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Normality and hereditary countable paracompactness
of Pixley-Roy hyperspaces

by

Hidenori Tanaka (Ibaraki)

Abstract. In this paper, for the Pixley~Roy hyperspace & [M] of a metric space M, it will
be shown that & [M] is normal if and only if  [M] is hereditarily countably paracompact.

Introduction. Throughout this paper, all spaces are assumed to be T'y-spaces
and M always denotes a metric space. Pixley-Roy hyperspace of the real line was
defined by C. Pixley and P. Roy in [5] and later generalized by E. K. van Douwen
in [1]. The Pixley-Roy hyperspace F[X] of a space X has as its underlying set
the collection of all nonempty finite subsets of X. If Fe #[X], then the basic open
neighborhoods of F are of the form [F, U] = {Ge #[X]: Fc G=U}, where
U is an open subset of X containing F. Therefore [F,U] n [H, V] # O if and only
if Fe ¥V and H < U. It was pointed out in [1] that every Pixley-Roy hyperspace is
a zero-dimensional hereditarily metacompact space and & [X] is a Moore space
if and only if X is first countable.

M is said to be a ¢-set if every subset of M is an F,-set in M and a strong q-set
if every finite power of M is a g-set. If, in addition, M is separable, then M is said
to be a Q-set and a strong Q-set respectively. It is well known that the existence
of an uncountable Q-set is undecidable in ZFC and is equivalent to the existence
of a separable normal nonmetrizable Moore space. T. Przymusifiski [7] showed
that the existence of an uncountable Q-set is equivalent to the existence of an
uncountable strong Q-set.

Studying countable paracompactness in separable Moore spaces led to the
notion of A-sets. M is said to be a A-set if M is separable and for any decreasing
sequence {d,: ne N} of subsets of M having () {4,: ne N} = &, there is a se-
quence {U,: ne N} of open subsets of M having 4, < U, for each ne N and
N{U,: neN} = @ and a strong A-set if every finite power of M is a 4-set. It
is clear that any Q-set (strong Q-sef) is a A-set (strong A-set). The argument
given by T. Przymusiniski in [6] shows that any A-set must have cardinality <c,
where c is the cardinality of continuum. Thus any 4 -set is strongly zero-dimensional.
E. K. van Douwen, T. Przymusifiski and G. M. Reed showed that the existence
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of a separable countably paracompact nonmetrizable Moore space is equivalent
to the existence of an uncountable 4-set (see [6]).

For normality and countable paracompactness of Pixley-Roy hyperspaces of
metric spaces, M. E. Rudin [10], T. Przymusifiski [81 and D. J. Lutzer [4] obtained
the following elegant results (see also T. Przymusifiski and F. D. Tall [9D: (1) if
M is separable then & [M] is normal if and only if M is a strong Q-set; @) if Mis
strongly zero-dimensional then % [M] is normal if and only if M is a strong g-set
and (3) if M is a strong 4-set then F[M 1 is countably paracompact.

Our purpose of this paper is to show the equivalence of normality and he-
reditary countable paracompactness of Pixley~-Roy hyperspaces of metric spaces.
To do so we introduce a notion of an almost strong g-set, which is intermediate
between the notions of a ¢-set and a strong ¢-set. Our result may be of interest in
connection with the following D. J. Lutzer’s problem in [4]: Ts every strong 4 -set
a strong QO-set?

Let N denote the set of natural numbers. For Q-sets and 4 -sets, see W. G. Fleig-
sner [2].

§ 1. Preliminaries. Let ne N and let © be a permutation of {1,...,n}. For
a point x = (xy, ..., x,) € X, let T(x) = (xag1ys ores Xemy)- A subset 4 of X", €N,
is symmetric if for any permutation t of {1, ..., n}, ©(d) = A.
DerNrmIoN. M is said to be an almost Strong g-set if for each neN, every
symmetric subset of M" is an F,-set in M.

Clearly every strong g-set is an almost strong g-set and every almost strong
g-set is a g-set. Some results concerning almost strong g-sets are given.

