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Fredholm spectrum and Grunsky inequalities
in general domains

by
JACOB BURBEA (Pittsburgh, Penn, and Yorktown Heights, N.Y.)

Abstract. We discuss the Fredholm spectrum for general domains and stu;iy its
applications to conformal and quasi-conformal mappings. In particular, we bestabhsh an
improvement of the Grunsky inequalities which is valid for general domains. This improvement
constitutes an extension of a recent result of Schiffer concerning the sharpening of Grunsky
inequalities for the unit disk by a factor smaller than 1, and which is the reciprocal of the least
Fredholm eigenvalue of the smooth simply connected image domain.

§ 1. Introduction, Let ¢ be a univalent holomorphic function of the unit
disk A onto a simply connected domain Q* = ¢(4) whose boundary 0Q* is
of class C** (0 <& < 1) and consider the Grunsky coefficients (¢ Of @,
defined by

log2—(5‘3j_ﬂ—«-Z—{—(—Q = miocmnz’"C", z,{ed.

In a recent paper [13], Schiffer has established the following improved
Grunsky inequality:

(1) |5 it <7 T I

myp=1

_where AY = 4,(Q*) is the least Fredholm eigenvalue of Q* and {a,} is an

arbitrary sequence of complex numbers, The customary Grunsky inequality
is inequality (1.1) with (A1)~! replaced by 1, and as AF>1 becaus_e of the
smoothness assumptions on 2%, the present inequality (1.1) constitutes an
improvement on it. ‘

The symmetric matrix (Gmy) With guma = «/ M1 Con is known as the Grunsky
operator 9,. Its domain of definition is I;, the space of complex sequences «
= (0ty, %y, ...} With the norm

. ,
flodlz = {Z l“n|2}1/2 < co.
n=1
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In this way, inequality (1.1) may be formulated as

(1.2) (Hpo, @l SAH M, aels.
As is well known such an inequality is equivalent to
(1.3) 19,0l <N llodlz,  xel,

which means that fﬁq,‘is a strict contraction operator on [, with norm
190l < ()" <1.

Schiffer’s result is based on an elegant theory due to Bergman and
Schiffer [2] which relates the Bergman kernel function of a regular domain
with the Hilbert transform, and hence with the classical Fredholm
eigenvalues of the regular domain, An extension of the Bergman-Schiffer
theory to general domains can be found in Ozawa [8], Suita [16], Sakai
[10] and Burbea [4]. In this paper we give an operator-theoretic extension
of this theory which is different than that found in [2, 8, 10, 12, 16] and in so
doing we shall also extend inequalities (1.2) and (1.3) to general domains. In
some sense this paper may be viewed as exhibiting a unified approach to the
subject matter with the emphasis on the general validity of the results.
However, because of the unified nature of this paper, some overlap with
previously established results seems to be unavoidable. On the other hand,
the approach taken here has apparently the advantage of rendering this
paper as virtually self-contained.

§ 2. The Hilbert transform and the Bergman projector. In this section we
give a brief description of the theory of the Hilbert transform and the
Bergman projector in general domains.

We consider the Hilbert space L,(C) with the induced norm
oA = {TH I @1 dm(2)}2,
(4

where dm is the area Lebesgue measure. The subspace of C*-functions with
compact supports is denoted by C§(C). We also consider the Sobolev space
W} (C), the space of all L,(C) functions f whose first partial derivatives 8 f

- and Of (taken in the distributional sense) also belong to L, (C). It is a Hilbert
space under the norm

11 = QAR+ NOf 1P +12f 112,

The closure of C§ (C) in W3 (C) is denoted by W3 (C). On L,(C) we consider
the identity operator I, the conjugation operator J (ie. Jf =) and certain
transforms (integral operators). For a kernel k(- *) on € xC, we define

HYO = (1, h(, 0)

and its (formal) adjoint

YO = (£ T, ) = (/, k()
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where (-, -) is the induced inner product of L, (C). When the kernel A(:, -) is
singular, the integrals shall always be taken in the principal value sense. The
(formal) transpose of H is defined by H' =JH*J.

