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On a Corson compact space of Todordevié
by

Gary Gruenhage* (Auburn, Ala.))

Abstract. Examples of (1) a metalindel6f space which is not weakly submetacompact, and (2)
acompact Radon space which is not hereditarily weakly submetacompact are provided, by showing
that the square of a certain Corson compact non-Eberlein compact space constructed by S. Todor&evié
is a hereditarily metalindelof Radon space which is not hereditarily weakly submetacompact.
The relationship between Todoréevié’s example, which is constructed from a certain tree, and
a construction of compact spaces from trees due to P. Nyikos is also discussed, and we give a simple
characterization of when these spaces are Eberlein corpact.

1. Introduction. In this note we show that a certain Corson compact, non-
Eberlein compact space X constructed by S. Todoréevi¢ ([T;], [T,]) has the property
that X*\4, where 4 is the diagonal, is an example of a metalindeléf space which
is not weakly submetacompact (see Section 2 for the definitions). Such an example
was previously known only under the continuum hypothesis [GG]. We also show
that if the continuum is not a real-valued measurable cardinal, then X* is a Radon
space. R. J. Gardner [Ga,] has shown that every compact hereditarily weakly
submetacompact space is a Radon space, as long as it does not contain discrete
subsets of measurable cardinality, and has asked if the converse holds, i.e., whether
every compact Radon space is hereditarily weakly submetacompact. This shows
that the answer is “no”. Gardner [Ga,] had previously construgted a counter-
example assuming the continuum hypothesis.

Todoréevié’s example is of the following type: Given a tree T, a certain com-
pact space X(T) is constructed which is Corson compact if and only if all chains
of T are countable. P. Nyikos [N] has a construction of a compact space Y(T)
from a tree T which is very similar to Todorevié’s construction. In Section 3 we
discuss the relationship between these two constructions, and show that Todor-
8evit’s space X(T)) will be Eberlein compact if and only if T is special, and Nyikos’s
space Y(T) will be Eberlein compact if and only if T is R-embeddable.

All our space are presumed to be at least Hausdorff. For basic set-theoretic
notation and definitions, see Kunen [K,].

* Partially supported by NSF grant MCS-8301932.
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2. A metalindelof non-weakly-submetacompact space. Recall that a compact
space X is Corson compact if and only if X embeds in a Z-product

S() = {xeR": |{uel: x(@) # 0} Sw}
of real lines, and is Eberlein compact if it embeds so that, for each xe X and £>0,
el @l >l <o

(viewing X as a subspace of Z(I). The following topological characterization of
these spaces is well-known: A compact space X is Corson (Eberlein) compact if
and only if X has a point-countable (o-point-finite) To-separating cover by open
FJs. (A cover % is To-separating if for each pair of distinct points, some Ue ¥
contains exactly one of them.) The author recently obtained the following charac-
terization [Gr]: A compact space X is Corson (Eberlcin) compact if and only if
¥4 is metalindelsf (c-metacompact). Recall that a space ¥ is metalindeldf
(c-metacompact) if and only if every open cover of Y has a point-countable (g-point-
finite) open refinement.

Now, a space Y is weakly submetacompact (ot weakly 0-refinable) if every

open cover of Y has a refinement % = \U %, such that, for each x € X there exists
new

n, € such that x is in at least one but only finitely many members of %, (i.e.,
1 <ord(x, %,,) < w). Note that we do not require each %, to cover ¥ —had we
done this, we would have defined submetacompact (or 0-refinable) spaces. There
are a number of known examples of metalindeldf spaces which are not submeta-
compact, A suitable subspace of Bing’s Example G will work (see Burke [Bul).
But metalindel5f spaces which are not weakly submetacompact seem to be more
difficult to construct. Perhaps this is in part because any countable union of weakly
submetacompact spaces is weakly submetacompact — this eliminates many common
“counterexample machines” and, for example, eliminates subspaces of Bing’s G as
possible places to look for an example. In fact, the only known example seems to
be one constructed by R. J. Gardner and the author [GG] assuming the continuum
hypothesis.

