146 D. M. Oberlin

a weak* limit of some subnet of {4} )y in the Banach space of finite Borel

measures on X, regarded as the dual space of the space of continuous

functions on X,.
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Holomorphic' functions of uniformly bounded type
on nuclear Fréchet spaces

by
REINHOLD MEISE (Disseldorf) and DIETMAR VOGT (Wuppertal)

Dedicated to Professor Dr. H-G. Tillmann
on his sixtieth birthday

Abstract. It is studied under what conditions every entire function on a given nuclear
Fréchet space E (resp. every holomorphic function on an open polycylindrical set P < E) js of
uniformly bounded type. Necessary as well as sufficient conditions (resp. a characterization) are
given in terms of the invariants (LB”), (Q), (€}) known from the theory of linear operators
between Fréchet spaces. A holomorphic characterization of nuclear Fréchet spaces with (£3) is
presented and also examples and applications.

For a complex locally convex space £ we denote by H(E) the vector
space of all entire functions on E, i.e. of all continuous complex functions on
E which are Giteaux-analytic. An entire function on E is called of uniformly
bounded type if it is bounded.on all multiples of some zero neighbourhood
in E. By H,,(E) we denote the linear space of all entire functions on E which
are of uniformly bounded type. Colombeau and Mujica [4] have shown
H(E) = H,,(E) for each (DFM)-space E, while a classical example of
Nachbin [16] gives H,,(E) & H(E) for the nuclear Fréchet space E = H(C).
In [14] we have shown that a nuclear locally convex space E satisfies H (E)
= H,, (E) if and only if the entire functions on E are universally extendable
in the following sense: Whenever E is a topological linear subspace of a
locally convex space F with a fundamental system of continuous semi-norms
induced by semi-inner products, then each fe H(E) has a holomorphic
extension to F.

In the present article we investigate necessary as well as sufficient
conditions for nuclear Fréchet spaces E to satisfy the relation H(E) = H,, (E).
We prove that this relation defines a subclass which contains all spaces with
property (£) and which is contained in the subclass of spaces with property
(LB”). The properties ({3) and (LB*) have been introduced and investigated
in Vogt [25], where it has been shown that (&) is strictly stronger than
(LB ). It remains open whether the relation H(E) = H,,(E) defines a new
linear topological invariant which is inherited by quotient spaces or equals
one of the invariants (LB*) or (). :
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Furthermore we obtain a holomorphic characterization of nuclear
Fréchet spaces E with ({3) which is related to the one given in Dineen, Meise
and Vogt [7], [8], where it is shown that E has () if and only if E contains
a bounded subset which is not uniformly polar. We also give new examples
of nuclear Fréchet spaces of holomorphic functions which satisfy (€% and
which are not quotients of power series spaces of finite type. From a result of
Colombeau and Matos [3] we deduce that every nonzero convolution
operator on (H(E), 7o) is surjective provided that E is a nuclear Fréchet
space with (€).

Moreover, using an appropriate definition of H,,(U) for open subsets U
of a nuclear Fréchet space E, we give the following characterization: The
identity H (P) = H,,(P) holds for some (resp. all) polycylindrical open subsets
P of E if and only if E has property () introduced by Vogt [25], where P is
called polycylindrical if it is a finite intersection of sets of the form
{xeE| [y(x)] <1}, y a nonzero continuous linear functional on E.

The main tools to obtain these results are an interpolation argument
used in Section 3 as well as methods and results from the theory of nuclear
Fréchet spaces, in particular from Vogt [24], [25] and from Dineen, Meise
and Vogt [8]. .

The article contains four sections. In the first one we recall some
definitions and results and fix the notation. In Section 2 we introduce
holomorphic functions of uniformly bounded type and derive necessary
conditions for the identity H(E)= H,(E) (resp. H(P)=H,(P), P a
polycylindrical set in E). Sufficient conditions for these identities are obtained
in Section 3 by means of an interpolation argument. The last section
contains some applications and new examples of nuclear Fréchet spaces of
holomorphic functions satisfying ({).

1. Preliminaries.

1.1. General notation. We shall use standard notation from the theory of
locally convex spaces as presented in the books of Jarchow [11], Pieisch
[20] and Schaefer [21]. All locally convex (l.c) vector spaces E are assumed
to be complex vector spaces and Hausdorff.

For a Fréchet space E we always assume that its lc. structure is
generated by an increasing system (||'{|,).en Of semi-norms, Then we denote
by E, the canonically normed space E/||'||;’ 1(0) and by E, its completion.
n,: E—E, resp. n, . E,— E, (m > n) denote the corresponding canonical
maps and U, denotes the set {xe E| ||x||, < 1}. Sometimes it is convenient to
assume that (U,),.y is already a neighbourhood basis of zero.

If M is an absolutely convex subset of E, we define |||} E’ - [0, ov]
by lyli¥:= iugly(x)t, where E' denotps the topological dual of E. Obviously

€.
I3 is the gauge functional of the polar of M. Instead of 113, we write Iellx.
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We remark that the adjoint n% of 7, gives an isometry between (E,), and
Eyos I112)
If M is absolutely convex and bounded in E, then E,, denotes the linear
hull of M which becomes a normed space under the gauge functional of M.
For lc. spaces E and F we denote by L(E, F) the space of all continuous
linear mappings, while LB(E, F) denotes the set of all Ae L(E, F) for which
there exists a zero neighbourhood U in E for which A(U) is bounded.
1.2. Sequence spaces. Let A = (a;)ynen2 be @ matrix which satisfies
(1) 0 < aj!,, < aj',‘.,.l for all j, kEN,
(2) For each je N there exists ke N with a;, > 0.
Then we define the sequence spaces 1°(4) by

2(A):= {xe CV) lIxl:= (Y (x}la; )" < oofor all ke N}

=1
for 1 <s < oo, and for s =00 and s=0 by

A%(A):= {xeC"l [Ix]lx : = sup|xj a;, < co for all ke N},
jeN
19(4):= {xeA®(4) lim X;a;, =0 for all keN}.
j-w

Obviously A*(4) is a Fréchet space under the natural topology induced by
the semi-norms (|| [l Jken- We write A(A) instead of A'(A).