Given any open subset Q of C, we view L, () as naturally embedded in
L,(C) by regarding any fe L,(f) as zero outside Q and by setting I, =1y,
as the identity operator of L, (), where y, is the characteristic function of Q.
This induces the spaces C (), Wi (), and W3 (), and we use the natural
notation of (v, ‘) and ||*|lp and |||l;,o to denote the restricted inner product
and norm of L,(€2), and norm of W3 (Q), respectively. In particular, we use
the convention of J, = J -y, and H, = H 'y, and, hence, H§ = H* -y, and

(4 — H‘ . X . .
! The kgrnels (z—0)"! and (z—{)~?* give rise to the familiar transforms:
the Cauchy transform

(5710 = 1 [ @
[+

and the Hilbert transform

(110 =% [ s @it
Thus §'= —S, T =T and ¢ ’
(2.1) S=-I, 8B=T
Moreover, for any feWi(C), S(&f)= —S*(§) = —f and, hence, &f =
—T*(3f) and 3f = — T(df). In particular,
22 f=-T2F), &=-To@) (feW @)
The most important property, however, is the fact that T is a unitary
operator on L,(C), namely T*T= TT* = I. In particular,

T*T, =TT = I, »

and thus T, is a contraction operator. In fact, for any feL,(Q),

ITaflla S T/l =1 Taf 1l = lixa 1l = /lla-
It therefore follows that T3 T, and
23) Ag=1o-THT,

are both positive and contractive operators on L, (£2). The related operator
T,T% will not be considered here because its properties can be completely
read off through the relationship T, T3 = (T3 Tp)'.

In order to have a clear understanding of the significance of the
operator A, we shall assume here and throughout the remaining parts of the
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paper that @ is a domain in C. Let H,(Q) be the subspace of L,(f)
consisting of functions in L, () which are also holomorphic in £. The
domain € is said to belong to 0 if H,(Q) = {0}. We decompose L,(£2) as
the direct sum

L,(Q) = H(Q)@H,(@)".

In view of Weyl’s lemma (see, for example, [4]), the annihilator H, (Q)* may
be identified as

Hy(Q)* = {0he L, (Q): he Wi ().

On the other hand, in view of (2.2), T3 T,(dh) = dh for any he W3 (), and
hence T3T, and A, reduce to the identity and the zero operators,
respectively, on H,(©)'. Moreover, since also A, maps H,(Q) into itself, A,
may serve as a “quasi-projection” of L, () into H,(£2). The true orthogonal
projection Py, of L,(R) onto H,(2) is known as the Bergman projector and
the deviation

(24) By=P,y—

will be called the Fredholm transform. Clearly, By, is a self-adjoint operator of
L,(Q) into H,(2) which, in view of (2.3), admits the alternative expression

By =T Ty—(Ig—Pg)

and hence B,f = T3 T,f for all feH,(Q). It follows that B, is also a
positive and contractive operator on L, (%), ie. 0 < B, < I,

We now consider the spectrum o (By: L, (€2)) of the Fredholm operator
By,. However, since By, is trivial on H,(Q)* we may restrict our attention to
only (@) =0(By:H;(Q); thus o(By:L,(Q))=0a(R)u{0}. The spectrum
6(£2) is then the set of all numbers u such that B,—ul, has no bounded
inverse in H, (). Since By, is positive and contractive, () is a closed subset
of [0, 1]. In accordance with the spectral theory of self-adjoint operators we
have a unique spectral decomposition

By= | wdE()
a()

where E is the (unique) resolution of identity corresponding to By, It also
follows that for any feH,(Q), and hence for any fe L, (f),

1Baf113 = J i dEWS, o< .
Moreover, for
a=a(Q) =Inf{(Bof, N fe Hy (@), I fllg=1},
b=b(@) = Sup{(Bof, Ne: £ Hy(@), I fllg = 1},

icm

Fredholm spectrum and Grunsky inequalities 171

we have o(Q) =[a, b] =[0, 1] and

(29 b =|IB{*|* = || Bl

where BY? is the square root of By, and ||By| is the operator norm of By,
on H,(f). Evidently, ||Bg| coincides with the full operator norm of B, on
L,().

The spectrum o(2) is divided into two disjoint parts o(Q)
= 0,(2) U0, (Q); the point spectrum o,(Q) consisting of all g such that
B,— /41,, is not injective on H,(€2) and the continuous spectrum ¢.(2) con-
sisting of all u such that B,—ul, is an injective mapping of H,(Q2) onto
a dense proper subspace of H,(£2). The point spectrum consists of eigenvalues
of B, thus for R¢0s, peo,(£2) implies the existence of an eigenfunction
feH,(2)\ {0} such that B,f = yf. To conform with classical tradition [2,
12, 13, 15] we shall also use the numbers A = p~'/?; they are called the
Fredholm eigenvalues. In this paper, however, we refer to the spectrum
{c(@)}'* of BY* as the Fredholm spectrum and to {o,(Q}"?