Now note that if a' compact space X is Corson compact but not Eberlein
compact, then X>\4 is metalindeléf but not o-metacompact and that o-meta-
compactness is very similar in spirit, though somewhat stronger than, weak sub-
metacompactness. This observation led us to consider various known examples
of Corson compact, non-Eberlein compact spaces, and we show here that a certain
example due to Todordevié can be used to obtain a first countable, locally compact,
metalindel5f space which is not weakly submetacompact. The space is constructed
as follows. Let S be any stationary, co-stationary subset of «y, and let

T={CcS: C is closed in w}.

For t;,1, €T, let t, <1, if and only if #, is an initial segment of £,. Then T with
this ordering is a tree with no uncountable chains (since S does not contain
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a club). Let

P(T)={pcT: teprs<t=>sep, and p is totally ordered}

be the sct of all paths of T' viewed as a subspace of "2, where a path is identified
with its characteristic function. Then P(T) is easily seen to be a closed, hence
compact, subset of 2, and since every path is countable, P(T") must be ,Corson
compact. Todorlevi¢ [T;] shows that P(T) has no dense metrizable subset, hence
by a result of [AL], is not Eberlein compact. This P(T") is not first countable. bu’;
if we modify T (following Todordevi€) by “sticking a Cantor tree” between ;very
node and its immediate successors, the resulting P(T) is now first countable (what.
is needed for first countability is for every node to have only countably many im-
mediate successors), and still has the other properties.

Instead of showing that P(T") is our desired space, it will be slightly more con-
venient to show instead that a similar space constructed from T using an idea of
Nyikos [N] has all the desired properties. Let T be the tree obtained from 7' by
adding a node at the end of each maximal chain. Let S(T) be the set of all successor
nodes of T, i.e., all nodes of T which have an immediate predecessor. For each
teS), let V, = {t'e T: t' > 1t}. Then it is not difficult to show that the ¥,’s and
their complements form a subbase for a supercompact topology on T (noting that
every cover of T' by Vs and their complements has a two element subcover).

Let X be T with the above topology; we will show that X*\4 is metalindelsf
but not weakly submetacompact. (X>\4 is of course locally compact, and will be
first countable if T is also modified as suggested earlier.)

Cram 1. X™\A is metalindeldf.

For each t e S(T), let V{ = X\V,. Note that
V= {V,xVi teSM} v {VixV,: te ST}

is a point-countable cover of X?\4 by compact open sets. Claim 1 easily follows..

Cram 2. X*\4 is not weakly submetacompact.

Let S < w, be stationary. Then it can be shown using a pressing down argument
that S\ is not weakly submetacompact. Todordevié [T,] shows that an analogue of
the usual pressing down lemma on @, holds for 7. The author originally obtained
a proof of Claim 2 by mimicking in X>\4 the proof that S>\4 is not weakly sub-
metacompact. However, this proof is rather tedious and involved. So we will give
a much shorter and in our opinion clearer proof using a rather simple forcing
argument (*).

In this paragraph, we state the forcing facts needed to understand the rest
of the proof. We use the terminology of Kunen [K;]. Let M be a countable transitive
model of ZFC, and consider S, T, X, etc. to have been defined within M. A set

(%) The author would like to thank Alan Dow and Juris Steprans for suggestions which lec
to this proof.
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DeTis densein Tif V,n D # @foreach teT, and G=T is T-generic over M
if G D # @ for each dense D =T, De M. The generic extension M [G] of M is
the smallest transitive model of ZFC extending M and containing G as an element;
M and M[G] bave the same ordinals. In general forcing, cardinals of M may become
smaller cardinals or just ordinals in M[G] (e.g., the first uncountable cardinal w,
in M may be a countable ordinal in M [G], and @, in M may be the first uncount-
able cardinal in M[GT), but it is known that in this case, the cardinal @; in M is
also the first uncountable ordinal in M[G]. This follows from the facts that (1)
T is Baire (in the topology generated by the ¥,’s), and that (2) for Baire partial
orders °M n M = °M n M[G], i.e., if a countable sequence of members of M is
in M[G], then it must be in M. (So, if @, became a countable ordinal in MG,
there would be in M[G] a countable sequence of ordinals whose limit is . But
this sequence would also be in M, a contradiction.) (Jensen was the first to use
this T in forcing; see also [BHK]. See [T,], Lemma 9.12, for a proof that T is Baire.
Fact (2) above is an exercise in [K;])

