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Introduction. Some thirty years ago the second of us showed (Sziisz [3])
that for any irrational number x the inequality

llex]] <x*=*  (0<éd<1)

has a solution in any interval (n, n'/%) where ||z|| denotes the distance from z
to the nearest integer. Since, as is well known, |lax|| < x~! is solvable with
natural numbers x, it would be interesting to give a “localization” for the
numbers x satisfying |lax]| < x™! but it is easy to see that one can give a
counterexample to any such statement. Further, one could ask for a
characterization of the natural numbers x for which

(1) llex]] < K/x

holds where K is a positive constant.

Let the regular continued fraction representation of « be [ay; a,, a, ...}
and let the denominators of the convergents be B, = 1, B,, B,, ... In Section
1 we prove

THEOREM 1. Let K > 1/\/5 and let a be an irrational number. Then all
positive integers x satisfying (1) have the form

(2) cn+an+cn+ZBn+l+ +cn+mBn+m—l

with m < Clog(2K+1)+3, where C is an absolute constant and the
coefficients ¢, satisfy 0<c¢; <@, 0< ¢4y < a4y for k>0 and if ¢,
=a,4, then ¢, = 0.

This result extends the classical result of Legendre that m =1 for
K <1/2 and that m < 2 for K =1 (see Perron [2], Sections 13 and 16). In
Section 2 we apply our result to Pell’s equation x>—dy? = N. While this
equation has been treated for |N| < \/2 (see Perron [2] for references), we
can drop this restriction and thus generalize the classical results.
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1. Proof of the main theorem. We use the notations of Perron [2] for
regular continued fractions:

a = [ap; ay, ay, ... 1],
[ao; ay, ..., &] = A/B, where (A, By) =1,
G =[a; a4y, -..1
We set
D, = Bya— A, = (= D*/(By {is 1+ By-y).

Since All+l =ak+lAk+Ak_1 and Bk+l =a,‘+lBk+B,‘_1, it follows that
Dk+ 1 = a“, 1 Dk + Dk— 1- Since Dk+ 1= = DL/CH- 2 the D,,'S alternate in Slgn
and their absolute values decrease monotonically to zero.

Lemma 1.1 (Ostrowski [1]). Every positive integer x has a unique
representation as

N
3) x=Y 41 B
k=0

where 0<c¢; <ay,0< ¢4y SOy for k>0 and if ¢,y = a4, then ¢, = 0.
The proof can be done by induction on x.
Let c,., be the first nonzero coefficient in the representation (3) of x so
that ¢,,, >0 and ¢,,, =0 for 0<k <n<N.

LemMma 1.2. We have
N
[(¢hs1=1)Dp=Dypyyl < l Z Ck+1 D,‘l <|n+1Dp—Dypyyl.
k=0

Proof. Since the D,’s alternate in sign,

N
| 2 Cie Dkl > |Cy+1Dp+(@ps 2= 1) Dps 1 +8ui g Dy + ... |
k=0 .
and the lower estimate follows since ., D, = D,,,—D,_,. The upper
estimate is obtained similarly by considering |c,4; D,+ap43Dps2+ans5Dpss
% 551l
LemMma 1.3. For any integer x > 1 either

N
“) [loex]| = l Z Ck+1 Dk'
k=0

or |lax|| > D,.

Proof. A simple calculation shows that if ¢, = ¢, = 0 then the right-
hand side of (4) is < 1/2. The exceptional cases occur when a, =1 and
¢, >0 and when ¢; > 0.

A localization theorem 349

We now prove Theorem 1. From Lemmas 1.2 and 1.3 we see that |jax||
is minimized for integers of the form '

X = Bn+(an+2'— l)BlH-l+an+4Bn+3+"-+an+2mBn+2m-l = Bn+2m_Bn+l
and for such numbers we have that
llex|| X > | =Dypy 1| X > (Bps 2m = Bps )(Bps 2+ Bpiy) > (G2 3 — 1)/2

where G = (1+./5)/2 since By, ;n/Bi+2 > G*3 for any a. Thus if [|ax||x
< K we must have (G 3—1)/2 < K and our result follows.

We note that an upper estimate for |lax||x would require an upper
bound for the ratios B,.,/B, and these ratios are unbounded for almost
all a.

2. An application to Pell’s equation. We now consider the positive integer
solutions of x2—dy? = N where the integer d > 1 is not a perfect square. For
N >0, we have that ||yﬁ||2+2\/a||y\/2||y =N and so |y./d|y
<N/2./d. If 0 <N < /d then ||y /d||y < 1/2 and we obtain the classical
result that the only solutions are those given by the convergents of \/2 (the
case N <0 follows in a similar manner since the convergents of \/3 and

l/\/t_l coincide with one trivial exception). For |[N| > ﬂ, it follows that the
solutions will be as described by Theorem 1 (together with the corresponding
sums of A,’s).

