

Normality and hereditary countable paracompactness of Pixley-Roy hyperspaces

by

Hidenori Tanaka (Ibaraki)

Abstract. In this paper, for the Pixley-Roy hyperspace $\mathscr{F}[M]$ of a metric space M, it will be shown that $\mathscr{F}[M]$ is normal if and only if $\mathscr{F}[M]$ is hereditarily countably paracompact.

Introduction. Throughout this paper, all spaces are assumed to be T_1 -spaces and M always denotes a metric space. Pixley-Roy hyperspace of the real line was defined by C. Pixley and P. Roy in [5] and later generalized by E. K. van Douwen in [1]. The Pixley-Roy hyperspace $\mathscr{F}[X]$ of a space X has as its underlying set the collection of all nonempty finite subsets of X. If $F \in \mathscr{F}[X]$, then the basic open neighborhoods of F are of the form $[F, U] = \{G \in \mathscr{F}[X]: F \subset G \subset U\}$, where U is an open subset of X containing F. Therefore $[F, U] \cap [H, V] \neq \emptyset$ if and only if $F \subset V$ and $H \subset U$. It was pointed out in [1] that every Pixley-Roy hyperspace is a zero-dimensional hereditarily metacompact space and $\mathscr{F}[X]$ is a Moore space if and only if X is first countable.

M is said to be a q-set if every subset of M is an F_{σ} -set in M and a strong q-set if every finite power of M is a q-set. If, in addition, M is separable, then M is said to be a Q-set and a strong Q-set respectively. It is well known that the existence of an uncountable Q-set is undecidable in ZFC and is equivalent to the existence of a separable normal nonmetrizable Moore space. T. Przymusiński [7] showed that the existence of an uncountable Q-set is equivalent to the existence of an uncountable strong Q-set.

Studying countable paracompactness in separable Moore spaces led to the notion of Δ -sets. M is said to be a Δ -set if M is separable and for any decreasing sequence $\{A_n: n \in N\}$ of subsets of M having $\bigcap \{A_n: n \in N\} = \emptyset$, there is a sequence $\{U_n: n \in N\} = \emptyset$ and a strong Δ -set if every finite power of M is a Δ -set. It is clear that any Ω -set (strong Ω -set) is a Ω -set (strong Ω -set). The argument given by T. Przymusiński in [6] shows that any Ω -set must have cardinality Ω -set is the cardinality of continuum. Thus any Ω -set is strongly zero-dimensional. E. K. van Douwen, T. Przymusiński and G. M. Reed showed that the existence

of a separable countably paracompact nonmetrizable Moore space is equivalent to the existence of an uncountable Δ -set (see [6]).

For normality and countable paracompactness of Pixley-Roy hyperspaces of metric spaces, M. E. Rudin [10], T. Przymusiński [8] and D. J. Lutzer [4] obtained the following elegant results (see also T. Przymusiński and F. D. Tall [9]): (1) if M is separable then $\mathscr{F}[M]$ is normal if and only if M is a strong Q-set; (2) if M is strongly zero-dimensional then $\mathscr{F}[M]$ is normal if and only if M is a strong q-set and (3) if M is a strong Q-set then $\mathscr{F}[M]$ is countably paracompact.

Our purpose of this paper is to show the equivalence of normality and hereditary countable paracompactness of Pixley-Roy hyperspaces of metric spaces. To do so we introduce a notion of an almost strong q-set, which is intermediate between the notions of a q-set and a strong q-set. Our result may be of interest in connection with the following D. J. Lutzer's problem in [4]: Is every strong Δ -set a strong Q-set?

Let N denote the set of natural numbers. For Q-sets and Δ -sets, see W. G. Fleissner [2].

§ 1. Preliminaries. Let $n \in N$ and let τ be a permutation of $\{1, ..., n\}$. For a point $x = (x_1, ..., x_n) \in X^n$, let $\tau(x) = (x_{\tau(1)}, ..., x_{\tau(n)})$. A subset A of X^n , $n \in N$, is symmetric if for any permutation τ of $\{1, ..., n\}$, $\tau(A) = A$.

DEFINITION. M is said to be an almost strong q-set if for each $n \in \mathbb{N}$, every symmetric subset of M^n is an F_{σ} -set in M^n .

Clearly every strong q-set is an almost strong q-set and every almost strong q-set is a q-set. Some results concerning almost strong q-sets are given.

LEMMA 1.1. If M is strongly zero-dimensional, then M is a strong q-set if and only if M is an almost strong q-set.