= {u*’?: pea, (Q)} as the Fredholm point spectrum. More about the
justification for this termmology will be given later (see § 3). At any rate the
lack of consistency in the symbols of A and p will not cause a serious
confusion. When there are only point spectra, namely when o (Q) = ¢,(R2), we
have an orthonormal basis {y,} of eigenfunctions in H,(2) of B, and
corresponding eigenvalues {u,} = {7} with

12b= 22 2 S ht12.. 2 =020
or
1€b™P =0, <A <. €A Sy ... Sl =a" < 0.

§3. Operators and kernels in L, (Q). The operator Ag in (2.3) admits the
alternative representation

(&R {Aa}O =(f, Tal, D)o
where I'p(, ) is the hermitian kernel

1 dm(t)
62 Talz 0) = ==

This kernel is posntwe—deﬁmte and sesqui-holomorphic on Q xQ. We also
note that for h(z, ) =(z—{)*> we have

Folz, §) = {T&a[h(, 01} (@)
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and hence for a fixed {eQ,
ICo (. QIR < 1T (, OIFF = | T [R(, £
=IT* Ltk s O = llxerah (s OI?

1 1
= — —-—-——-d =
- f g dm® = a0,
a9
which shows that

IFaCs Olla < ITa(, Ol = VTl D), Le.
In a similar manner, the Bergman projector P, is given by

(3.3) {Pof 1O =(f, Ka(, D)a

where K,(+, ) is the standard Bergman kernel of Q. Let G,(-, ) be the
customary Green function of Q. Thus :

Golz, ) = Ry(z, {)—loglz—{]
where Ry(:, -) is symmetric and harmonic on Q x€. As is well known,
Koz, 0) = —26,5¢Gn(z, 4]

am.i .hence Kq(z,0) = —28,8Rg(z, {). This suggests the introduction of the
adjoint kernel [2]:

. La(z, ) = -—26,5;(?9(2, 0
and thus

(34) Lo(z, ) =(z=0)72~ 15z, {)

where
la(z, {) = 20, O;Rq(2, )

is symmetric and holomorphic on 2 x Q2. These two symmetric kernels induce
the Bergman-Schiffer transforms [4]:

{an}(C) = (fs Ln(': C))n,

(-5 {4af} O = (£, laC, O)a.
. It follows that
(3.6 Ta=Qq+4,

on L,(Q) and, of course, T} = T,,, 0%, = Q h= i

, of e s @ Qn = Qpand AL, = A, Now, as P, is the
orthogonal projection ot_‘ L;(2) onto H,(Q), we clearlynhave P = F’n, "On
the other hand, by a judicious use of Greens formula one shows that
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QoPn=0 on L,(£2) which means, in accordance with (3.6), that T, = A,
on H, (). In particular, for z, (e,

1
(la(s 2), la( D)= - j___l_ lo(t, 2)dm().
2

=02
Another use of Green’s formula shows that the value of the last singular
integral is precisely Kg(z, {)—Iqg(z, {) and thus [2]:
(3.7) (ln(" 2), ln('a C))n = Kn(Z, C)"Fn(z, 0.

In other words, A%Ag = Po—Ag or, by (24), By = A%A, on L, (£).
For convenience we record the above and.other relations amongst the

" operators as a proposition (see also [4]):

ProposITION 1. On L, (Q) we have
() Ag=AgPg=1I— T Ty,
(i) Bo=A3Aq = Py—A4p,
(iii) Ag = Ty—Qp = TpPqa = AgPy,
(iv) Ig—=Pq= 0800 = T§ Qo
(V) QaPo=A%0,=0, Ph=P,
Item (ifi) of this proposition shows that Ag is trivial on H, (2)* while
item (i) shows that the operator norm of 4, on H, (&) satisfies

(3.8) ll4qll* = lIBgll-

Again, ||Agll coincides with the full operator norm of A, on L,(9).
Moreover, from item (i) we also obtain the (unique) polar decomposition

(39) Ag=UgyBif?

where Uy is a partial isometry relative to the range A(BY?) of By?. This
means that Uy, is a linear isometry of the closure of #(BY?) onto the closure
of #(Ap) and Uy, is zero on # (B{{*)*. Now, the conjugate-linear operator JAg,
has its range inside H (), is trivial on H, (2)* and on H,(£2) is equal to JTj,.
Its spectrum on L, (), in view of (3.9), is € {o(@}*u {0}, 0<0 < 2m.
It follows that the spectrum of JT, = JA, on H,(R) is ¢” {o(2)}"2, which
is essentially the Fredholm spectrum. In particular, when ¢(£) = 6,(2), the
orthonormal basis {y,} in H,(Q) of eigenfunctions of By, with corresponding
eigenvalues o, (Q = {As %}, can also be assumed (by multiplying each ¥, by a
suitable factor e ¥, 0 < 8, <2n) to satisfy