We recall that A°(A) is Schwartz (resp. nuclear) iff for every ke N there
exist me N and pec, (resp. pel') such that a;, < p;a;, for all jeN.

If a is an increasing unbounded sequence of positive real numbers
(called exponent sequence) and if R=1 or R=oc0 then we define for
1< s < oo the power series space

3 (@):= 2(A(R, ®)), AR, 0) = {(F)jenl keN}, 1,7 R.

2(x) is called a power series space of finite (resp. infinite) type if R
=1 (resp. R = o). We remark that well-known examples of nuclear power
series spaces are § =~ C*(8%) ~ A ((logn+D,en) H(CY ~ A, (n'*),.n) and
H(D* = A, (n"™,.x), where D stands for the open unit disk in C and where
H() denotes the space of all holomorphic functions on 2 endowed with the
compact-open topology.

1.3. Holomorphic functions. Let E and G be Lc. spaces and let 2 < E be
open, 2% @. f: Q-G is called holomorphic if f is continuous and if for
every ye G’ the function y o f is Gateaux-analytic. By H(Q, G) we denote the
space of all G-valued holomorphic mappings on €; the compact-open
topology on H(f2, G) is denoted by t,. Instead of H(Q, C) we write H(<Q).
By H>(f2) we denote the bounded holomorphic functions on £.

For details concerning holomorphic functions on lc. spaces we refer to
the books of Colombeau [2], Dineen [5], and Noverraz [17].

where
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2. Holomorphic functions of uniformly bounded type. In this section we
introduce the class of holomorphic functions of uniformly bounded type in
variation of a notion of Nachbin [16]. Then we show that for a Fréchet
space E every holomorphic function on E (resp. on some polycylindrical
subset of E) is of uniformly bounded type only if E satisfies the linear
topological invariant (LB®) (resp. (J)) introduced by Vogt [25].

2.1. DermniTion. Let E be a lc. space and 2 a p-open subsel of E, where
p is a continuous semi-norm on E. fe H(Q) is called of uniformly bhounded
type if there exists a continuous semi-norm ¢ on E with ¢ 2> p such that [ is
bounded on each g-bounded subset w of Q satisfying ¢-dist(w, 2°) > 0. We
put

H,,(Q):={feH(Q) fis of uniformly bounded type|,

The following lemma shows that the identity H(Q) = H,,(£2) for certain open
subsets Q of a lc. space E implies linear properties of E.

22. LEMMA Let E be a lc. k-space and let G be an open subset of C".
If H(G xE) = H,,(G xE) then L(E, H(G)) = LB(E, H(G)).

Proof. Let Ae L(E, H(G)) be given. Then it is ‘easy to check that
[ GxE— C defined by

Jex)i= AL

is a holomorphic function.- Hence the hypothesis gives the existence of an
absolutely convex zero nelghbourhood U in E such that for every compact
subset K of G we have :

sup [f(z, x)|

(z,x)eK xU
By the definition of f this. implies'

supsup|A4 (x) (2]l <
xelU zek
Hence A(U) is bounded in H(G) and consequently AeLB(E H(G)).
Next we choose G in Lemma 2.2 in such a way that H(G) is isomorphic

to a power series space. Then we can use results of Vogt [25] to denve the
following two propositions. '

2.3. ProvosiTioN. If every entire function on the Fréchet space E is of

uniformly bounded type then E satisfies one of the following equivalent
conditions: ‘

(1) There exists an exponent sequence w;th sup(oc,,+1/oz,,) <o such lhat
L(E, A2() = LB(E, A2(w). |

(2) L(E, AZ(@) = LB(E, AZ(®) for all exponent sequences a.

(3) E has property (LB®): ‘

icm

S H{A,(

Holomorphie functions of uniformly bounded type 151

For every positive increasing unbounded sequence (on)yen and every
pe N there exists e N such that for all noe N there are Noe N and
C > 0 such that for all yeE' there exists Ne N with ng < N < N,
with

*1+g
Ivlly Y < »N

ClARIYI,
Proof. Except trivial cases we have E =~ CxE, and hence by
hypothesis H(C x Eg) = H,,(C x Ey). Since H(C) = A, (n), we deduce from
Lemma 2.2 that E, and hence E satisfies (1). Hence the proof is complete,
since the equivalence of all the conditions has been shown by Vogt [25], 5.2.
2.4, CoroLLARY, H (A% (a)) & H (A% (®) for each exponent sequence 2.
Proof. This is an obvious consequence of 23  since
ndm«,¢L (A= (@), A% ().

Remark. (a) For nuclear spaces A, (o) it is easy to write down
{«)) which is not of uniformly bounded type, namely
o

fl2y= Y zjexp(z, a).

j=2

(b) Corollary 2.4 extends the example of Nachbin [16]; see also
Colombeau [2], 2.72, and Dineen [5], Ex. 2.22.

In order to derive a further consequence from Lemma 2.2, we introduce
the following notation:

2.5. DerFINtTioN. A subset P of a lc. space E is called polycylindrical if
there exist Ne N, @y, ..., oy EN\{0} and Ry, ..., Ry >0 such that

P = {xeE |p;(x)) <R, for 1 <j< N}

2.6. PrOPOSITION. If the Fréchet space E contains a polycylindrical subset
P with H(P)=H,(P) then E satisfies one of the following equivalent
conditions: N
(1) There exists an exponent sequence & with sug(a” Jo) < oo such that
ne