Lemma 1.1. If M is strongly zero-dimensional, then M is a strong q-set if and
only if M is an almost strong q-set.

Proof. It suffices to prove the “if” part. Let M be a strongly zero-dimensional
almost strong g-set. Then M is linearly orderable (see H. Herrlich [3]). Let < be

a linear order on M generating the topology of M. Take ne N and assume that
we have already proved that M" is a q-set. Let

Z={(xg, s X ) e M x, < .. <Xpp1}-

Then M"** is a finite union of F,-sets which are either homeomorphic to Z or
to some M* (k < 7). In order to prove that A"*! is a g-set, it is enough to prove
that Z is a g-set. Let 4 be an arbitrary subset of Z and let g = Ufr(): « is
a permutation of {1,..,n+1}}. Then 4 is a symmetric subset of M"*%, Since
M is an almost strong g-set, A is an F,~set in M+, Thus 4 = A " Zis an Fi-set

.in Z. Hence Z is a g-set. It follows that M is a strong g-set.

ProposiTION 1.2. For every non o-discrete almost strong q-set M, there are anon
o-discrete strong q-set M’ and i one-to-one continuous mapping from M’ onto M.

Proof. By Lemma 1.1, this is essentially proved by T. Przymusinski (see [8],
Lemma 5:10).
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The following lemma is the key to our theorem. For a point x = (xy, ..., X,
e X" and neN, let F, = {xy, ..., x,}. Let |4] denote the cardinality of a set 4.

LemMA 1.3. Let X and Y be subsets of a metric space M such that M = Xu Y
and X 'Y = @. If X is an almost strong g-set and Y is a closed subset of M with
| Y| < 8¢, then M is an almost strong q-set.

Proof. Let 4 be a subset of M. Then 4 n X is an F,-set in X. Since X is an
F,-setin M, A n Xis an F,-set in M. Since | Y| <, it follows that A = (A n X) U
U(dn Y)is an F-set in M. Hence M is a g-set. Take ne N and assume that
we have already proved that every symmetric subset of M” is an F,-set in M". Let

Z={(z1, s Zys ) €M™ 1 2, # z; for i,j<n+1 and i #j}.

Then Z is an open subset of M"*!, We shall show that every symmetric subset
of Z is an F,-set in Z. Let 4 be a symmetric subset of Z. Since X is an almost strong
g-set and Y is a closed subset of M with | Y] <8,, we may assume that for. each
point z = (71, ..., Z,11) €4, IK|F,n Y[Sn. Let S={s=Up..,y): 5 Is an
ordered pair of distinct elements of ¥ and 1<k <n}. Then we haxje INEGTS FI'X
s = (g, ..., 3) €S. Define 4, as follows: z = (zq, ..., 2,+1) €4, if and onmly if
zed, F,nY=F, and z;, =J; for some {igs s i} = {1, o) n+1}., such.zthat
ifj<j and j,j' £k then f; <ip. Let z = (24, ..., Zy41) €4 andzlet {11,2...,1,5} be
a subset of {1,..,n+1} such that ziz = y; for j<k. Let {mi, .., Mp4s} =
={1,..,n+1}—{i, ..., if} such that if p, t £ n—k+1 and p <t then mj<wmj;.
Define x, = (Zuz, s Zmz_,, )- Then x, is a point of M™**1. Let B, = {x,: ze A},
Then B, is a symmetric subset of M"~**1, Thus there is a sequence {&, ,: pe N}
of closed subsets of M" *** such that B, = | {E, ,: p € N}. Without loss of gener-
ality, we can assume that each E, , is symmetric. For each pe XN, let H,,',,
= {zed,: F,—F, = F,, for some we E,,}. It is easy to check Fhat each Hf-l’ is
a closed subset of M"**. Since 4 = {J {H,,,: se Sand pe N}, 4 is an f",,-set in Z.
Since M"** is a finite union of Z and F,-sets which are homeomorphlc. to soinle
M* (k< n), it follows that every symmetric subset of M"*! is an F,-set in M"+1.
Thus M is an almost strong g-set. )

LemMMA 1.4. Let f: M — M’ be 4 perfect mapping from a metric space M onto
a metric space M'. If M is an almost strong g-set, then M’ is dlso an almost strong
q-set.