Consider a fixed T-generic set G. Since the union of all levels of T beyond
.any given level is dense in T, it is clear that a generic G must be an uncountable
«chain through 7, and that {J G is a club subset of @, contained in § (of course, G ¢ M).

We now describe the idea of the proof. Let 7 be the topology on X in M; we
-show that (X, 7) is not weakly submetacompact in M. Let ¥” be the cover of X 4
in Claim 1, and suppose %" has a weak submetacompact refinement % in M. In
MG}, the same Vs and Vs form a subbase for a topology 7’ on X, with ¢ < 7.
Hence % is also a weak submetacompact refinement of " in M[G]. We will arrive
:at a contradiction by showing that in M[G], X*\4 contains a copy of wf\A such
that the trace of " on this copy has no weak submetacompact refinement.

In M[G], X contains as a closed subset the uncountable chain

C={teT:dse Gt <9)}.

It is easy to check that the relative topology on C is precisely the order topology,
hence C is naturally homeomorphic to ®;, and that the trace of on C*\4 cor-
-Tesponds to the cover

# = {0, &) x[or, ;)7 @€ 0 \LIM} U {[ar, 0,) x [0, &): o & o \LIM}

-of wI\4, where LIM denotes the set of limit ordinals. It remains to show by a stand-
.ard pressing down argument that % has no weak submetacompact refinement.
Suppose 0 = | @, is a weak submetacompact refinement of %", Let « e LIM,
nEW
.and let

Xon = {f>a: 1< ord(a, B, 0,) < w}.
For some n(x) € @, X, is stationary. Since 0, is a point-finite open cover of

a stationary subset of w, (more precisely, of {«} x w,), it must, by an éasy pressing
-down argument, have a member O, > {o} % [B(e), ;) for some a < B (o)) < @;. By
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another pressing down argument, we can assume there exists 7(x) <o such that
0,2 (@), d]x[B(@), ). And since Oy W for some We ¥, there exists
6() > o with O, = [0, (1% [6(x), o).

Now for some k € @, S = {«: n(«) = k} is stationary. Thus there exists f € o,
and an uncountable §’ < S such that f(«) = B for all & e §’. Choose an increasing
sequence of ordinals o, € S’ with o, > 0(a,) for each new. Let e X, with
y>sup{y(e): new} Then (ap, 7)€ ) O, contradicting ord({eg, 1, 0x) < @.

new

That completes the proof.

3. Radon spaces. A Radon measure on a space X is a finite Borel measure 4 which
satisfies ‘
1(B) = sup{u(K): K= B, K compact}

for every Borel set B. We say that X is a Radon space if each Borel measure on X is
a Radon measure.

As mentioned in the introduction, Gardner [Ga] showed that every compact
hereditarily weakly submetacompact space is a Radon space, as long as it does
not contain a discrete subset of (real-valued) measurable cardinality. In the previous
section, we showed that the square X 2 of Todoréevi€’s space is not hereditarily
weakly submetacompact. In this section, we will show that X2 is nevertheless a Radon
space, as long as the continuum ¢ is not real-valued measurable (for convenience,
this will be assumed throughout this section), thereby proving that the converse
of Gardner’s theorem does not hold.

First we will note that X itself is hereditarily paracompact, hence Radon.
While a direct proof of this is not difficult, we will save space by noting that this
follows from the facts ,

" (1) X is monotonically normal, hence hereditarily collectionwise normal [N], and

(2) every collectionwise normal metalindelsf locally compact space is para-
compact [B].