L(E, A} () = LB(E, AF{a).
(2) L(E, AP (o)) = LB(E, A}
(3) E has property ():
For each pe N there exists qe N such that for each keN and each
¢ >0 there exists C >0 with |2 ** < CII I IMIE
Proof. For P we have N, ¢, ..., oy and Ry, ..., Ry according to ‘2.5,
Assume that @y, ..., @ are lmearly mdepcndent whlle P+ 15 - - (y depend
O @y, euny Py Therkl choose ey, ..., g in E with ¢,(e,) = 51,,, 1€j,n<k,

check - that n: E— E,

(@) for all exponent sequences «

and put Eg:= () kerg,. It is easy to
=1
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k

n(x):= Y @;(x)e;, is a continuous projector in E with kern = E, and
= '

imn = sJ;>an {e] 1<j <k} =~ C" Hence E =~ C*x E, and it is easy to see that

under this identification the set P can be described as G x Eq, where
k

G={zeCH |z) <R, 1<j<k, | T djaz| <Ry k+1<n< N},
. i=t

for suitable a;,, 1 <j <k, k+1<n <N. Then it follows from Mityagin and
Henkin [15] or (for any absolutely convex and bounded open set G)
Petzsche [197, 4.5, and Vogt [24], 7.5, that H(G) = Ay (n*). Since H(P)
= H, (P) by hypothesis, we get from Lemma 22 that E, and hence E
satisfies (1). By Vogt [25], 4.2, this completes the proof.,

2.7. BxampLEs. (a) From Vogt [25], 5.3, it follows that every quotient
space of a power series space of finite type has (LB®) and that every Fréchet
space E with property (Q) (see 3.5 below) has (LB*®). By Vogt [25], 5.5, there
exist nuclear spaces A(B) with (LB®) which do not have (3). For every
exponent sequence o the infinite-dimensional closed linear subspaces of
A2 («) do not have (LB®).

(b) The class of Fréchet spaces with ({)) is fairly small and can be
characterized also in a different way (see Vogt [26], 5.2). An example of
a nuclear Fréchet space with (J) and continuous norm is A(A), where
A =4y en2s

» k
a; = exp( le”").
e

By Vogt [25], 4.3, it suffices to show that for each pe N, each ke N and each
&> 0 there exists C >0 such that for all jeN

£ 1+e
@y d5,p < Cajpiy,

which is easy to check.

_In the next section we give sufficient conditions on E for H(E) = H,,(E)
resp. for H(P) = H,, (P) for all polycylindrical subsets of E.

3. An interpolation argument and its consequences. In this section we use
an interpolation argument in order to enlarge the domain of definition of a
holomorphic function with certain properties. We begin with two technical
lemmas which are applied to obtain conditions on E which imply that all
holomorphic functions on certain subsets of E are of uniformly bounded
type. .
3.1. Lemma. Let E gnd F be Hilbert spaces and X a Banach space.
Assume that the following hypotheses are satisfied:

(a) Ae L(E, F) is injective and of type s and A = vou, where ue L(E, X)
and ve L(X, F).
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(b) For every d >0 there exists Cy> 0 such that for all yeF

llo vl < Call A7 yIIE - fIvife.

(c) G is an open bounded absolutely convex subset of CN and fe H(G x E).
There exist @ zero neighbourhood W in CNxF and ge H*(W) with
f(idg x A)~ (W) = g o(idg x )

Then there exists he H, (G x X) with f=ho(idg xu).

Proof. By the spectral mapping theorem (see Pietsch [20], 8.3) there
exist a complete orthonormal system {e} je N} in E, an orthonormal system
iyl jeN} in F and a decreasing sequence A4 = (1)) in s such that

Ax = E /‘L’ (x|ej);,_~yj.
J=1

Let 3, denote the functional x(x|y)r on F and remark that [[xdl¥ = 1.
Then note that

A xall¥ = sup [(Axiyi)el = sup [A (xles! = A,
[t} €1 IIx]l <1

and put ¢, :=v"(x)e X" From hypothesis (b) we get
(1) For each d > 0 there exists C,> 0 such that for all ke N
loudl% 4 = 1o (gll% ™4 < CallA* QullE 1l ¥ = Cad-

Next we choose 0 <8 < 1 such that for p:=(3/j)n the set
3G x {xeF| x=Y & 1&] < py for all jeN}
=1

is contained in W. We put
M := {meN}| m;# 0 only for finitely many jeN}

and, following the idea of Boland and Dineen [1], we deﬁpe for
M=y, ..., My 0,..)eM and ke N, the k-homogeneous polynomial

on CY by

1\ +1
Oy (2) o == <§;§>

Jel= 4 leql=ny

drdgy...dg,.

J g(tz, QY1+ - +Qn¥s)
] +1
tk»ﬁ'la';‘l +1 :'n
'Qn"l‘n

Obviously we have with M = sup {|g(w)l | we W}:

?) sup | (2] € M/u"  for all (k, meNox M.
228G
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Since Ae; = }.jy{- for all je N and since f|(idg;x 4)™ 1 (W) =yol(id, x A), we
have the following representation of «,:

[ Qy On \
\nti A P ~ .‘/(f:« A(‘ eyt j"'
L ] e o)

3) Gmlz) = (T)T't'i

2ni PN TR SN ¥
: . . T ) Q"
Jel= 1|y l=ny lopl =ty @ En
ddgy ... dg,

1 VARt M n o
= ‘I“ / (?“L}Vl é," +oEwye,)

A"\ 2ni ki 1 P ~“";’,”j .

. j-;l:;] |,,.1|:,.l |W,,]-1r" 1 Wy

dudwy .. .dw,.

In order to obtain a further esti i
mate from this representation we re
: mal ¢
for each 0 <9 <1 and each ¢ >0 the set wrk thas

B(g. 1):=0G x {XEEI X = Z e, léjlgll.tj for all jeN}
J=

is compact. Hence f is bounded on B(g, t). We put
Nig, t):=sup{|f (W) | weB(g, 1)}

and get from (3) the following estimate:

&) < e
S:Ll(?; iak,m (“)‘ S ;umum r{mr fOr a‘” (/\', m)e No X M,

Now let r>0 and 0 <g <1 be given and choose ¢ > /0. Then find
f)< 3 <1 such that o¥ > \,,/é and 5177 > \/5 Next put /S:\l= l.'-" choose
;e<'1<1 .iind put Y:,,=\'1—“’y, a.nd d:=(1/n)—1. Since 1 is i;; 8, tline

quence (Aj/u)iev = (JA}/8)jen is in I* and hence Ri=supui' < o, We

put t:=(2Rr)'”? and D := C! : keN
(2) and (4): )" an Ci. Then we get the following estimate from (),