MdAq Y = /‘LkJTnl//k = AnJUnB}lz Y =Y.
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It follows that [2]
(.10 LD = 3 hORO,
k=1"%

Ka(z, )~Talz, ) = ifk—w %,

and since Ko(z, ) = 3, Yi(2) ¥ (), also
k=1
e( 1 Y
Iaz, )= % (1—13)%(2)'//:‘(0-
k=1 k
In the particular case that the boundary 02 of Q is of class

C?** (0 < & < 1) the operators under consideration are compact. Moreover, if
also Q is of connectivity p (1 < p < o) then the eigenvalue A, =1 is of

degeneracy p—2. In fact, let C; (1 <k < p) be the boundary components of -

02 and let w, be the (real) harmonic measure with respect to Cy. Then idw,
belongs to H,(R2) and JT,(idw,) = idw,, and hence, T Ty (idw,) = idw,. In
particular, let HY (Q) be the subspace of H,(€) consisting of all functions in
H,(£2) with single-valued integrals. Then the linear span of the p—1 linearly
independent functions idw,, ..., ibw,—; is precisely N3 (Q) = H, () HE(Q).
It follows that 4; =...=4,; =1 and their corresponding eigenfunctions
are Y, =ibw,, k=1, ..., p—1, which belong to N%(Q). Moreover, 4, > 1
for every k= p and the corresponding eigenfunctions v, k = p, belong to
HY(Q) (see also [2, 12, 13, 15]). The eigenvalues 1, occurred early in
potential theory as the Poincaré~Fredholm -eigenvalues associated with
double-layer potentials in the plane [2, 12, 13, 15]. This connection may be
seen at once from the following considerations: Let ze dQ2 and consider the
kernel
ka(z, §) = 4, log|z—{]

where n, is the outward normal to 02 at z. For any continuous function f on
a0, the double-layer potential

{Daf}@)=n"1 aL.f(Z) kal(z, {) ldz|

represents a harmonic function in 2 and C\2 with a boundary jump,
expressed as

(3.11) {DRSHO = Daf}O-F ), Led.

F_Ising Green’s formula we have the identity Dy = 2I,+ 85,8543, where §,
is ‘Fhe previously mentioned restricted Cauchy transform. This identity is
valid on C*(£). Therefore, in view of (2.1),

(.12 D, = T3 3+0.
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Now, the Poincaré-Fredholm eigenvalue problem is given by
(3.13) LD8h =h, k=01,2,..

where the ecigenfunctions {h,} are (real) harmonic in Q as well as in C\Q.
Tt could be shown that 1= —1 is not an eigenvalue 1, of (3.13), that
|44 > 1 and that X, =1 if and only if i, = const. We may therefore assume
that 1o =1 and hy =1, and- J, > 1 for k> 1. From (3.11) and (3.13) we
conclude that
A

= Dah, = hy,

14+, 4 .
and hence, by (3.12), LJT,0h, = oh,. This shows that A, ,—, =4, and
Wit p-1 = Oy for k=1,2, ..., which is the desired connection.

§ 4. Extreme spectra. The spectrum ¢(Q) can reach two extreme cases
namely, ¢(Q) = {0} or o(Q)={1}.

TueoreM 1. The following statements are equivalent:

(1) 0(Q) = {0}; (2) By =0 on Hy(Q); (3) Ag = I on H3(); (4) Talz, )
= Kq(z, {) for every z, {eQ; (5) Tolz, {) = Ko(z, {) for every zeQ and some
tef;(6) I'y(l, ) = Kq(¢, £) for some LeQ; (7) either Q€0 or 2 is a disk (in
the extended sense) less (possibly) a closed subset of zero inmer capacity.

Proof. The implications (1) = (2) = (3) = (4) = (5) = (6) and (7) =(1) are
straightforward. As for the implication (6)=(7), we argue as follows: Since
Kqlt, H=Tga(l, 0) = llg(+, Ol = 0 we conclude that Lg(z, {) = (-2 for
some (e and every zeQ. It follows that Lg(:,{) has a single-valued
indefinite integral in Q. This, as is well known (see also [11, p. 104]), means
that for £2¢ 0, there exists a conformal mapping ¢ of 2 onto 4\E, where E
is a closed subset of the unit disk 4 whose inner capacity is zero. The
conformal invariance of the Green function implies that

La(z, §) = Lae(0(@), 0(©) ¢' @ ¢'()

for any z,leQ. But Lyg(®,1)=(@-1)"? for every w,ted\E. In
particular, for the above fixed {eQ we have
=02 =[e@@—e)1 ¢’ ¢' ()

for every ze 2. This means that ¢ is a Mobius transformation and the proof
is complete,

TueoreM 2. The following statements are equivalent: .