Proof. It suffices to prove the "if" part. Let M be a strongly zero-dimensional almost strong q-set. Then M is linearly orderable (see H. Herrlich [3]). Let \leq be a linear order on M generating the topology of M. Take $n \in N$ and assume that we have already proved that M^n is a q-set. Let

$$Z = \{(x_1, \dots, x_{n+1}) \in M^{n+1} : x_1 < \dots < x_{n+1}\}.$$

Then M^{n+1} is a finite union of F_{σ} -sets which are either homeomorphic to Z or to some $M^k(k \leq n)$. In order to prove that M^{n+1} is a q-set, it is enough to prove that Z is a q-set. Let A be an arbitrary subset of Z and let $\widetilde{A} = \bigcup \{\tau(A): \tau \text{ is a permutation of } \{1, ..., n+1\} \}$. Then \widetilde{A} is a symmetric subset of M^{n+1} . Since M is an almost strong q-set, \widetilde{A} is an F_{σ} -set in M^{n+1} . Thus $A = \widetilde{A} \cap Z$ is an F_{σ} -set in Z. Hence Z is a q-set. It follows that M is a strong q-set.

Proposition 1.2. For every non σ -discrete almost strong q-set M, there are a non σ -discrete strong q-set M' and a one-to-one continuous mapping from M' onto M.

Proof. By Lemma 1.1, this is essentially proved by T. Przymusiński (see [8], Lemma 5.10).

The following lemma is the key to our theorem. For a point $x=(x_1,...,x_n)$ $\in X^n$ and $n\in N$, let $F_x=\{x_1,...,x_n\}$. Let |A| denote the cardinality of a set A.

LEMMA 1.3. Let X and Y be subsets of a metric space M such that $M = X \cup Y$ and $X \cap Y = \emptyset$. If X is an almost strong q-set and Y is a closed subset of M with $|Y| \leq \kappa_0$, then M is an almost strong q-set.

Proof. Let A be a subset of M. Then $A \cap X$ is an F_{σ} -set in X. Since X is an F_{σ} -set in M, $A \cap X$ is an F_{σ} -set in M. Since $|Y| \leq \aleph_0$, it follows that $A = (A \cap X) \cup (A \cap Y)$ is an F_{σ} -set in M. Hence M is a q-set. Take $n \in N$ and assume that we have already proved that every symmetric subset of M^n is an F_{σ} -set in M^n . Let

$$Z = \{(z_1, ..., z_{n+1}) \in M^{n+1} : z_i \neq z_j \text{ for } i, j \leq n+1 \text{ and } i \neq j\}.$$

Then Z is an open subset of M^{n+1} . We shall show that every symmetric subset of Z is an F_{σ} -set in Z. Let A be a symmetric subset of Z. Since X is an almost strong q-set and Y is a closed subset of M with $|Y| \leq \aleph_0$, we may assume that for each point $z = (z_1, ..., z_{n+1}) \in A$, $1 \le |F_s \cap Y| \le n$. Let $S = \{s = (y_1, ..., y_k): s \text{ is an } s = (y_1, ..., y_k) \le s = (y_$ ordered pair of distinct elements of Y and $1 \le k \le n$. Then we have $|S| \le \aleph_0$. Fix $s = (y_1, ..., y_k) \in S$. Define A_s as follows: $z = (z_1, ..., z_{n+1}) \in A_s$ if and only if $z \in A$, $F_z \cap Y = F_s$ and $z_{i_1} = y_i$ for some $\{i_1, ..., i_k\} \subset \{1, ..., n+1\}$ such that if j < j' and $j, j' \le k$ then $i_i < i_{j'}$. Let $z = (z_1, ..., z_{n+1}) \in A_s$ and let $\{i_1^x, ..., i_k^x\}$ be a subset of $\{1, ..., n+1\}$ such that $z_{i\bar{z}} = y_i$ for $j \le k$. Let $\{m_1^z, ..., m_{n-k+1}^z\} = 1$ $= \{1, ..., n+1\} - \{i_1^z, ..., i_k^z\}$ such that if $p, t \le n-k+1$ and p < t then $m_p^z < m_t^z$. Define $x_z = (z_{m_1}, \dots, z_{m_{n-k+1}})$. Then x_z is a point of M^{n-k+1} . Let $B_s = \{x_z : z \in A_s\}$. Then B_s is a symmetric subset of M^{n-k+1} . Thus there is a sequence $\{E_{s,n}: p \in N\}$ of closed subsets of M^{n-k+1} such that $B_s = \bigcup \{E_{s,p} : p \in N\}$. Without loss of generality, we can assume that each $E_{s,p}$ is symmetric. For each $p \in N$, let $H_{s,p}$ $= \{z \in A_s: F_z - F_s = F_w \text{ for some } w \in E_{s,p}\}$. It is easy to check that each $H_{s,p}$ is a closed subset of M^{n+1} . Since $A = \bigcup \{H_{s,p} : s \in S \text{ and } p \in N\}$, A is an F_{σ} -set in Z. Since M^{n+1} is a finite union of Z and F_{σ} -sets which are homeomorphic to some M^k $(k \le n)$, it follows that every symmetric subset of M^{n+1} is an F_{σ} -set in M^{n+1} . Thus M is an almost strong q-set.