(5) . z Z rlml Suplak,m(:’)i fi‘ ||(/)j||;""l
280G i=1

meM keNg

<D T T Asupla, o
260G

meM keNg

<D Jmlfam mn -
X X rma fgaglak,mun)w ) v(zsiglak,,,,(z»)‘”

meM keNg

K
<D Z Z ,»Iml( e N(o, 1) v(}m‘)v M [4 k,.l_.n !
meMkeNg Ao /,['"t|'"| K "
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W \Imi sy k
. ¥ X
R (A nCa i
meM keNg (7 I Y
" ) @« ) k ;\' m
= DN(a, z)"M”\ ( L) (
kZ:() adt) erM 2Rp

DN (a, 1y M i ( i (1 A
e (T'. - o ——— 1ot e Iy @}
K=o ff’"’”) Jn[Jt 2Ry ) =

=Ry

since a?dF = (o0 =0
This implies that the series

i«

T 5 dew@ ] 0™
j=1

me M keNg J=

~ converges normally on all sets

oG x ixe X| [Ix < rh 0<g<1,r>0.

Hence it defines a function he Hy, (G x X).
To complete the proof we now show that hou =

"
For x = ¥, &eje E and each ze G we have with & = 0 for j > n because
=1 .
of 4=vou and (Axly) = 4,5,

hz, u(x) =Y X tml2) [] (o )|y,
j=1

meM keNg
= TN (AT
meM keNg

Because of (3) and the fact that every ye H (G x C") can be represented by the

mixed polynomial-monomial Taylor series, this shows hol(idg xu)=f on a
dense subset of G x £ and consequently on G x E.

We shall also need the following variant of Lemma 3.1

3.2, Limma. Let E and F be Hilbert spaces and X o Banach space.
Assume that the following hypotheses are satisfied:

(a) AeL(E, F) is injective; A =vou, where ue L(E, X) and ve L(X, F).

. (b) There exists d >0 such that A is of type 1)(2+2d) and such that for
some Cy >0 and all yeF’
[0 % 4 < Coll A VITE NI

(¢) For feH(E) there exist a zero neighbourhood W in F and ge H ©(W)

with flA"'(W)=go0A.
Then there exists he Hy(X) with hou = [.
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Proof. This foliows from the proof of Lemma 3.1 by the remark that
hypothesis (b) of 3.1 was used only in (5) to get 676” > o. If we omit G, then
these terms do not appear and then the present hypothesis (b) is sufficient,
since the estimate corresponding to (5) can be done with the following
choices: n:=1/1+4d), y:=v:=n/2, f:=1—y

From Proposition 2.6 and Lemma 3.1 we obtain the following
holomorphic characterization of the nuclear Fréchet spaces with property
(@.

33. TueoreM. Let E be a nuclear Fréchet space. The following are
equivalent:

(1) E has ().

(2) There exists an absolutely convex compact subset B in E for which Ey
is dense in E having the following property: For every NeN and every
bounded absolutely convex open subset G of C" and every fe H(G x Eg) which

has a holomorphic extension to some zero neighbourhood in C¥ x E there exists

he Hy, (G x E) with hlG xEg = f.

(3) For every NeN and every bounded absolutely convex open subset
G# @ in CN every holomorphic function on G x E is of uniformly bounded
type.

(4) There exist Ne N and a bounded absolutely convex open subset G # @
in CN such that every holomorphic function on G xE is of uniformly bounded
type.

Proof. (1)=(2). Since E is nuclear, we may choose a semi-norm system -

(I llmen generating the topology of E in such a way that the corresponding
canonical spaces are Hilbert spaces. Moreover, since E has () it follows
from Vogt [25], 44, that there exists a compact absolutely convex subset B

of E such that the canonical space Ep is a Hilbert space and such that the

following holds:

(¥)  For every peN there exists ge N such that for each d > O there exists
C>0 with || IF**<CH |11 113

We remark that (+) implies that E; is dense in E.

Now let N, G and f be as in (2). Then there exist peN and an open
polydisk D, in C" such that f has a holomorphic extension f' to D,xU,
which is even bounded there. By a standard argument this implies the
existence of ge H*(D, x Ul,) satisfying f|D, x(Eg nU,) = go(id, xm,). We
remark that Ey nkerz, is a closed linear subspace of the Hilbert space Ey.
Hence there exists an orthogonal projection n on Ej; with range E, and
kern = Ey nkerm,. Since f is bounded on D, x(Eg nU)) it follows from
Liouville’s theorem and analytic continuation that f = f o(idg xn). In order
to apply Lemma 3.1 we choose for pe N a natural number q according to (»).
Then we put A:=n,|E, and remark that 4 is injective and of type s, since E

icm
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is nuclear. Furthermore we put X = E,, u:=m,E, and v:=m,,. Then 3.1(a)
holds and 3,1(b) follows from (#) since (E,), is isometric isomorphic to (E’)Uz,
By the hypotheses in (2) and the preceding considerations also 3.1(c) is
satisfied for f|G x Eo. Hence we get from 3.1 the existence of he Hy, (G x E;)
satisfying Ro(idg xu) = f|Ey. Then h:= holidg xm,) is in H,,(G x E). From
the definition of f according to 3.1 we get for all (z, x)eG x Ep

h(z, x) = h(z, i (x)) = Y. % ak,m(z)jl;ll (g ()| ys)™

keNg meM

=3 X ak,m(z)lﬂl(ﬂp(X)lyJ)"" = h(z, n(x)),

ke N meM

since 7,(x) = 7, (n(x)). Because of [ = fo(idg x7) this implies h|G x Eg = f.

(2)=(3). Let B be a compact absolutely convex spbget of E having
the properties mentioned in (2). If geH(G ><E) then it is obvious tpat
fi=g|GxEy has all the properties required in (2). Hence ther'e exists
he H,, (G x E) with WG x Ey = [ = g|G x Ep. Since G xEp is dense in Gx E
this implies =g and hence H(G x E) = H,, (G xE).

(3) = (4) bolds trivially. oy

(4) =(1). In the proof of 2.6 we have remarked that H (IGP%: Ay (nt'Y).
Hence we get from Lemma 2.2 L(E, A;(n'/")) = LB(E, 4;(n /™). By Vogt
[25), 4.2, this implies that E has ().