Now we show further that every Borel measure x on X has “small” support.
Let X, be the subspace of X consisting of all e 7 on or below the ath level. We
claim that u(X\X,) = 0 for some a < ;. Suppose u(X\X,) >0 for all x< ;.
Then since u is Radon, u cannot be locally 0 on Xn\X,, 50 u(Vig) >0 for some
1(x) e X\X,. Let n € @ be such that

1
T, = {[(oc): w(Viy) > 5;}

is uncountable. Now V, n ¥/ # @ if and only if t and #' are related in. T soif kis
such that k-1/2" 3 u(X), then every k+1 elements of T, are related. We put pairs
{s, 1} of elements of T, into two pots: Pot 1if s and # are related, Pot II if not.
Erdos’s theorem w; — (0}, )? (see [K,]) says that either there is an uncountatlble
set A =T, all of whose pairs belong to Pot 1, or a countable set B < T, all palI:S
of which belong to Pot II. Since the latter is impossible, the former holds. But this

§ — Fundamenta Mathematicae CXXVI. 8
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means T contains an uncountable chain, so we have a contradiction. Hence
u(X\X,) = 0 for some o<, as claimed.

Now suppose v is a Borel measure on X" 2 Letv;, i = 1, 2, be the Borel measure
on X defined by

v:(4d) = v(z7 (D),

where 7; is the projection on the ith factor. By the above paragraph there exists
a <o such that v(X\X,) = 0, i = 1, 2. Then v(X*\X?) = 0, so v is fully sup-
ported on X7Z. Note that each level of T'is metrizable as a subspace of X (it is easily
seen to have a ¢-discrete base). Hence X7 is the union of countably many metriz-
able spaces, hence is hereditarily weakly submetacompact, hence is a Radon space.
It follows that v is a Radon measure, which completes the proof that X2 is Radon.

4. Compact spaces from trees. In this section we discuss the relationship between
Todorlevié’s and Nyikos’s construction of compact T,-spaces from trees, and
characterize, .in terms of simple properties of the tree, when the resulting spaces
are Eberlein compact.

Given a tree T, Todorgevié considers the set P(T) of all paths of T' viewed as
with a subspace of T2, with a path identified with its characteristic function. P(T)is
closed, hence compact, in "2. Nyikos’s idea is to first extend T to T by adding
a node at the end of each path (including the empty path) in 7" which does not
already have a unique supremum in 7. If S(T%) is the set of successors of T and
V.= {t'eT: t<t'}, then, as mentioned earlier, the ¥,’s and their complel;ents
are a subbase for a compact Hausdorff topology on T

The above constructions are very closely related. Note that P(T) is itself a tree
ordered by the “initial segment” relation, and that every path in P(T) has a unique

supremun, l}erfce P(T) = P(T). Also, a path p e P(T) is a successor node in P(T)
if arfd only if it has the form (+,#,] = {se T: s<1,} for some #,e 7. Thus V,is
precisely the set of all paths containing t,, and this is the same as

{Fe() n P(D): f(1) = 1}.

]’11‘1111;5;2 .we see that Nyikos’s topology on P(T") is the same as its subspace topology
.Also note that the function h: T'— P(S(T)) defined by h(t) = (-, ] n S(T) is
an- isomorphism’ of T onto the path tree of the subtree S(T) of T. By the above
ren.larks, (V) = Vi for te S(T), hence 4 is also a homeomorphism of topo-
logical spaces. So the precise relationship between the two comstructions can be
stated' as follows: Applying Nyikos's construction to T yields the same space as
applying Todor&evié’s construction to S(T), while applying Todordevié’s construction
to T yields the same space as applying Nyikos's construction to P(T).
- II;’ow We obtain a simple charaf:terization of those trees T for which P(T) or
is Eberlein compact. Recall that T is special if it is a countable unjon of antichains,
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and that T is R-embeddable if S(T) is a countable union of antichains. (The usual
definition of R-embeddable is that there exists f: T'— R such that 5 <t = f(s)
< f(); that our definition is equivalent to this one is a result of Galvin (see Baum-
gartner [Ba]).