Proof. For each ne N, let f": M"— M'" be a perfect mapping from M"_(into
M™ induced by f. Let 4 be a symmetric subset of M'* and n e N. The11 1( i) . Ay
is a symmetric subset of M". Since M is an almost strong g-set, (f™)~(4) is an
F,-set in M". Thus A4 is an F,-set in M'". Hence M’ is an almost strong g-set.

§ 2. Normality and hereditary countable paracompactness. For each ne N,
let #,[X] = {Fe #[X]: |F|<n}. Notice that every #,[X] is a closed subspace
of #[X] and in particular, #[X] is a discrete closed subspace of #[X].
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Let d be a compatible metric on M. For each Fe #[M], let B(F, 1/n)
= U {B(x, 1/n): xeF}, where B(x, 1/n) = {y e M: d(x, ) < 1/n}.

We give the main theorem in this paper.

THEOREM 2.1. The following are equivalent.

(&) FIM] is normal,

(b) FIM] is hereditarily countably paracompact,

(©) M is an almost strong g-set.

Proof. (a) — (b). Since #[M] is a perfectly normal space, this implication
is obvious.

(b) ~ (¢). We may assume that M is not discrete. Let x be a nonisolated point
of M and let {x,: ne N} be a sequence of distinct points of M— {x} converging
tox Let Z={x,: neN}U{x} and let ¥ = M~Z. Then Z is a compact sub-
set of M. In order to prove this implication, from Lemma 1.3, it suffices to prove
that Y is an almost strong g-set. To see this, let ¥’ be a space considering the
following new topology on Y: for each ye Y, the basic open neighborhoods
of y are of the form (B(y, 1/n) U B(x, l/n)) N Y and neN. Then Y’ is first
countable and consequently, #[¥"] is a Moore space. It is clear that if O is an
open neighborhood of F u {x, %} in M, where Fe #[Y'] and ne N then O A Y
is an open neighborhood of F in ¥’. We need the following claim.

Cram. &,[Y'] is normal for each n eN.

Proof of Claim. We shall show that every #,[Y'] is perfectly normal. If
#-= 1, then &#[¥"]is a discrete space. Thus & 1[Y'] is normal, Let 7> 2 and as-
sume that 5 is a closed subset of F,[Y"). It is enough to prove that there is a se-
quence {%,: me N} of open subsets of F,1Y] satisfying o = (\{#%,,: me N 1=
= N {clgyn%,: me N} (see P. Zenor [11]). For each me N, let

H={FuU{x,x,}: Fe #Y.

Define %,,, me N, as follows: Fe®,, if and only if Fe s, or F=Gu {x,x,},
where G'e #,[Y']—2# and there is an open subset O in M containing F such that
G,O0NY]ns# =@ Let ¥ = {Fu {x}: Fe #,[Y'|—#)} and lex