LEMMA 1.4. Let $f: M \to M'$ be a perfect mapping from a metric space M onto a metric space M'. If M is an almost strong q-set, then M' is also an almost strong q-set.

Proof. For each $n \in N$, let $f^n \colon M^n \to M'^n$ be a perfect mapping from M^n onto M'^n induced by f. Let A be a symmetric subset of M'^n and $n \in N$. Then $(f^n)^{-1}(A)$ is a symmetric subset of M^n . Since M is an almost strong q-set, $(f^n)^{-1}(A)$ is an F_{σ} -set in M^n . Thus A is an F_{σ} -set in M'^n . Hence M' is an almost strong q-set.

§ 2. Normality and hereditary countable paracompactness. For each $n \in N$, let $\mathscr{F}_n[X] = \{F \in \mathscr{F}[X] \colon |F| \leq n\}$. Notice that every $\mathscr{F}_n[X]$ is a closed subspace of $\mathscr{F}[X]$ and in particular, $\mathscr{F}_1[X]$ is a discrete closed subspace of $\mathscr{F}[X]$.

Let d be a compatible metric on M. For each $F \in \mathscr{F}[M]$, let $B(F, 1/n) = \bigcup \{B(x, 1/n) \colon x \in F\}$, where $B(x, 1/n) = \{y \in M \colon d(x, y) < 1/n\}$. We give the main theorem in this paper.

Typopras 2.1 The City

THEOREM 2.1. The following are equivalent.

- (a) $\mathcal{F}[M]$ is normal,
- (b) F[M] is hereditarily countably paracompact,
- (c) M is an almost strong q-set.

Proof. (a) \rightarrow (b). Since $\mathscr{F}[M]$ is a perfectly normal space, this implication is obvious.

(b) \rightarrow (c). We may assume that M is not discrete. Let x be a nonisolated point of M and let $\{x_n \colon n \in N\}$ be a sequence of distinct points of $M - \{x\}$ converging to x. Let $Z = \{x_n \colon n \in N\} \cup \{x\}$ and let Y = M - Z. Then Z is a compact subset of M. In order to prove this implication, from Lemma 1.3, it suffices to prove that Y is an almost strong q-set. To see this, let Y' be a space considering the following new topology on Y: for each $y \in Y'$, the basic open neighborhoods of y are of the form $(B(y, 1/n) \cup B(x, 1/n)) \cap Y'$ and $n \in N$. Then Y' is first countable and consequently, $\mathscr{F}[Y']$ is a Moore space. It is clear that if O is an open neighborhood of $F \cup \{x, x_n\}$ in M, where $F \in \mathscr{F}[Y']$ and $n \in N$ then $O \cap Y'$ is an open neighborhood of F in Y'. We need the following claim.

CLAIM. $\mathcal{F}_n[Y']$ is normal for each $n \in \mathbb{N}$.

Proof of Claim. We shall show that every $\mathscr{F}_n[Y']$ is perfectly normal. If n=1, then $\mathscr{F}_1[Y']$ is a discrete space. Thus $\mathscr{F}_1[Y']$ is normal. Let $n\geq 2$ and assume that \mathscr{H} is a closed subset of $\mathscr{F}_n[Y']$. It is enough to prove that there is a sequence $\{\mathscr{U}_m\colon m\in N\}$ of open subsets of $\mathscr{F}_n[Y']$ satisfying $\mathscr{H}=\bigcap\{\mathscr{U}_m\colon m\in N\}=\bigcap\{\operatorname{Cl}_{\mathscr{F}_n[Y']}\mathscr{U}_m\colon m\in N\}$ (see P. Zenor [11]). For each $m\in N$, let

$$\mathcal{H}_m = \left\{ F \cup \left\{ x, x_m \right\} \colon F \in \mathcal{H} \right\}.$$

Define \mathscr{Y}_m , $m \in \mathbb{N}$, as follows: $F \in \mathscr{Y}_m$ if and only if $F \in \mathscr{H}_m$ or $F = G \cup \{x, x_m\}$, where $G \in \mathscr{F}_n[Y'] - \mathscr{H}$ and there is an open subset O in M containing F such that $[G, O \cap Y'] \cap \mathscr{H} = \emptyset$. Let $\mathscr{Y} = \{F \cup \{x\} \colon F \in \mathscr{F}_n[Y'] - \mathscr{H}\}$ and let

$$\mathcal{E} = \bigcup \left\{ \mathcal{Y}_m \colon m \in N \right\} \cup \mathcal{Y}.$$