THEOREM. Let T be a tree. Then

(a) P(T) is Eberlein compact <>T is special

(b) T is Eberlein compact <>T is R-embeddable.

Proof. Part (a) follows easily from (b) and the above remarks — for as-
suming (b), P(T) is Eberlein compact if and only if P(T) is R-embeddable if and
only if S(P(T)) is special. But the map k: S(P(T)) » T defined by k((:,1]) = ¢
is an isomorphism, so (a) follows.

To prove (b), assume first that T is R-embeddable. Let S(T) = U T,, where

new
each T, is an antichain, and let %, = {V,: t € T,,}. Then %, is a disjoint collection
of clopen sets, and % = ) %, is Ty-separating. Thus T is Eberlein compact.

new

Finally, assume that % = |J %, is a point-finite To-separating collection of
new

open F,’s in the space T. Since each Ue % is an F, and T is 0-dimensional, it is
easy to see that we may assume each member of % is a clopen set. We may also
assume o< Uy < ...

Now let

¥, = (Ux(I\U): Ued,} v {(IND)x Uz Ue4,},

and let ¥ = | #,. Then ¥ is a cover of T\4, and each ¥7, is point-finite. For
new

te S(T), choose from ¥ a finite minimal cover #7, of V,xV¥{, and put teT,,,
if and only if |%,] = m and n is the least such that #7,=%,.

We shall complete the proof by showing that every increasing chain in T,
is finite, hence T, ,,, and so also S(T), is a countable union of antichains. To this
end, suppose fo<?#; < ... is an increasing sequence in T, Since [#7] = m, we
may assume that the #,’s form a A-system with root 2. Let ¢ = sup {t.}. Since

new
{t,t) is not in the clopen set {J £, there exists k € » such that {z, t,) ¢ U 4. Since
{t, 1y eV, x Vi for n>k, there exist W, e W N\Z with {t,t,) € W,. But the
W,’s are distinct elements of ¥7,, which contradicts the point-finiteness of ¥7,.
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Tiling with smooth and rotund tiles
by

Victor Klee (Scattle), Elisabetta Maluta and Clemente Zanco™ (Milanoy

Abstract. Without assuming local finiteness, this paper studies tilings of topological vector
spaces by convex sets that are bounded or finitely bounded. The paper was motivated by a wish
to ascertain, in the infinite as well as the finite-dimensional case, to what extent the tiles can be
smooth or rotund. Various limitations are established. For example, no space of dimension > 2
admits a countable rotund tiling, and tilings that are uniformly smooth or uniformly rotund are
excluded under certain hypotheses. On the other hand, some nonseparable locally convex spaces
admit tilings in which each tile is both smooth and rotund. Several unsolved problems remain.

Tntroduction. A collection % of subsets of a topological space S is a covering
if § = ®. It is a packing if |#]> 1, each member of € is the closure of its non-
empty interior, and the interiors are disjoint. A tiling is a collection that is both
a covering and a packing, and the members of a tiling are tiles. ‘

A subset of a topological vector space is here called a bc-set (resp. fe-set) if
it is closed, convex and bounded (resp. Sfinitely bounded (has bounded intersection
with each finite-dimensional subspace)). Along with certain other adjectives (e.g.
closed, convex, smooth, rotund), the prefixes be and fc are applied to @ collection ¥
if they apply to each member of ¥. However, some adjectives refer to % as a col-
lection or to the interactions among members of ¥, and we rely on context for
the necessary distinctions. For example, ¥ is countable if %] <%, digjoint if no
two members intersect, and locally finite if each point of the space has a neighbor-
hood that intersects only finitely many members of %.

In a locally finite be-tiling of R’, each tile is a d-polytope [3] [171, and at least for
d <3 an arbitrary d-polytope P may serve asa prototile in the sense that R admits
a locally finite tiling in which each tile is combinatorially equivalent to P [4] [13].
However, without the assumption of local finiteness, little is known even in
the plane, and that assumption is inappropriate for the study of bc-tilings of in-

* Research of the first author was partially supported by the U. S. National Science Founda-
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