(1) o(2) = {1}; (2) By = I on H3(Q); (3) Ag =0 on H,(Q); (4) Talz, §)
=0 for every z,(eQ; (5 Iy(z,{) =0 for every zef and some {eQ; (6)
I'alt, ) =0 for some {eQ; (T) m(C\Q) =0.

Proof. The implications (1)=(2)=-(3) = (4) = (5) = (6) = (7) = (1) are
straightforward and trivial. .
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Let @: Q—Q* be a univalent holomorphic mapping of Q onto Q*
= @(@). Such a mapping is also called biholomorphic. Then the
transformation T, given by

4.1) L,f=(op) ¢
constitutes an isometry of L,(Q*) and H,(Q*) onto L,(Q) and H,(Q),

respectively. In particular, (T)* =T -1, T, T,-1=1I and Ty T, =Ip.

Also, as Gen((2), (D)) = Ga(z, ) for all z, {€Q, we have

La(z, {) = L (0(2), 0(0)9' ()¢’ ()
and clearly,

“2) Koz, 0) = Ker(9(2), (1)) 9' (D) ¢’ (©).

In particular, using (3.4),

(43) In (¢ @), (D) ' (@) ¢' Q) = La(z, ) +5,(z, 0)
where

(44 So(2,0) = 6, logi"—(zz)—:z“—’—@,

and we note that

5 s,69=(5)5(%). o-o0

is the familiar Schwarzian derivative. '
Of particular importance is the condition guaranteeing that Bg,
= T, B T,—, for in that case the spectra ¢ (f2) and o(R2*) coincide.
THEOREM 3. Let @: 2 — Q* be a biholomorphic mapping of Q onto Q*.
Then By = T, BT, -, if and only if
(46) ”Snv(s Z)”?} = —'2Re(lﬂ(" Z), Sw(" z))ﬂ
Jor every zeQ.
Proof. In view of (24), (3.1), (33) and (4.2), B, =T, By T,-1 I8
equivalent to A, =T, A T,y which in turn is equivalent to
Tz, ) =T'a(0(2), 0() ' (2)9' ()
for every z, {eQ. However, this is equivalent to
Ta(z,2) =T (9 (2), 0 ()0’ ()
for every ze . This condition, in view of (4.2), may also be written as
Kq(z, 2)—Tq(z, 2) = (Kr (¢ (2), @(2))—Te(0(2), 9 (D)} @' @)%,

icm
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for every zeQ, which means, in view of (3.7) and (4.3), that
el z)”% = llg(, Z)+Slp(‘7 Z)Hf)
for every ze$. The theorem follows now at once.

CoroLLARY 1. Let @: Q - Q* be a Mébius transformation of Q onto Q*.
Then () = o (£2*).

Proof. In this case S,(+, 2) = 0 for any ze Q and thus condition (4.6) is
satisfied trivially.

The converse of this corollary does not hold in general. For example, let
Q= C\[0, 1] and 2* = €\y, where y is a continuum which is not an arc
of a circle or a segment of a straight line, Then there is a Riemann
biholomorphic mapping ¢: £ - Q* of £ onto Q* Any such mapping is, of
course, not a Mbius transformation. On the other hand ¢(Q) = ¢ (Q*) = {1}
by Theorem 2, since m(C\Q) = m(C\Q*) =0,

§ 5. Norm inequalities. The following norm inequalities are crucial;
Tueorem 4. For every feL,(2), we have

(5.1) 40/l < /Bllf o

(52) (A fs el < /BIPLS1IZ
where

53) b= b(2) = |45 = ||Bl.
More generally,

(5.4) (Ao, D < /bIPoSlalPaglla

Jor every f, ge L,y (£2).
Proof. The relation (5.3) follows at once from (2.5) and (3.8). Inequality
(5.1) is easily deduced from Proposition 1 (ii). Indeed,

411 = (Baf, g = IBH*fIIE < 1Bl 11115
We now ‘prove (5.4). According to Proposition 1 (iii),
(A S Do = (AgPof, Do = (Paf, Ak
Therefore, using Proposition 1 (ii),
KAaf, Dal® S 1P SIGIAREIG = |1PaS 340 487, Do

= ||Pof1%(Al Ang: 9o = 1Po f11&(Bag, 9)a

= (| PoSI14IIPgll(Bag. 9)a/IPagllh

< |1Po f1I3lIPagllyb.

6 ~ Studia Mathemation LXXXIIL.2
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The last inequality follows from

Bgg, Boh, h
Sup(ng g3ﬂ= (ﬂhz)‘):b!
gelo IPagllh  nerye  [Hlla

because B, is zero on H,(Q)* This proves (54) and hence (5.2). This
concludes the proof.