34. COROLLARY. For a nuclear Fréchet space E the Jollowing are
equivalent: ’ ’

(1) H(P) = H,,(P) for every (some nonempty) polycylindrical subset P of E.

(2) E has (£).

Proof. (1)=(2): Proposition 2.6. )

Q=) IfPis a polycylindrical subset of E then.we have seen in the
proof of 2.6 that we may identify E with C“Ix E, in such a way that
P corresponds to the set GxEo, where G is a bounded, open and
absolutely convex subset of C*. Since E has (&), also E, has (). Hence (1)
follows from 3.3.

We have not been able to prove or to disprove the converse of
Proposition 2.3. To give a sufficient condition for a nuclear Fréchet space E
to satisfy H(E) = H,,(E) we recall from Vogt [25], Sect. 5, the definition of
property (). _

3.5, DerinerioN, A Fréchet space E has property (@ if:

For every peN there exist ge N and d > 0 such that for every ke N
there exists C > 0 such that for every yeE’

Iyl 4 < CllyIR A1
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Remark. (a) It is easy to check that (Q) is a linear topological invariant,
ie. that (£) depends only on the linear topology of E and not on the semi-
norm system (|| |f)uen-

{b) By standard arguments it follows that () is inherited by separated
quotient spaces.

" A suitable modification of the. proof of Vogt [24], 1.4 shows

3.6. LemMa. A Frécher-Schwartz space E hus (Q) if and only if there
exists an absolitely convex compact subset B of E such that E has the
following property (€y):

For every pe N there exist gqeN, d >0 and C > O such that jor all ye k'

DI < U IR

3.77. ExampLEs. (a) A Kothe space A*(A), | <5 < x or s = 0, has () iff A
has the following property:

For every peN there exist ge N and d > 0 such that for each keN
there exists C > 0 such that for all je N

d 1+d
ajdy, < Cajg .

This follows in a standard way (see Vogt and Wagner [28], 2.3, resp. Dineen,
Meise and Vogt [8], 4a)). ' :

(b) Using (a) it is easy to see that every power series space Aj(x), but
none of the spaces A% (x), has (f). ‘

(c) As Vogt [25], 5.6 shows, there exist nuclear Fréchet spaces A(B) with
continuous norm which have (€3) but are not quotients of power series spaces
of finite type.

For further examples of nuclear Fréchet spaces with property () we
refer to Section 4 and to Vogt [27], 3.5.

We recall that by Dineen, Meise and Vogt [8], Th. 9 (cf. [9]) a nuclear
Fréchet space E has property (Q) if and only if E contains a bounded subset
which is not uniformly polar in E.

38. ProrosiTioN. Let E be a Fréchet spuce and let B be an absolutely
convex closed bounded set in E for which Eg is dense. If E does not have
property () then the following holds;

(a) There exisits feH,,(Eg) which has a holomorphic extension to some
zero neighbourhood of E but which is not continuous on Ey for the topology 1y,
induced by E. Hence [ cannot be extended holomorphically to E,

(b) If in addition E has the bounded approximation property and if B is
compact, then there exists fe H,,(Eg) which is t; continuous but cannot be
extended holomorphically to E.

Proof. (a) In the proof of Th. 7 of Dineen, Meise and Vogt [8], the
following has been shown: If E does not have ((,). then there exist peN and
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sequences (Pken N Ep, (Xien in Ep and a zero sequence (a)en of positive
real numbers such that

(0 Iyl =1/k yelx) 2 ap and  af > fwllf for all keN,
() wilx)=0 for al j, keN with js# k,

x
{(3) Y, x; is absolutely converging in E.
k=1
From this we obtain the existence of a strictly increasing sequence
{kp;y in N with k; > 1 for which mj:m[wloga,fj] is strictly increasing.
Then we have }
. tl
(4) Jim (af) ™ = 1/e.
oo

From (1) and (4) we gel

1)m
(5) i

jnm (e I135)

By (2) and (5) we have for every r >0 and each xerB

P k2
< lim (a,fj) 1m0,
Jrow

2 |.\’k,(~“)(J’1(x))"'J| <ry ||.\’k,||$("tt|)m'i =C, < %.
P j=
Hence 4 function f: Ey-» C can be defined by
Sxi= T vy (o)
it

and is in H,,(Ep). From (1) it follows that for all 0 <r <1 and all xerU, we
have

g g r
) " < Mg P
jz:‘l l)‘k.)(x) (,"1 (X)) ' = jz:l kj = J;l

This shows that [ has a holomorphic extension to the zero neighbourhood
U, in E. In order to prove that f is not Tp-continuous we put a 1= 2e/y, (x1)
and show that f is unbounded on every t,-neighbourhood of ax;. To see this
let U be an arbitrary zero neighbourhood of E. From (3) we get the existence
of ge N such that
n
ERTI x,eUnE, for all n>q.
Jmgtd
Hence we get for &, 1= ax,+2z, n> 4, because of (2) and (1),

n "

fE= T »En (é,>)"'j==j Y iy i) (ays Cen))™

J=gtl LR

> Y a,?j (2e)™.

J=qHl


GUEST


160 R. Meise and D. Vogt

Because of (4) this shows that (f(£,),», is unbounded and hence f is
not tz-continuous. ’

(b) By Dineen, Meise and Vogt {8], Th. 7, Ez is a polar subset of E.
Then it follows from Noverraz [18], Prop. 2, that there exists a
pseudoconvex open set U in E with Eg = U & E. By Schottenloher [22],
Cor. 34, U is a domain of existence for some ge H(U). If we put f = g|Ey
then feH,, (Ey) because of the compactness of B. Clearly f has all the
desired properties.

3.9. THEOREM. For a nuclear Fréchet space E the following assertions are
equivalent:

(i) E has (Q).

(ii) There exists an absolutely convex compact subset B of E for which Ey
is dense in E such that for every fe H(Eg) which has a holomorphic extension
to some zero neighbourhood in E there exists ge H,,(E) with g|lE; = f.