With the notations of Perron [2] for the regular continued fraction of

\/c_i, we have
Lo=(/d+0)/1, ..., & =(/d+P)Q,,

Where a, Qk = Pk + Pk+l and d—(Pk+ 1)2 = Qk Qk+ 1- Thus the pal'tlal

Quotients satisfy a, <2./d and we have the estimate B,,,/B, < 1+2\,/¢_1;
such an estimation does not hold in general but it does hold for quadratic
surds.

From the upper estimate in Lemma 1.2 we see that ||y \/c_lu is maximized
for integers of the form

y= an+lBn+an+SBn+2+"'+an+2m+l Bn+2m = Bn+2m+l —Bn—l‘

For such numbers

“_}’ \/a“y < lan+an_Dn+lly = l_Dn—lly < Bn+2m+l/Bn < (l +2\’/’E)2m+l
and we have shown

Tueorem 2. The positive integer solutions of x*—dy* = N where 2K, \/d

<|N| <2K2ﬁ are given by (2) and the corresponding sums of A.’s with
C,logK, <m < C;log(2K;+1)+3 where C, depends only on d and C, is an
absolute constant.
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We conclude with an explicit calculation of the values represented by x2
—dy? for x = A +cA,,, and y = B, +cB,,, where 1 <c <a,,,—1. Since
x2—dy* =(y JVd—x)(y \,/E—x)* where (z)* denotes the conjugate of z, we
have that for x = 4, and y = B,, x2—dy? = D, (D)* = (—1)*"' Qx4+, (see
Perron [2]). Thus for x = A,+cA,+, and y = B,+¢B;,,

xz_dyz = D, (Dy*(1 _C/Ck+2)(l —C/(Cuz)*)
= (=D (Qus1 + Qi+ 2P+ 2/Qx+2—0))
=(—D)"*'" Vi1 (0.

Since 2Py 1 2/Qxsz = lis2+(li+2)* we have (oup > 2Py/Qiez > Gir2
—1>c and so V4 ,(c) > Qi+, for 1 <c < ay,—1. The maximum of V.,
occurs when ¢ = ||Py,/Qy.,ll and is approximately Q. +(Py+2)*/Qu+2
=d/Qy+,. Since Q,,, =1 at the end of each period of \/3, Vi+1 can take
values as large as d.

For an integer of the form (2) with m > 2, we see from the recursion
formula B,,, = a;,, By + B,- that it can be rewritten as sB,+1tB,,, where
s > 1 and t > 0 are integers. Then the previous calculations may be repeated
to find the value of x>—dy? in terms of Qy4, Qx+2 and Py, ,.
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A generalization of Atkinson’s formula to L-functions
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1. Introduction. Let

T
(1.1) I(g, =Y ([IL&+it, pl*dt
xmodgqg O
and define E(q, T) via the identity
a T 1 ’
12 1@ ="’—“”T(log"—+>:3g—”+2v—1)+E(q, 7,
21'[ Pl'lp_l

where ¢ is Euler’s function and y is his constant.

Consider first the case g = 1. Atkinson [1] has established for E(1, T) a
very precise explicit expression in terms of two sums involving the divisor
function d(n). Recently Jutila [7] found a new interesting application of this
formula by showing that it yields in a simple manner Balasubramanian’s [2]
estimate E(1, T) < T'3*¢, valid for any positive &.

The more general function E(q, T) has been studied by Rane [9] (in
fact, he considers E(q, T)—E(q, 1)) who proved

(1.3 E(q, T) <qT"*logT.

A simpler proof of this is due to Balasubramanian and Ramachandra [3].
Our object is to generalize Atkinson’s formula to E(q, T) (Theorem 1).
Then we deduce by Jutila’s method a new inequality for E(q, T) (Corollary
1). In turn, this implies immediately new mean value estimates for L-
functions (Corollary 2), which can be applied to estimate the density of the
zeros in small rectangles (Corollary 3).
We proceed to state the main results. Let

(1.4) e(T, u) = (1+%‘)_m ((%)

1/2 1/2 ==

. u
arsinh ((2—7:) )) ,
12
(1.5) f(T, u) = 2T arsinh ((%) >+(n2 u2+2m‘7~)uz_g’

T n
1.6 — Tlog—L — L3
(1.6) g(T, u) = Tlog S T+ 21tu+4
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