& ={®,: meN}u¥,

‘We consider & with the subspace topology of #[M]. Then each ¥, is an open-
and-closed subset of &. Let .S, = () {#,: 5> m} for each 7 & N. Then {.#,,: meN}
is a d'ecreasing sequence of closed subsets of & having N{#,: meN}=@. To
see this, assume that F'¢ 4, and me N, In case of Fe®, and s <m. Then &, is
an open neighborhood of F in & such that Y.nI = In case of Fe¥, and
szm. Then F= Gu {x,x} for some Ge F,[Y']. Then we have G ¢ s#. Thus
there is an open neighborhood @ of F in M such that [G, O~ YIn# =0
Assume that Ke[F, 0], # @. Then K = Ju {x,x,} for some Je # and
P> m. From the construction of &, we have P = 5. Thus we have K = J U {x, x,}
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and consequently, Je [G, O n ¥'] n #, which is a contradiction. Thus it follows
that [F, Ol n #, = @. In case of Fe¥. Then F = G U {x} for some G e F,[¥'] -
~J#. Then there is a basic open neighborhood O’ of G in ¥~ such that [G, 0'] A
n 3 = . From the definition of the topology of Y”, there is an open set O in
M containing F such that O n ¥’ = O'. Assume that Kel[F, O] n Fm+ Then
K=Ju {x,x} for some Je# and s>m. Then it analogously follows that
Je[G, 0] n s#. This is a contradiction. Thus, in each case, there is an open
subset 0 in & containing F such that @ n.#,, = @. Hence each .#,, is a closed sub-
set of &. It is clear that ) {#,,: me N} = . Since F[M]is hereditarily countably
paracompact, & is countably paracompact. So there is a decreasing sequence
{#'m: meN} of open subsets of & having S, <7, for each meN and
N {cl¥: meN} = @. Without loss of generality, we can assume that each
¥ w is contained in | {@: s 2m} U ¥. For each Fe ¥, and me N, take an open
subset Op,,, in M containing F such that [F, Op,,]n &< ¥, For each me N,
define

Uy = U{lF—{x,x}, Opm 0" Y1 F,[Y']: Fe¥,n¥, and
sEmyu (U{[F~{x};, Opnn YA F[Y']: Fe¥ nv,)).

Then each %,, is an open subset. of #,[¥’] and it is obvious that # = %,,
for each m e N. Suppose that Fe #,[Y']—s#. Then we have Fu {x} e %. Then
there are open subsets O; and O, in M containing F U {x} and a natural mumber m,
suchthat [F, O; n Y] no# = Gand [FU {x}, 0,1 n ¥, = B.Let O = O, N O,.
Since O is an open neighborhood of x in M, there is a natural number m, such
that if 5 > m, then x; € O. Let m = max{my, m,}. Since {#";: se N} is a decreasing
sequence, we have [F,On Y'1n# = @ and [Fu {x}, 0] n ¥, = @. We shall
show that [F, O n ¥'] n %,, = @. To see this, assume that Ge[F, 0 n Y] n %,,.
Then the following two cases are considered.

Case 1. Thereisan I = J U {x, x;} € ¥, (s > m) such that Ge [J, Or,,, 0 Y']n
NF,[Y']. If Ge#, then we have Gu {x,x,}e¥,,. If G¢#, then we have
Gu{x,x}e¥ ;=& because O is an open neighborhood of G u {x,x,} such
that [G, 0N Y'1n# <[F,0n Y] n# = O. From the way of taking Or ,,
we have G U {x,x}<0y,. Then Gu {x,x}ell, Oy, ] n&<=¥,,. Thus, in
each case, we have Gu {x,x}e¥,. But Gu{x,x}elFu{x},01nv,,
which is a contradiction.

Case 2. Not Case 1. Then there is an I =Ju {x}e¥", such that G
e, O Y0 F, Y] If Ge s, then Ge[F, O n Y'] n 3, which is a con-
tradiction. Thus we have G ¢ #. Then G U {x}e ¥ = & and consequently, G U
uixlell,0,,]lnéc¥,. But GuU {x}e[Fu {x}, 0] n ¥, This is a contra-
diction.

Thus it follows that [F, O n Y'] n %, = @. Hence we have

# =\ {dgy,Hy: meN}.
Therefore #,[Y’] is perfectly normal for each ne N.
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Now we show that Y is an almost strong g-set. Let 4 be a subset of Y. Let
o ={{y}: yed}and #={{y}: ye Y—4}. Then o and & are disjoint closed
subsets of F,[¥']. Since &,[Y'] is normal, there are disjoint open subscts %
and 7" of #,[Y'] such that of =% and # < ¥". For each ne N, lot

Ay ={yed: [{3},(BY, n) VB, W) " Y] F (Y] cu}.