(it} There exists an absolutely convex compact subset B of E for which Eg
is dense in E such that for every fe H(Eg) which has a holomorphic extension
to some zero neighbourhood in E there exists ge H(E) with g|Eg = f.

(iv) There exists an absolutely convex compact subset B of E for which Eg
is dense in E such that

H(Eg, t5) = {feH(Ey) f has a holomorphic extension to some
zero neighbourhood in E).

If in addition E has the bounded approximation property, then (i) {iv) are
also equivalent to

(v) There exists an absolutely convex compact subset B of E for which
Ep is dense in E such that for every fe H(Eg, 1y) there exists ge H(E) with
glEp = f.

Proof. (i) = (ii). Using Lemma 3.6 and Lemma 3.2 this is shown in the
same way as (1)=-(2) in the proof of Theorem 3.3.

(i) = (iii) and (iii) = (iv) hold trivially.

(iv)=(i). This follows by 3.6 from 3.8 (a).

(iti) = (v). If '€ H (Ep, tg) then clearly fe H(Ey). Since f is bounded on a
zero neighbourhood of (Eg, 75), the Cauchy inequalities show by a standard
argument that f has a holomorphic extension to some zero neighbourhood
in E. Hence f satisfies the hypotheses of (iii) and consequently there exists
ge H(E) with g|Ey = f.

(v)=>(i). Since E has the bounded approximation property, the
implication follows by 3.6 from 3.8 (b).

Remark. The implication (i) = (ii) of Theorem 3.9 has already been
used in the proof of Th. 10 of Dineen, Meise and Vogt [8].

. From 3.9 (i) one gets immediately the following corollary:

3.10. CoroLLARY. If a nuclear Fréchet space E has property ({J) then
H(E) = H,, (E).
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3.11. Remark. To abbreviate let us say that a Fréchet space F has
property (M) il H(F)== H,(F). 1t is easy to see that (H,,) is a linear
topological invariant which is inherited by quotient spaces (see Meise and
Vogt [14], 4.b)). By Proposition 2.3 and Corollary 3.13 we have the following
implications:

(@) = (I,) = (LB%).

By Vogt [25], 5.5, the class (LB*) is strictly larger than the class (3).
However, we do not know whether one of the implications above can be
reversed or whether (H,) is actually a new invariant for nuclear Fréchet
spaces, ,

4. Applications and examples. In this section we give some applications
of the results of the previous section and examples of nuclear Fréchet spaces
of holomorphic functions in infinitely many variables which have property
(f) but are not quotients of power series spaces of finite type.

4.1. ProrosimioN. Let E be a Fréchet space with (H,). Then (H(E), Tokors
the bornological space associated to (H(E), to), is a regular (LF)-space.

Proof. Let (U, be a decreasing neighbourhood basis of zero in E
consisting of absolutely convex sets U, and put

H,:={feH(E) fis bounded on kU, for all ke N}.
H, endowed with the semi-norms ,,: fi— sup |f(x) (ke N) becomes a
xekU,

Fréchet space. Since E has (H,,), we have H(E)= J H,. Obviously the
neN
identity map I ind H,- (H(E), v,) is continuous. Since indH, is
ner

-
bornological, I is even continuous in (H(E), tohy. Since (H(E), 7o) is
complete (H (E), 7o), is ultrabornological. Hence the open mapping theorem
shows that I is an isomorphism, ie. (H(E), to). is an (LF)-space. The
regularity of ind H, follows from this and the fact that the Banach disks are

nes
confinal in the bounded sets of (H (E), 1o).

Remark. By Dineen [6], Ex. 21, (H(A; (@), 7o) is not bornological for
any nuclear space A, (&),

We recall that Ae L((H(E), t)) is called a convolution operator if A
commutes with translations, ie. A(f (- ~x)[z] = A(f)[z—x] for all z and
all x in E and all fe H(E).

4.2, ProvosriioN, Let E be a nuclear Fréchet space with (H,,). Then every
nonzero convolution operator on (H(E), Tok, and on (H(E), to) is surjective.

Proofl. For (H(E), tohe this follows from Colombeau and Matos [3],
49, since the proof of 4.1 shows that (H(E), Tk, coincides with their Lc.
space H,, (E). If 4 # 0 is a convolution operator on (H (E), 7o), then A is also
continuous for the topology of (H(E), tohe. Hence A is a convolution
operator on (H(E), to),, and consequently is surjective.

§ ~ Sindin Muthomatics LXXXIFL2
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4.3. COROLLARY. If a nuclear Fréchet space E has (Q) then every nonzero
convolution operator on (H(E), t,) is surjective.

44. ProposITION. Let G be a locally convex space and let E be a
topological linear subspace of G which is a nuclear Fréchet space with property
(D). Then the restriction map g6 g: H(G)— H(E), 06,e(f):=[|E, is surjective.

Proof. Because of Corollary 3.10 we have H(E) = H,,(E). Hence
the result follows from Hollstein [10], Th. 1, since every nuclear space is
an e-space.

45. Remark. In [12] we have shown that every infinite-dimensional
nuclear Fréchet space F which is not isomorphic to C¥ contains a closed
linear subspace E for which the restriction map gp,z: H(F)~ H(E) is not
surjective. This effect does not rely only on the fact that E is not a
complemented subspace of F. To see this let 4, («) be stable and nuclear. By
Vogt and Wagner [29], 2.4, there exists an exact sequence

0 Ay (@) 2 Ay (@) » Ay @)Y - 0.

Since A, (®)¥ does not have a continuous norm, E:=j(A,(a)) is not a
complemented subspace of F:=A,(x). However, gry is surjective. This
follows from 4.4 or from [14], Th. 6 and Corollary 3.10.

In order to give examples of nuclear Fréchet spaces of holomorphic
functions which have property () and which are not quotient spaces of
power series spaces of finite type we recall the following notation. If A(P) is a
nuclear. Fréchet space, then for ae A(P), a = 0, the set

= {xeA(P)| sup|xja; <1}
JeN

is an open subset of A(P);, called an open polydisc.

4.6. ProrostTioN. Let A(P) be a nuclear Fréchet space and let ae A(P),

= 0, be given. The following are equivalent:

(1) (H(D,), 1o) has property ().