We consider $\mathscr E$ with the subspace topology of $\mathscr F[M]$. Then each $\mathscr U_m$ is an open-and-closed subset of $\mathscr E$. Let $\mathscr I_m = \bigcup \, \{\mathscr H_s \colon s \geqslant m\}$ for each $m \in \mathbb N$. Then $\{\mathscr I_m \colon m \in \mathbb N\}$ is a decreasing sequence of closed subsets of $\mathscr E$ having $\bigcap \, \{\mathscr I_m \colon m \in \mathbb N\} = \mathscr O$. To see this, assume that $F \notin \mathscr I_m$ and $m \in \mathbb N$. In case of $F \in \mathscr U_s$ and s < m. Then $\mathscr U_s$ is an open neighborhood of F in $\mathscr E$ such that $\mathscr U_s \cap \mathscr I_m = \mathscr O$. In case of $F \in \mathscr U_s$ and $s \geqslant m$. Then $F = G \cup \{x, x_s\}$ for some $G \in \mathscr F_m[Y']$. Then we have $G \notin \mathscr H$. Thus there is an open neighborhood O of F in M such that $[G, O \cap Y'] \cap \mathscr H = \mathscr O$. Assume that $K \in [F, O] \cap \mathscr I_m \neq \mathscr O$. Then $K = J \cup \{x, x_p\}$ for some $J \in \mathscr H$ and $p \geqslant m$. From the construction of $\mathscr E$, we have p = s. Thus we have $K = J \cup \{x, x_s\}$

and consequently, $J \in [G, O \cap Y'] \cap \mathcal{H}$, which is a contradiction. Thus it follows that $[F, O] \cap \mathcal{I}_m = \emptyset$. In case of $F \in \mathcal{U}$. Then $F = G \cup \{x\}$ for some $G \in \mathcal{F}_n[Y'] - \mathcal{H}$. Then there is a basic open neighborhood O' of G in Y' such that $[G, O'] \cap \mathcal{H} = \emptyset$. From the definition of the topology of Y', there is an open set O in M containing F such that $O \cap Y' = O'$. Assume that $K \in [F, O] \cap \mathcal{F}_m$. Then $K = J \cup \{x, x_s\}$ for some $J \in \mathcal{H}$ and $s \geq m$. Then it analogously follows that $J \in [G, O'] \cap \mathcal{H}$. This is a contradiction. Thus, in each case, there is an open subset \emptyset in $\mathscr E$ containing F such that $\emptyset \cap \mathcal{F}_m = \emptyset$. Hence each \mathcal{F}_m is a closed subset of $\mathscr E$. It is clear that $\bigcap \{\mathcal{F}_m : m \in N\} = \emptyset$. Since $\mathcal{F}[M]$ is hereditarily countably paracompact, $\mathscr E$ is countably paracompact. So there is a decreasing sequence $\{\mathcal{V}_m : m \in N\}$ of open subsets of $\mathscr E$ having $\mathcal{F}_m \subset \mathcal{V}_m$ for each $m \in N$ and $\bigcap \{c \in \mathscr{V}_m : m \in N\} = \emptyset$. Without loss of generality, we can assume that each \mathscr{V}_m is contained in $\bigcup \{\mathscr{Y}_s : s \geq m\} \cup \mathscr{Y}$. For each $F \in \mathscr{V}_m$ and $m \in N$, take an open subset $O_{F,m}$ in M containing F such that $[F, O_{F,m}] \cap \mathscr{E} \subset \mathscr{V}_m$. For each $m \in N$, define

$$\mathcal{U}_{m} = \bigcup \left\{ [F - \{x, x_{s}\}, O_{F,m} \cap Y'] \cap \mathcal{F}_{n}[Y'] \colon F \in \mathcal{Y}_{s} \cap \mathcal{V}_{m} \quad \text{and} \\ s \geqslant m \} \cup \left(\bigcup \left\{ [F - \{x\}, O_{F,m} \cap Y'] \cap \mathcal{F}_{n}[Y'] \colon F \in \mathcal{Y} \cap \mathcal{V}_{m} \right\} \right).$$