Since 4 = (J {4,: ne N}, in order to prove that A is an F,-setin ¥, it suffices
to prove that cly 4, < 4 for each ne N. Suppose that y € (¥Y—4) n cly 4, for some
neN. Then {y} € #<=9. Then there is a natural number m (m>n) such that
i{»}, (B(y,1/m) U B(x,1m)) n Y'] n F,[¥']=¥. Since yeclyd,, there is
a y' e 4, such that y' € B(y, 1/m) n Y. Then

{:¥}el{¥'}, BO, Un) U Bx, Un) A Y1 A [{),
B 1m UBE, /M)A YA FYcUNY.

This is a contradiction. Thus it follows that cly A, = 4 for each n e N, Hence A is
an F,-set in Y. Thus Y is a g-set. Take n e N and assume that we have already
proved that every symmetric subset of ¥" is an F,-set in Y™ Let

O = {(y1s s Vas) € Y"1 y; £ p,; for i,j<n+1 and i #Jj}.

Since ¥"*! is a finite union of O and F,-sets which are homeomorphic to
some Y* (k<n), it is enough to prove that every symmetric subset of O is an
F,-set in 0. Let 4 be a symmetric subset of 0. Let of = {F,: yed} and #
- ={F,: ye0~4}. Then o and & are disjoint closed subsets of % ,,.,[¥Y']—
—F,[Y']. By the Claim, #,,,,[Y'] is perfectly normal and consequently,
Fan+2[Y'] is hereditarily normal. Thus Fon2|Y'1-F,[Y'] is normal. Hence
there are disjoint open subsets % and ¥ of & a2l ¥ 1= F,[Y'] such that of =%
and #c<¥". For each me N, let A4, = {yed: [F, B(F,, 1/m)UB(x, /m))n Y']n
N (F 2 2[V]-F [T D W} Clearly 4 = ) {4n: meN}. We shall show that
clod, = 4 for each meN. Assume that y = (V15 oo Yur1) € (O—A) A clp 4, for
some me N. Then we have F,€ # < ¥". Then there is a ke N (k =m) such that
By, 1k): i=1, <., n+1} is pairwise disjoint in M and

(Fy, (B(F,, 1/k) U B(x, 1/R)) 0 Y] A (F g o[ V1= F, [ Y] .

. . , nedl
Since yeclpd,, there is a ¥ = (¥}, .., Yne) € [1BGy, 1K) A 4,,. Thus we
=1

h?.ve Yi€B(y;, 1/k) for each i=1,..,n+1. Hence we have Fy< B(F,, 1/k).
Since k> m, we have F,=B(F,, 1/m). Hence

F, v FyelFy, (B(Fy, 1/m) U B(x, 1/m)) A Y] A
O [Fy, (B, 1K) U B(x, 1) 0 Y] A (F gy o[ Y= F V) < (7,

wh.ich is a contradiction. Thus it follows that clp4, = A for each me N. Hence
4 is an F,-set in O, Therefore it follows that Y is an almost strong ¢-set.
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' (¢) = (a). The idea of the proof of this implication is due to T. Przymusifiski
and F. D. Tall [9]. We shall show that & [M] is a perfectly normal space. Let % be
an open subset of & [M]. For each Fe %, there is a natural number u(F) such
that [F, B(F, 1/u(F))] <% and for each Fe® with |F|>2, define ¢(F) = min
{d(x,y): x,ye F and x # y}. For each n (>2), meN, let

Ayw={FeU: |F|=n, p(FY<m and o(F) > 1/m}
and for each me N, let
Ay = {FeWU: |F|=1 and pu(F)<m}.