(2) a > 0 and for every pe N there exist geN, d > 0 and J,& N such that,
Jor all j=J,, pi,<apitt.

Proof. (1) =(2). First we remark that a; = 0 for some je N implies that
H(C) is a complemented subspace of (H(D,), 7o). Since H (C) does not have
(Q) this implies that (H(D,), 7o) does not have (). Hence (1) implies a; > 0
for all jeN.

From [13] we recall that (H(D,), 7o) is a nuclear Fréchet space which is -

isomorphic to the sequence space A{M, OM), where M =
only for finitely many je N} and where Q" =

of g = (g11)jen 18
G = {g,‘/a,- for 1<j<m,
T e for m <,

{meNB| m;#0
{(@meml ke N}. The definition
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where (myen and (oien are defined as in [13], 2.4. (Obviously we can
assume that the K&the matrix P satisfies the conditions in 1.2 as well as the -
following: For each ke N there exists 1ec, such that p, < Ap,..) Because of
the characterization of ()} given in 3.7 (a) we get from (1):

(¥) For every pe N there exist ge N and d > 0 such that for each ke N
there exists C > O such that for all me M

qzaq? < Cq;n(d’f- n
Choosing m = 88 en> SEN, gives

o din < Cqi™ Y,
which implies
(+%) D dix

<
Now we put J,,:=n, and fix j > J,. By the definition of the sequences g; We
then get for all k wnth > ‘

qet for all jeN.

& _ 4 a+t +1
P‘J‘.pa; = e Yk S Gg =g

Since lim g, = 1 this implies (2).

ka0
(2)=>(1). In order to show that () holds, it suffices to show (x*) for all
jeN. To do this choose pe N arbitrarily and find ¢, d and J, according to
(2). The proof of [13], 2.4 shows that we can assume without restriction that
n, = J, for all peN. From (2) we get

::H Pk S apy  for all j > J, with p,, > 0.

Since hm a, pix =0 we can assume without restriction that a; p;, <1 for all

j= Jk Hence we have for all j > n > J,

p‘li.ppi. <t
Since we can assure p < g, (%*) is trivially satisfied if k < ¢g. For k > p we
distinguish the following 4 cases:

1. n, <. Then the preceding consideration shows that from j = n, = J,
and the definition of the sequences ¢, we get for all § > d

] — 3 d+ 1 S+ 1
Bip ik = PhoPre S Pig- = djg -

2 n, <j<n,, From (2) we get, for all 6>d and j2n,2n,2J,
Pl,<q p,,,, This implies

2
Botix = Plo, \p?.“ =gt
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3. n, <j <mn, By the choice of (m)e We have supp,,a; < g, If we

n
choose d, such that for all § > d, we have (¢,/0,)° < ¢,, then we get, for all
izn, el <<’ !, This implies
8+1
5 _ & < 2] = it
95,p95% = Pi.p a ( a,) 9ja -
4. j <n,. For all § > d, we have

L] d+1
H =(%) % (% = o1
9jp4ik (a,) a) < (a, G

Hence we have for 6 = max(d, d,)
@it g <q)f'  for all jeN and all keN.

This shows that A(M, QM) and hence (H(D,), 7o) has ().

4.7, COROLLARY. A nuclear Fréchet space A(P) has () if and only if there
exists ae A(P), a >0, such that (H(D,), 7o) has ().

Proof. If A(P) has (§)) then P satisfies the condition mentioned in
3.7 (a). From this we get for each pe N the existence of x?eA(P), xP > 0,
such that there exist ge N and d > 0 satisfying pf, < x{? pi7* for all jeN,
Since A(P) is a nuclear Fréchet space, we can assume for each peN
jli.nl (x{P/x{?* V) = 0. Then there exists ae A(P), a > 0, such that for each pe N

there exists C, > 0 such that sup(x{”/a;)) < C,. This implies
JeN

(p)
x;") = X X+
x;;ﬂ- n

xp
sxyj*l)C'““f for all jeN.
Hence there exists J, such that for all j > J, we have x{" < a; and hence
Pip <a;pit*. Because of 4.6 (2) this shows that (H(D,), 7o) has ({J).

If for some open subset U of A(P), the space (H(U), 7o) has () then
A(P) has (€3), since A(P) is a complemented subspace of (H(U), 7o)

48. CoroLLARY. Let A(a) be nuclear.

(a) For aeA,(x), a >0, (H(D,), 1o) has () if and only if

lim infa;’" > 0.

j=o

(b) For 0<r <1 put a:=(r");.y. Then (H(D,), 7o) has () but is not a
quotient of a power series space of finite type.

Proof. (a) I (H (D), 7o) has (€) then we deduce from 4.6 that for each
0 <r.<1 there exist r <5 <1, d>0 and J such that for all j>J

da d+1
rig a,s( 2,
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This implies a;"* > r4/s*** > 0 and hence lim inf a;™ > 0. On the other hand

PSRV T N Und
liminf aj’“-' > 0 implies that for some t > 0 and some Je N we have, for all
]

j=J, aj= 7. Now let 0 <r <1 be arbitrary. Choose r <s <1 and find
d >0 such that (r/s) < st. Then we get for all j=J

& d+ 1 d-+
P 1§ )“fsajs( ey,

This shows that a satisfies 4.6 (2) and hence (H(D,), 7o) has ().
(b) By [13], Th. 3.3, (H(D,), 7o) is a quotient of a power series space
of finite type iff lim a,/ J =1, Hence (b) follows from this and part (a).
g .

References

[1] P. 1. Boland and S. Dincen, Holomorphic functions on Jully nuclear spaces, Bull. Soc.
Math, France 106 (1978), 311-336.

[23 J. F. Colombeau, Differential Calculus and Holomorphy, North-Holland Math. Stud. 64,
1982,

[3]J. F. Colombeau and M. C. Matos, Convolution equations in spaces of infinite
dimensional entire functions, Indag. Math, 42 (1980), 375-389.

[4] J. F. Colombeau and J. Mujica, Holomorphic and differentiable mappings of uniform
bounded type, in: Functional Analysis, Holomorphy and . Approximation Theory,
J. A. Barroso (ed), North-Holland Math. Stud. 71, 1982, 179-200.