Then each \mathcal{U}_m is an open subset of $\mathscr{F}_n[Y']$ and it is obvious that $\mathscr{H} \subset \mathscr{U}_m$ for each $m \in \mathbb{N}$. Suppose that $F \in \mathscr{F}_n[Y'] - \mathscr{H}$. Then we have $F \cup \{x\} \in \mathscr{Y}$. Then there are open subsets O_1 and O_2 in M containing $F \cup \{x\}$ and a natural number m_1 such that $[F, O_1 \cap Y'] \cap \mathscr{H} = \emptyset$ and $[F \cup \{x\}, O_2] \cap \mathscr{V}_{m_1} = \emptyset$. Let $O = O_1 \cap O_2$. Since O is an open neighborhood of x in M, there is a natural number m_2 such that if $s \geqslant m_2$ then $x_s \in O$. Let $m = \max\{m_1, m_2\}$. Since $\{\mathscr{V}_s \colon s \in N\}$ is a decreasing sequence, we have $[F, O \cap Y'] \cap \mathscr{H} = \emptyset$ and $[F \cup \{x\}, O] \cap \mathscr{V}_m = \emptyset$. We shall show that $[F, O \cap Y'] \cap \mathscr{U}_m = \emptyset$. To see this, assume that $G \in [F, O \cap Y'] \cap \mathscr{U}_m$. Then the following two cases are considered.

Case 1. There is an $I=J\cup\{x,x_s\}\in\mathscr{V}_m\ (s\geqslant m)$ such that $G\in[J,O_{I,m}\cap Y']\cap \mathscr{F}_n[Y']$. If $G\in\mathscr{H}$, then we have $G\cup\{x,x_s\}\in\mathscr{V}_m$. If $G\notin\mathscr{H}$, then we have $G\cup\{x,x_s\}\in\mathscr{V}_s\subset\mathscr{E}$, because O is an open neighborhood of $G\cup\{x,x_s\}$ such that $[G,O\cap Y']\cap\mathscr{H}\subset [F,O\cap Y']\cap\mathscr{H}=\varnothing$. From the way of taking $O_{I,m}$, we have $G\cup\{x,x_s\}\subset O_{I,m}$. Then $G\cup\{x,x_s\}\in [I,O_{I,m}]\cap\mathscr{E}\subset\mathscr{V}_m$. Thus, in each case, we have $G\cup\{x,x_s\}\in\mathscr{V}_m$. But $G\cup\{x,x_s\}\in [F\cup\{x\},O]\cap\mathscr{V}_m$, which is a contradiction.

Case 2. Not Case 1. Then there is an $I = J \cup \{x\} \in \mathscr{V}_m$ such that $G \in [J, O_{I,m} \cap Y'] \cap \mathscr{F}_n[Y']$. If $G \in \mathscr{H}$, then $G \in [F, O \cap Y'] \cap \mathscr{H}$, which is a contradiction. Thus we have $G \notin \mathscr{H}$. Then $G \cup \{x\} \in \mathscr{Y} \subset \mathscr{E}$ and consequently, $G \cup \{x\} \in [I, O_{I,m}] \cap \mathscr{E} \subset \mathscr{V}_m$. But $G \cup \{x\} \in [F \cup \{x\}, O] \cap \mathscr{V}_m$. This is a contradiction.

Thus it follows that $[F, O \cap Y'] \cap \mathcal{U}_m = \emptyset$. Hence we have

$$\mathcal{H} \,=\, \bigcap \, \left\{ \mathrm{cl}_{\mathcal{F}_n[\mathbb{Y}']} H_m \colon \, m \in N \right\} \,.$$

Therefore $\mathscr{F}_n[Y']$ is perfectly normal for each $n \in \mathbb{N}$.

Now we show that Y is an almost strong q-set. Let A be a subset of Y. Let $\mathscr{A} = \{\{y\}: y \in A\}$ and $\mathscr{B} = \{\{y\}: y \in Y - A\}$. Then \mathscr{A} and \mathscr{B} are disjoint closed subsets of $\mathscr{F}_2[Y']$. Since $\mathscr{F}_2[Y']$ is normal, there are disjoint open subsets \mathscr{U} and \mathscr{V} of $\mathscr{F}_2[Y']$ such that $\mathscr{A} \subset \mathscr{U}$ and $\mathscr{B} \subset \mathscr{V}$. For each $n \in \mathbb{N}$, let

$$A_n = \{ y \in A \colon [\{y\}, (B(y, 1/n) \cup B(x, 1/n)) \cap Y'] \cap \mathscr{F}_2[Y'] \subset \mathscr{U} \}.$$

