound on the resulting growth in the genus. This is achieved in the
following ([6], p. 67).

LemmA 2, Let P(X) denote a non-zero polynomial of degree n with
coeffictents in K., If M is rhe field obtained by adjoining some zero a of P to K,
then

w S 1HIM K] {ge—14+3(1—1/m) Hg (P)}.

We observe that if L is any finite extension of K, and w is a valuation
on L, then there is a valuation z on K and an 1ntegcr e,, such that w(x)
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=e,v(e) for « in K: we write w|v. Since > e, =[L:K] for each b, we

wlr

dedw_:e that
Hy(o)=[L:K]Hg(x)

for o in K. The following inequality on the height function is readily
established:

max {Hy (e + B), Hy (2f)} < Hy(a)+ Hg (f)

for any o, 8 in K.

Henceforth L will denote a finite extension of K in which F factorises
completely as above. Elementary manipulations with the height function
yield ([6]. p. 9
2 riHy (o) < Hy(F).

i=1

Hy(0) < Hg(F) and

If any r; happens to be divisible by m, then we may rewriie the equation ¥™
= F(X) as

Z" = G(X),
where

Z=Y/[[(X-a)™ and G(X)=u]](X-a)
m|rl- myt;
It is evident that G has coefficients in K and height at most that of F, The
solutions of () with X =«,, which have been lost in this process, satisfy
Hy (X) < Hg (F), and thus automatically satisfy the theorem. Thus we may in
fact assume that m does not divide any r,, and that X, ¥ is a solution of (%)
with X in s and Y in K* Hence t; 2 2 for each i. We further assume, as we
may, that the indices 1,...,n are chosen in such a way that

Hp(a;) < ... < Hy(a,). We shall denote by f(X) the product H (X —ay), so
i=]

f has cocfﬁc1ents in K and he1ght at most that of F. We now deal with three

cases separately, the first when ¢, > 3 or r, = 3, the second when ¢ =ty =2

and t; > 3, and the third when t; =1, = 3 = 2. Since F does not satisfy h

at least onc of these three situations obtains.

3. The first two cases. We assume first that max(r;, t,) > 3. Let us
denote by M the subfield of L obtained by adjoining oy and o, to K. We
shall apply Lemma 1 to the equation

(X —o)+ (o, — X) +H{oy —ay) = 0,

where X is a fixed element of @ and Y is a non-zero element of K such that
= F(X). First we estimate the genus of M. From a double application of
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Lemma 2 with P = f we obtain

I & d(gx+3(1“1/”)Hx(f))=

where d = [M :K]. Let %" denote the set of valuations w on M at which at
least one of the following occurs: w(F)< 0, w(z)>0, w(f (x,))> 0,
w(f () > 0, or w|v for some v in S: thus -

| W] < Hig (F)+ Hiyg (0) + {(n~ 1) Hyg (o) + Hig ()} |
+ {(n=1) Hyg () + Hy ()} + 81

However, from the. ordering of .6:1, vovy O, We have
H (o) + Hpg (03) < 2Hy (F)/n,
and hence ‘
W1 < d{JS]+(6—(2/m) Hy (F)}.
Let #,, i=1,2, denote the set of valuations w outside % such that

w(X —o) > 0. Now whenever w lies outside % we obtain w(e) = 0 for
i=1,2 wX)20, wia;—a) =0, wla)=0 and w(f (@)= 0. If in fact w
lies in % then w(X —aj) =0 for j#i, and so

rw(X—a) = mw(Y),
and in particular t, divides w(X —a). We conclude that
LIS Hy(X—-o) (=1,2).

If w lies outside Wy, #y and ¥ then w(X —a,} = w(X —ay) = wlo —ay)
=0, so we may apply Lemma 1 to obtain

Hy (X Z) SIH W+ H]+ 2
vy |

A combination of this inequality with the bounds above on each of the terms
on the right-hand side, together with the inequality

Hy (X) < HM(;Y -

derived from the height inequalitws in Section 2, yields the truth of the

theorem in the first case.
In the second case, when 1, =1, =2 < 13, we use the same method as

above, but applied to the equation
(Xm“1)+(0!3 _X)+(a1 “"013) ={

Here we denote by M the subfield of L obtained by adjoining a; and a3 to
K. The details of the proof are similar to those above, only the slight
modification to Hy (o) + Hy (a) < 3Hp (f)/n is required. :

)+2HM(°‘1)+HM(051)
1
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4. Final case. Here we suppose that t; =t, = t; = 2. Now we denote by
" M the subfield of L obtained by adjoining a,, «, and a3 to K: as before we
write d =[M :K]. A triple application of Lemma 2 yields

gy < d{gx+30—UYm H ()

Let # denote the set of valuations w on M at which w(F) <0, w(x) > 0,
w(f' (@)} >0, i=1,2 or 3, or wiv for some v in §; we obtain the bound

|#1 < d {IS]+(8—(3/m) He (F)}.

As usnal X, Y denotes a fixed solution of (») with X in &5, Y in K*. Now
write N for the field obiained from M by adjoining the square roots of
X—uo;, X—a, and X —uy: From (x) we deduce that w(X ~gz,) is even for w
outside ¥, i == 1, 2, 3, and so ramification from M to N only occurs inside
#". From [6], p. 34, we see that 2gy—2+[%] = [N:M](2gy—2+|%#7),
where & denotes the set of valuations #» on N such that n|w for some w in
#". The fundamental inequality can now be applied directly with +" = & and

= i\/X—az i\/X—_‘xaa

and y,, y; determined by permutation of the suffices 1, 2, 3; the signs being
chosen so that y;+v,+7; = 0. Lemma 1 then yields ([6], p. 34)

2X —o, —a
Hy (—T"') < 42y +1 %))

ﬂz"‘

The proof of the theorem is then completed by combining this last with the
inequalities above. It will be observed that the difference in the use of the
fundamental inequality between Sections 3 and 4 is that in the latter the set
¥" is independent of the solution X, Y of (), but in the former it is not.

Finally, we deal with the necessity of the condition (/). Il r; =t and r,
= ... =[, =1, then we choose K’ to be a field such that « is an mth power,
and § to contain the poles of a,, ..., a,, In this case writing X = o, + T™ for
any T in G5 forms a set of solutions of unbounded height. Similarly, if ¢,
=t,=2and t; = .., =1,=1, then the equation (%) may be transformed
into R*? —aT? = B, where X is a polynomial in T and Yis a polynomial in R
and T. Choosing K’ to contain the square root of o, and §' to contain the
poles of @y, ..., x,, together with the zeros and poles of some non-constant #
in K, writing R+ﬁT= n™ provides a set of solutions of unbounded height
as m— oo,
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