Let ¢: Q— Q* be a biholomorphic mapping of £2 onto Q* = @(Q). We
introduce the Grunsky transform
(5.5 G,=T -1 ApT,.

where T;_, is the transpose of the isometry Ty, as given in (4.1), of L,(£)
onto L, (Q") Clearly, G, is a linear operator on L,(Q) into itself, with G,

= G,, and whose L, (Q)-norm is
VIIBell = /b(2%).

Gyl = l|Agell =

Moreover, in view of (3.5 and (4.1)+4.3), G, admits the alternative
expression

5.7

(5.6)

(G 1O = (f: 1o, D+, C, D)

for every fe L, (). Under these circumstances, Theorem 4 has the following
corollaries:

COROLLARY 2. Let ¢: Q- Q* be a biholomorphic mapping of Q onto Q*,
Then, for every f, ge L,(),

58) 1G, flla < /5% 1l
(5.9) (G, f, Dol < /D*IPoSllgliPagllas

where b* = b(Q*) = ||Agll* = IIG,)I* = || Bel.
Moreover, G, = Ag if and only if ¢ is a Mobius transformation.
Proof. By (5.1), (5.5) and (5.6),

{eq,

IGo flla=llAge T s fllge < /BT,y fllr = /B* 11 Sl
and (5.8) follows. Similarly, using (5.4) and (5.5),
NGy fs Dol = (A T,y £ T, 1 g)ev
sﬁ‘npm 1f||m||Pn~= =1 4llor

=/b*IPafllallPadlla

and (5.9) follows. Finally, from (3.5) and (5.7), we deduce that G, = A, if and
only if §,(-, {) = 0 for every { € 2. But this is equlvalent to ¢ bemg a Mdbius
transformatlon, and the proof is complete.
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COROLLARY 3. Let ¢: Q — Q* be a biholomorphic mapping of Q onto Q*.
Then, for every fe L, (%),

(5.10) G, fllo < /B*IIPo flg

an inequality sharper than (5.8).
Proof. This follows from (5.9) by letting ¢ = G, f.
COROLLARY 4. Let ¢: £ — Q* be a biholomorphic mapping of Q onto Q*.

Then for any system of points zy, ..., z,, {1, ..., {n of 2 and any corresponding
scalars oy, ..., &y, By, ... B of C we have

|’Z1 121 o B; o zin $)+ Sz, E)I

<O 3 wEKate 2)( Z B Kol 1)

where b* = b(Q*).
Proof. In (5.9), we set

M x
R

f= 0 Kol(', 2), g= Z BI Ko(, Cj)
. i=1 Jj=1
Then
Gof = 3 aullgla )+ S, (@ )]
and

(€0 D0 =068, o= ¥, 5, talen )45, ).

Since, for example,

(IPg f”n = Z o & Koz, 2),

Lj=1
the corollary follows at once.

The matrix representations of the L, (2)-operators P, and G, translate
the L,(Q2)-norm inequalities (5.9) and (5.10) into l,-norm inequalities of the
type (1.2) and (1.3), mentioned in the introduction. Specifically, let @: Q — Q*
be a biholomorphic mapping as before. Fix a point z, in Q and define

r=r(zos ) = dist(zo, 6Q).
Then the disk 4, = 4,(z) = {ze C: |z—zo| <r} is contained in Q and the

function log([<p(z)v<p(5)]/(z~—£)) is holomorphic on 4,x4,. We assume,
without any loss of generality, that z, = 0e Q, and hence we may have the
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power series development

(P(Z)"w(C): i __‘_"_'E{I__Zan

Z""é‘ m,n=0rm+"

(5.11) log
on 4, x4,. In particular, by (4.4),

(5.12) S,z 0= 2 mn-gm Lol g, Led,
1

myn= r
Similarly, since I,(-, ) and K (-, ) are holomorphic and sesqui-holomorphic,
respectively, on Q x@Q, we have

v ® I

(5.13) l(z, 0= 3 mnmman 0Lz, Ledy
mn=1
s Kwn 1 7~

(5.19) Koz, )= 3 Jmn;_m—"l-,;z'" 171 gz, led,.
mn=1

Evidently,

cmn = C”m’ lm’l = lnm’ k"‘n = Enm'

The hermitian matrix " = (k,,) is known as the Bergman operator while the

symmetric Matrix G, = (Gpn) With gon = /M1 (ot hin) is called the Grunsky
operator.
We now apply Corollary 2 by choosing fe L, () to be of the form