Since $A = \bigcup \{A_n \colon n \in N\}$, in order to prove that A is an F_{σ} -set in Y, it suffices to prove that $\operatorname{cl}_Y A_n \subset A$ for each $n \in N$. Suppose that $y \in (Y - A) \cap \operatorname{cl}_Y A_n$ for some $n \in N$. Then $\{y\} \in \mathscr{B} \subset \mathscr{V}$. Then there is a natural number $m \ (m \ge n)$ such that $\{\{y\}, (B(y, 1/m) \cup B(x, 1/m)) \cap Y'] \cap \mathscr{F}_2[Y'] \subset \mathscr{V}$. Since $y \in \operatorname{cl}_Y A_n$, there is a $y' \in A_n$ such that $y' \in B(y, 1/m) \cap Y$. Then

$$\{y, y'\} \in [\{y'\}, (B(y', 1/n) \cup B(x, 1/n)) \cap Y'] \cap [\{y\},$$

$$(B(y, 1/m) \cup B(x, 1/m)) \cap Y'] \cap \mathscr{F}_{2}[Y'] \subseteq \mathscr{U} \cap \mathscr{V}.$$

This is a contradiction. Thus it follows that $\operatorname{cl}_Y A_n \subset A$ for each $n \in N$. Hence A is an F_{σ} -set in Y. Thus Y is a g-set. Take $n \in N$ and assume that we have already proved that every symmetric subset of Y^n is an F_{σ} -set in Y^n . Let

$$O = \{(y_1, ..., y_{n+1}) \in Y^{n+1} : y_i \neq y_j \text{ for } i, j \leq n+1 \text{ and } i \neq j\}.$$

Since Y^{n+1} is a finite union of O and F_{σ} -sets which are homeomorphic to some Y^k $(k \leq n)$, it is enough to prove that every symmetric subset of O is an F_{σ} -set in O. Let A be a symmetric subset of O. Let $A = \{F_y \colon y \in A\}$ and $\mathcal{B} = \{F_y \colon y \in O - A\}$. Then \mathcal{A} and \mathcal{B} are disjoint closed subsets of $\mathcal{F}_{2n+2}[Y'] - \mathcal{F}_n[Y']$. By the Claim, $\mathcal{F}_{2n+2}[Y']$ is perfectly normal and consequently, $\mathcal{F}_{2n+2}[Y']$ is hereditarily normal. Thus $\mathcal{F}_{2n+2}[Y'] - \mathcal{F}_n[Y']$ is normal. Hence there are disjoint open subsets \mathcal{U} and \mathcal{V} of $\mathcal{F}_{2n+2}[Y'] - \mathcal{F}_n[Y']$ such that $\mathcal{A} \subset \mathcal{U}$ and $\mathcal{B} \subset \mathcal{V}$. For each $m \in \mathbb{N}$, let $A_m = \{y \in A \colon [F_y, B(F_y, 1/m) \cup B(x, 1/m)) \cap Y'] \cap (\mathcal{F}_{2n+2}[Y'] - \mathcal{F}_n[Y']) \subset \mathcal{U}\}$. Clearly $A = \bigcup \{A_m \colon m \in \mathbb{N}\}$. We shall show that $\operatorname{cl}_O A_m \subset A$ for each $m \in \mathbb{N}$. Assume that $y = (y_1, \dots, y_{n+1}) \in (O - A) \cap \operatorname{cl}_O A_m$ for some $m \in \mathbb{N}$. Then we have $F_y \in \mathcal{B} \subset \mathcal{V}$. Then there is a $k \in \mathbb{N}$ $(k \geq m)$ such that $(B(y_i, 1/k) \colon i = 1, \dots, n+1\}$ is pairwise disjoint in M and

$$[F_y, (B(F_y, 1/k) \cup B(x, 1/k)) \cap Y'] \cap (\mathscr{F}_{2n+2}[Y'] - \mathscr{F}_n[Y']) \subset \mathscr{V}.$$

Since $y \in cl_0 A_m$, there is a $y' = (y'_1, \dots, y'_{n+1}) \in \prod_{i=1}^{n+1} B(y_i, 1/k) \cap A_m$. Thus we have $y'_i \in B(y_i, 1/k)$ for each $i = 1, \dots, n+1$. Hence we have $F'_y \subset B(F_y, 1/k)$. Since $k \ge m$, we have $F_y \subset B(F_{y'}, 1/m)$. Hence

$$\begin{split} F_{\mathbf{y}} \cup F_{\mathbf{y}'} &\in [F_{\mathbf{y}'}, \left(B(F_{\mathbf{y}'}, 1/m) \cup B(x, 1/m)\right) \cap Y'] \cap \\ &\cap [F_{\mathbf{y}}, \left(B(F_{\mathbf{y}}, 1/k) \cup B(x, 1/k)\right) \cap Y'] \cap \left(\mathscr{F}_{2n+2}[Y'] - \mathscr{F}_{n}[Y']\right) \subset \mathscr{U} \cap \mathscr{V}, \end{split}$$

which is a contradiction. Thus it follows that $\operatorname{cl}_O A_m \subset A$ for each $m \in N$. Hence A is an F_{σ} -set in O. Therefore it follows that Y is an almost strong q-set.