[5] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math, Stud. 57,
1981,

[6] —~. Analytic functionals on fully nuclear spaces, Studia Math. 73 (1982), 11-32,

[7] 8. Dineen, R. Meise and D, Vogt, Caractérisation des espaces de Fréchet nucléaires dans
lesquels tous les bornés sont pluripolaires, C. R, Acad. Sci. Paris 295 (1982), 385-388.

[8] —, -, —, Characterization of the nuclear Fréchet spaces in which every bounded set is
polar, Bull. Soc. Math. France 112 (1984), 41-68.
[91 —, —, —, Polar subsets of locally convex spaces, in: Aspects of Mathematics and its

Applications, J. A. Barroso (ed), North-Holland, Amsterdam, to appear.
[10] R. Hollstein, 4 Hahn-Banach theorem for holomorphic mappings on locally convex spaces,
Math, Z. 188 (1985), 349-357.

‘ [11] H, Jarchow, Locally Convex Spaces, Teubner, 1981.

[12] R. Meise and D. Vogt, Counterexamples in holomorphic functions on. nuclear Fréchet
spaces, Math, Z. 182 (1983), 167-177.

.

[13] ~, —, Structure of spaces of holomorphic fi on infinite dimensional polydiscs, Studia
Math. 75 (1983), 235-252.
[14] —, ~, Extension of entire functions on miclear locally convex spaces, Proc. Amer. Math.

Soc, 92 (1984), 495-500,

[15] M. §. Mityagin and G. M. Henkin, Linear problems of complex analysis, Russian Math.
Surveys 26 (1971), 99~164 (English transl). )

[16] L. Nachbin, Uniformité d'holomorphie et type exponentiel, in; Séminaire Lelong 1969/70,
Lecture Notes in Math. 205, Springer-Verlag, 1971, 216-224.

[17] P. Noverraz, Pseudoconpexité, convexité polynomiale et domains dholomorphie en
dimension infinie, North-Holland Math. Stud. 3, 1973.

[18] —, Pseud x pletions of locally convex topological vector spaces, Math. Ann, 208
(1974), 59-69.



GUEST


166 R. Meise and D. Vogt

[19] H.J. Petzsche, Some results of Mittag-Leffler type for vector valued functions and spaces
of class s, in: Functional Analysis; Surveys and Recent Results I, K.-D. Bierstedt and
B. Fuchssteiner (eds), North-Holland Math. Stud. 38, 1980, 183-204.

[20] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer-Verlag,
1972.

[21] H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, 1971

[22] M. Schottenloher, The Levi problem for domains spread over locally convex spaces with
a finite dimensional Schauder decomposition, Ann. Inst. Fourier 26 (4) (1976), 207-237.

[23]1 D. Vogt, Charakterisierung der Unterriume eines nuklearen stabilen Potenzreihenraumes
von endlichem Typ, Studia Math. 71 (1982), 251-270,

[24] —, Eine Charakterisierung der Potenzreihenréiume von endlichem Typ und ihre Folgerungen,
Manuscripta Math. 37 (1982), 269-301.

[25] —, Fréchetriume, zwischen denen jede stetige lineare Abbildung beschriinkt ist, J. Reine
Angew. Math, 345 (1983), 182-200. '

[26] —, On the functors Ext*(E, F) for Fréchet spaces, preprint.

[27] —, On the solvability of P(D)f =g for vector valued functions, RIMS, Kokyorokn 508
(1983), 168-182.

[28] D. Vogt und M. J. Wagner, Charakterisierung der Quotientenrdume von s und eine
Vermutung von Martineau, Studia Math. 67 (1980), 225-240.

[29] —, —, Charakterisierung der Unterrtume und Quotientenrdéiume der nuklearen stabilen
Potenzreihenrdume von unendlichem Typ, ibid. 70 (1981), 63-80.

UNIVERSITAT DUSSELDORF

MATHEMATISCHES INSTITUT

Universi 1, 4000 D dorf 1, West Germany

and ‘

BERGISCHE UNIVERSITAT, GESAMTHOCHSCHULE WUPPERTAL
FACHBEREICH 7 MATHEMATIK

Gaussstr. 20, Postfach 100127, 5600 Wupperta! 1, West Germany

Received November 16, 1984 (2013)

icm

STUDIA MATHEMATICA, T. LXXXHL (1986)

Fredholm spectrum and Grunsky inequalities
in general domains

by
JACOB BURBEA (Pittsburgh, Penn, and Yorktown Heights, N.Y.)

Abstract. We discuss the Fredholm spectrum for general domains and stu;iy its
applications to conformal and quasi-conformal mappings. In particular, we bestabhsh an
improvement of the Grunsky inequalities which is valid for general domains. This improvement
constitutes an extension of a recent result of Schiffer concerning the sharpening of Grunsky
inequalities for the unit disk by a factor smaller than 1, and which is the reciprocal of the least
Fredholm eigenvalue of the smooth simply connected image domain.

§ 1. Introduction, Let ¢ be a univalent holomorphic function of the unit
disk A onto a simply connected domain Q* = ¢(4) whose boundary 0Q* is
of class C** (0 <& < 1) and consider the Grunsky coefficients (¢ Of @,
defined by

log2—(5‘3j_ﬂ—«-Z—{—(—Q = miocmnz’"C", z,{ed.

In a recent paper [13], Schiffer has established the following improved
Grunsky inequality:

(1) |5 it <7 T I

myp=1

_where AY = 4,(Q*) is the least Fredholm eigenvalue of Q* and {a,} is an

arbitrary sequence of complex numbers, The customary Grunsky inequality
is inequality (1.1) with (A1)~! replaced by 1, and as AF>1 becaus_e of the
smoothness assumptions on 2%, the present inequality (1.1) constitutes an
improvement on it. ‘

The symmetric matrix (Gmy) With guma = «/ M1 Con is known as the Grunsky
operator 9,. Its domain of definition is I;, the space of complex sequences «
= (0ty, %y, ...} With the norm

. ,
flodlz = {Z l“n|2}1/2 < co.
n=1
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