™

N
f=Iats M@= Zla,,ﬁz"“l

with scalars a, ..., ay. Similarly, we let g =gyx, With gy being as n
with the scalars ay, ..., ay replaced by fy, ..., fx. Then

N N
A=Y lal® gl =% 18>
n=1 n=1
Moreover,

N ' N
(Pnfa g)n = Z kum “mBn and (Ga)fa g){) = Z Gnm amﬂn'

nm=1 nm=1

Since ||P, 1|3 = (Pof, f)a, Corollary 2 gives

| ilmmamﬂnlzsb*( f Ko Ot ) ( }’f Kum B Bn)

nm= nm=1 nm=1

and, of course,

N N
2 knmaman < Z lanlz-
nm=1 n=1 .
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This permits the translation of Corollaries 2 and 3 into the I,-setting.
Accordingly, we consider vectors o = (a;, ay, ...) of I, with the norm

Il = { 3, e}

and we view [, as the domain of definition of both .#" and %,. This leads to
the following theorem, the proof of which is contained already in the
foregoing discussion.
THEOREM 5. The Bergman operator A is a bounded hermitian projection
operator on ly, ie. A = A*= A" and
(K, @), = || o)} < llell3, el

Let @: 2 Q* be a biholomorphic mapping of @ onto Q*. Then the
Grunsky operator %, is a bounded symmetric operator on l, with

(5.15) 1%, all2 < /B* | 0ll, < /b*|lallz,  aels,
where b* = b(Q*). Moreover,

(5.16) (G, a, Byal> < b* (G, @y (HB, B2y o, Bely,
and, in particular, ,

(5.17) Gy, @) < J¥|HE3,  ach. |

When Q is the unit disk 4, we have K 4(z, {) = (1—20)"% and l,(z, {)
=0 for every z, LeA. It follows from (5.12}+(5.13), as r = 1, that ,, =0 and
A =(kn) =1, the identity operator of I,. Let ¢: 4-Q* be a
biholomorphic mapping of 4 onto Q* =@ (4). Then ¥, = (gmn) With G,
=./mnc,, and by the last theorem, [(%,a, @), < \/E; llll3 and
19, adlz < /B* lladl, for all ael,. If, in addition, a2 is of class C** (0 <&
<1) then, as Q* is simply connected, A} = A, (Q*) = 1/\/b—* >1, and we
recover the inequalities (1.1)-(1.3) mentioned in the introduction.

We note that in view of the last theorem, X™* = X, 9% = %,, |4 =1
and ||%,]| < \/I;; < 1, We also note that condition (5.16) is equivalent to

(518) |({¢p oy ﬂ)zlz < b* (ﬁd, “)2 (‘%/‘Bs ﬂ)z; o, ﬁe 12'

This condition is completely equivalent to the statement that the matrix
operator
b*A %
A Gl
by b* A

is a positive operator on I, x I, (of course, & is bounded on I, x1). Indeed,
we write the vectors § of I, xI, in column form with the norm |[/yllz 2
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= \/'y—*§ y = [, BT, o, Bel;. Then
Y aly = Jb* (F, )y +2Re(Gpt, B2 +/b* (KB, s
From (5.18) we deduce that
oy > S (J(Ha, )= JAB, P}
and hence o is positive on I, x I,. Conversely, if </ is positive on I, x I, then
BT, )3+ 2Re (G, Plat /B (A, By >0

for every o, Bel,. Replacing a by xa, where x is an arbitrary real number,
we obtain

B (H, @)y x2+2[Re(@, o, B)y] x+/b* (A B, By > 0

and hence

[Re((g(p o, ﬁ)z]l < b*('}?‘a: “)2(3{[3’ ﬂ)Zv o, ﬂelh

which, evidently, is equivalent to (5.18). Similarly, (5.17) is equivalent to
(5.18). .
The weaker form of inequality (5.17), namely

(519) I(gmau 502| < (jd, a)la ae 12:

is an example of symmetric—hermitian' quadratic inequalities that occur in
the literature (see, for example, [2, 5]) concerned with holomorphic or
biholomorphic continuation. Assume, without loss of generality, that 0eQ
and that ¢ is holomorphic in the neighborhood of 0 with ¢'(0) 52 0. Then
there exists a small disk 4, = {zeC: |z] <r}, contained in £, such that ¢ is
biholomorphic on. 4,. With this disk the developments in (5.11)~5.14) are
still in force, and thus the operators 2 and ¥, are well defined. If, in
addition, (5.19) is satisfied, then in view of [2, p. 240] the function In(:, )+
+8,(', "), and hence also the function S,(-,"), is holomorphic on all of
0 x Q. This shows that ¢ is biholomorphic on all Q.