(c) \rightarrow (a). The idea of the proof of this implication is due to T. Przymusiński and F. D. Tall [9]. We shall show that $\mathscr{F}[M]$ is a perfectly normal space. Let \mathscr{U} be an open subset of $\mathscr{F}[M]$. For each $F \in \mathscr{U}$, there is a natural number $\mu(F)$ such that $[F, B(F, 1/\mu(F))] \subset \mathscr{U}$ and for each $F \in \mathscr{U}$ with $|F| \ge 2$, define $\varrho(F) = \min \{d(x, y): x, y \in F \text{ and } x \ne y\}$. For each $n \ge 2$, $m \in N$, let

$$\mathcal{A}_{n,m} = \{ F \in \mathcal{U} \colon |F| = n, \ \mu(F) \leqslant m \text{ and } \varrho(F) \geqslant 1/m \}$$

and for each $m \in N$, let

$$\mathcal{A}_{1,m} = \{ F \in \mathcal{U} \colon |F| = 1 \text{ and } \mu(F) \leq m \}.$$

Then $\mathscr{U}=\bigcup\{\mathscr{A}_{n,m}:n,m\in N\}$. For each $n,m\in N$, let $A_{n,m}=\{z\in M^n:F_z\in\mathscr{A}_{n,m}\}$. Since each $A_{n,m}$ is a symmetric subset of M^n , there is a sequence $\{E_{n,m,k}:k\in N\}$ of symmetric closed subsets of M^n such that $A_{n,m}=\bigcup\{E_{n,m,k}:k\in N\}$ for $n,m\in N$. For each $n,m,k\in N$, let $\mathscr{V}_{n,m,k}=\bigcup\{[F_z,B(F_z,1/2m)]:z\in E_{n,m,k}\}$. Clearly $\mathscr{U}_{n,m,k}:n,m,k\in N\}$. In order to prove that $\mathscr{F}[M]$ is perfectly normal, it suffices to prove that $cl_{\mathscr{F}[M]}\mathscr{V}_{n,m,k}\subset\mathscr{U}$ for each $n,m,k\in N$. Fix n,m,k. Assume that $F=\{z_1,\ldots,z_r\}\in cl_{\mathscr{F}[M]}\mathscr{V}_{n,m,k}$. Then for each $s\in N$, $[F,B(F,1/s)]\cap \mathscr{V}_{n,m,k}\neq \emptyset$. So there is an $F^s\in [F,B(F,1/s)]\cap [F_{x_s},B(F_{x_s},1/2m)]$ for some $x_s=(x_{s,1},\ldots,x_{s,n})\in E_{n,m,k}$ and $s\in N$. Hence we have

(i) $F \cup F_{x_s} \subset F_s \subset B(F, 1/s) \cap B(F_{x_s}, 1/2m)$ for each $s \in N$.

By using the same technique in [9], we have natural numbers $i_1, ..., i_n$ and an infinite subset P of N such that

- (ii) $d(x_{s,j}, z_{i,j}) < 1/s$ for each $s \in P$ and for each $j, 1 \le j \le n$, and
- (iii) $\min \{d(z_{i_j}, z_{i_{j'}}): j, j' \le n \text{ and } j \ne j'\} \ge 1/m$.

Let $G = \{z_{i_1}, \dots, z_{i_n}\}$. By (iii), G is a finite subset of distinct elements which is contained in F. Let B be a subset of M^n such that for each $x \in B$, $F_x = G$. Then $B \subset E_{n,m,k}$. For if not, there is an $\varepsilon > 0$ such that $\{B(z_{i_j}, \varepsilon): j = 1, \dots, n\}$ is pairwise disjoint in M and for each $x = (x_1, \dots, x_n) \in B$, $\prod_{i=1}^n B(x_j, \varepsilon) \cap E_{n,m,k} = \emptyset$. Take

 $s \in P$ such that $1/s < \varepsilon$. By (ii), we have $\prod_{j=1}^n B(z_{i_j}, \varepsilon) \cap E_{n,m,k} \ni x_s = (x_{s,1}, ..., x_{s,n})$, which is a contradiction. Thus it follows that $B \subset E_{n,m,k}$. Hence we have $G \in \mathcal{A}_{n,m}$ and consequently, we have $[G, B(G, 1/m)] \subset \mathcal{U}$. Take any $y \in F$ and $s \in P$ such that 1/s < 1/2m. By (i), $y \in B(F_{x_s}, 1/2m)$. So there is a j ($j \le n$) such that $d(y, x_{s,j}) < 1/2m$. By (ii), $d(x_{s,j}, z_{i_j}) < 1/s$, so we have $d(y, z_{i_j}) \le d(y, x_{s,j}) + d(x_{s,j}, z_{i_j}) < 1/m$. Since y is an arbitrary element of F, it follows that $F \subset B(G, 1/m)$. Since $G \subset F$, we have $F \in [G, B(G, 1/m)] \subset \mathcal{U}$. The proof is complete.