Then % = U{#,,m: n, meN}. For eachn, meN, let 4, ,, = {zeM™: F,eo, ,}.
Since each 4,,,, is a symmetric subset of M", there is a sequence {E, , .: ke N}
of symmetric closed subsets of M" such that 4, ,,= U {E, . x: k€ N} forn,me N.
For each n,m,keN, let ¥, ;= U {[F,, B(F;, 1/2m)]: z€E,,,}. Clealy %,
=U{¥x mom ki ByM,k€N}. In order to prove that & [M] is perfectly normal,
it suffices to prove that Cley,¥ s m i« % for each n,m,keN. Fix n,m, k. As-
sume that F = {z,, ..., 2,} € Clgy# s - Then for each seN, [F, B(F, /9] n
N Y w7 D, So there is an F*e[F, B(F, 1/s)] n [F,,, B(F,,, 1/2m)] for some
Xg = (X515 r» Xg,n) € B, . and seN. Hence we have e

® Fy F, cFcB(F,1/s).0 B(F,,,1/2m) for cach se N.

By using the same technique in [9], we have natural numbers iy, ..., i, and an
infinite subset P of N such that

(i) d(x,,,2;) <1/s for each se P and for each j, 1<j<n, and

(i) min{d(z;,, z,): j,j'<n and j #j'} = 1/m.

Let G = {z;,, ..., z;,}. By (ili), G is a finite subset of distinct elemerits which
is contained in F. Let B be a subset of M" such that for each xe B, F, = G. Then
B E, - For if not, there is an &> 0 such that {B(z;,, &):j = 1, ..., n} is pairwise

disjoint in M and for each x = (xy,..,x,)€B, [[B(x;,8) N E, , ; = &. Take
i=1

n
s€P such that 1/s<e. By (ii), we have [T B(z,, 8) 0 E, 1 3% = (X5,0, -0 X, nhs
J=1

which is a contradiction. Thus it follows that Bc E, ,, .. Hence we have G e &/, ,,
and consequently, we have [G, B(G, 1/m)]c%. Take any yeF and se P such
that 1/s < 1/2m. By (), y € B(F,,, 1/2m). So there is a j (j <n) such that d(y, x, ;)
<1/2m. By (ii), d(x,;,2z;,)<1/s, so we have d(y,z;)<d(y, x,)+d(x;, 2;)
< 1/m. Since y is an arbitrary element of F, it follows that F < B(G, 1/m). Since
G F, we have Fe[G, B(G, 1/m)] = %. The proof is complete.

THEOREM 2.2. Let fi M — M' be a perfect mapping from a metric space M onto
a metric space M'. If F[M] is normal, then F [M'] is also normal.

Proof. This follows from Lemma 1.4 and Theorem 2.1 immediately.
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Increasing strengthenings of cardinal function
inequalities

by

I Juhész and Z. Szentmikléssy (Budapest)

Abstract. We prove that the following increasing strengthenings of two cardinal function
inequalities given in [2] and [1] respectively are valid.

THEOREM 1. If X is Ty and X = U Xz (l.e. X is the union of an increasing chain of its sub~
-1
spaces Xo) and c(Xz)x(Xz) < % for all @ then |X|< 2%,

+
THEOREM 2. If X is Ty and X = \J X,, where X, is T, and wL(X2) 2(Xs) < % for all o then
Xl < 2% @

In [3] the first author has initiated the study of strengthening certain cardinal
function inequalities in the following manner. A general form of a cardinal function.
inequality may be given as follows: If ¢ is some given cardinal function and X is.
a space having some property P then ¢(X) < %. We call an increasing strengthening

of this inequality any statement of the following form: If X = [jX, is the in-
2

creasing union of its subspaces X, where every X, has property P and X has
property Q then o (X) <. i

A number of such increasing strengthenings of inequalities were proven in [3],.
as a major problem, however, it remained open whether the inequality |X}
<2°®1%) " for any T, space X, admits such an increasing strengthening.

Theorem 1 of the present paper gives the affirmative answer to this question.
The ideas needed in the proof of Theorem 1, with appropriate modifications, also-
allowed us to show that the inequality | X| < 2"2®*® for any T, space X proved
in [1] also admits an increasing strengthening.

Notation and terminology, unless otherwise explained, is identical with that
used in [3].

THEOREM 1. If X = L} X, is T, and
a
c(X) (XD <%

holds for each « then
|X|<2%
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