THEOREM 2.2. Let $f: M \to M'$ be a perfect mapping from a metric space M onto a metric space M'. If $\mathcal{F}[M]$ is normal, then $\mathcal{F}[M']$ is also normal.

Proof. This follows from Lemma 1.4 and Theorem 2.1 immediately.

208

Hidenori Tanaka

References

- [1] E. K. van Douwen, The Pixley-Roy topology in spaces of subsets in Set Theoretic Topology, ed. by G. M. Reed, Academic Press, New York 1977, 111-134.
- [2] W. G. Fleissner, Current research on Q sets, Topology, vol. II, Colloq. Math. Soc. János Bolyai, 23, ed. by A. Császar, North-Holland, 1980, 413-431.
- [3] H. Herrlich, Ordnungsfähigkeit total-diskontinuerlicher Räume, Math. Ann. 159 (1965), 77-80.
- [4] D. J. Lutzer, Pixley-Roy topology, Topology Proc. 3 (1978), 139-158.
- [5] C. Pixley and P. Roy, Uncompletable Moore spaces, Proc. Auburn Univ. Conf. (Auburn, Alabama, 1969), ed. by W. R. R. Transue, 1969, 75-85.
- [6] T. Przymusiński, Normality and separability of Moore spaces, in Set Theoretic Topology, ed. by G. M. Reed, Academic Press, New York 1977, 325-337.
- [7] The existence of Q-sets is equivalent to the existence of strong Q-sets, Proc. Amer. Math. Soc. 79 (1980), 626-628.
- [8] Normality and paracompactness of Pixley-Roy hyperspaces, Fund. Math. 113 (1981), 201-219.
- [9] T. Przymusiński and F. D. Tall, The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition, Fund. Math. 85 (1974), 291-297.
- [10] M. E. Rudin, Pixley-Roy and the Souslin line, Proc. Amer. Math. Soc. 74 (1979), 128-134.
- [11] P. Zenor, On countable paracompactness and normality, Prace Mat. 13 (1969), 23-32,

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA Sakura-mura, Niihari-gun, Ibaraki 305, Japan

Received 24 July 1984

Increasing strengthenings of cardinal function inequalities

by

I. Juhász and Z. Szentmiklóssy (Budapest)

Abstract. We prove that the following increasing strengthenings of two cardinal function inequalities given in [2] and [1] respectively are valid.

THEOREM 1. If X is T_2 and $X = \bigcup_{\alpha}^{1} X_{\alpha}$ (i.e. X is the union of an increasing chain of its subspaces X_{α}) and $c(X_{\alpha}) \cdot \chi(X_{\alpha}) \leq \kappa$ for all α then $|X| \leq 2^{\kappa}$.

THEOREM 2. If X is T_3 and $X = \bigcup_{\alpha}^{\uparrow} X_{\alpha}$, where X_{α} is T_4 and $wL(X_{\alpha}) \cdot \chi(X_{\alpha}) \leqslant \kappa$ for all α then $|X| \leqslant 2^{\kappa}$.

In [3] the first author has initiated the study of strengthening certain cardinal function inequalities in the following manner. A general form of a cardinal function inequality may be given as follows: If φ is some given cardinal function and X is a space having some property P then $\varphi(X) \leq \varkappa$. We call an increasing strengthening of this inequality any statement of the following form: If $X = \bigcup_{\alpha} X_{\alpha}$ is the increasing union of its subspaces X_{α} , where every X_{α} has property P and X has property P then $\varphi(X) \leq \varkappa$.

A number of such increasing strengthenings of inequalities were proven in [3], as a major problem, however, it remained open whether the inequality $|X| \le 2^{c(X)\chi(X)}$, for any T_2 space X, admits such an increasing strengthening.

Theorem 1 of the present paper gives the affirmative answer to this question. The ideas needed in the proof of Theorem 1, with appropriate modifications, also allowed us to show that the inequality $|X| \leq 2^{wL(X) \cdot \chi(X)}$ for any T_4 space X proved in [1] also admits an increasing strengthening.

Notation and terminology, unless otherwise explained, is identical with that used in [3].

THEOREM 1. If
$$X = \bigcup_{\alpha}^{1} X_{\alpha}$$
 is T_{2} and $c(X_{\alpha}) \cdot \gamma(X_{\alpha}) \leq \gamma$

holds for each a then

 $|X| \leqslant 2^{\kappa}$.