§ 6. The reduced spectrnm. The spectrum of B, on Ly (), o(Bg: Ly (),
is a closed subset of [0, 1] and it contains 0. It may contain the point 1, too,
By restricting B, on H, (), the spectrum was made “thinner” at 0. Indeed,
0(Bg: Ly (Q) =o(@Qu {0} where o(R)=0(By H,(Q). We now apply
another restriction on B, which at this time will correspond to “thinning”
the spectrum at 1.

Let HY () be the subspace of H,(£2) consisting of all functions in H,(f)
with single-valued indefinite integrals in Q. This gives the direct sum
decomposition L, (Q) = HY (Q)@HY (2)* with H,(Q) = HY(Q) if and only if
either (i) QeO0g or (ii) Q is conformally equivalent to the unit disk less
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(possibly) a closed subset of zero inner capacity. As mentioned before,
when © is a regular domain of connectivity p (1<p <o), NP(Q)
= H,(Q)®HY(Q) is a finite-dimensional Hilbert space of dimension p—1 on
which By, reduces to the identity -operator when p > 1. We shall show, more
generally, that for any domain @, B, reduces to the identity operator on
N%(2), and we may, without any essential loss, restrict By, to HY(Q).

On HY(Q) we have the reduced Bergman kernel K§(-, -) and the reduced
Bergman projector P given by

(PRSI0 = (£, KB(5 Da)-

The theory for the space HY(Q) proceeds along lines similar to those in
H,(£2). There are, however, some significant changes for which we provide a
brief description. '

We say that Qe 0,p if HY(R) = {0}, and a compact set E in C is said to
be of class Ny, if C\E&0,,. The domain R is said to belong to class A7, if
Q is conformally equivalent to 4\ E, where E is a set satisfying EKe Ny
for every compact subset K of the unit disk 4. The subclass N4 of A
consists of those domains @ which are Mobius images of 4\E, with
EnKeN), for every compact subset K of 4. The subset of £ consisting of
all points ze 2 such that K§(z, z) = 0 is denoted by N, Clear‘ly,' No=2if
and only if Qe0,p. If 2¢0,, then N is a closed discrete subset of 2 which
is empty when € is of finite connectivity. For a fixed { e, assumed, without
loss of generality, to be { # oo, we consider the class U (2: {) of all univalent
meromorphic functions f in 2 which are normalized by

(6.1) f@=E=0""+az=0+ ...
about { with
(6.2) a=a;()= 113 {I'@+E-0"7}.

The parallel and vertical slit mappings of £, with respect to {eQ, are the
unique functions pg(:: {) and gg(: {) with the largest and smallest,
respectively, real parts of the coefficient a,({) among all functions f of
U (£2: {). Introduce the functions

(63) D(2) = Bo(z:0) = 4[Pa(z: 0 —qaz: 01,
(64) ¥(2) = Polz:0) = 4 [Pa(z: ) +40(: 0]

As is well known, ¥ is the unique function with the largest outer area
A, (Q:0) among all functions in U (Q:{), that is

4,(Q:0) = m(O\¥ () = max {m(C\f (@)): feU(Q:0)}.

Also, ¥(£2) is a canonical domain for all the domains 2* which are obtaine.d
from 2 by means of biholomorphic functions ¢ with () =¢{, ¢ () =1L It is
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also well known that

(6.5) K§(z, ) = Pylz:{)
and its “adjoint” is given by

(66) Yz, ) = = Walz:0).

It follows that

(6.7) Bz, ) =072~ 0)

where I§(-, ) is symmetric and holomorphic on Qx€. The following
relations are also well known:

1
1950 Ol = KBE, O =~ 4.(2:0),

and &,(-:8)/DH(¢:{) is the unique function with the smallest inner area
" A;(:¢) among all holomorphic functions f on 2¢0,, for which f'({) = 1.
Moreover,

A(R:0A,(Q:0) =n?

(cf. Sario and Oikawa [11, pp. 125-144]).
We may now introduce the reduced Bergman—Schiffer transforms

Q81O =(£ B D)o and  {AGSHO = (£ 15, D)o

When Q is a regular domain, we have

Kz, Odz = — LYz, {)dz, zedQ

. and hence, by Green’s formula,
(6.8) (8¢, 2), 1§, D)o = K§(z, )~ Tp(z, {).
With these relations, Proposition 1 may now be supplemented by the
following

PrOPOSITION 2. On L,(Q) we have

() Ag= Ao P,

(i) 4" A% = PY— A,

(i) A3 = T,~03 = T, P = A} PY,

() To— P = OF 0 = T$ 03,

() QPGS =AT Q8 =0, PY*=Py=P,P.

From this proposition it follows that the reduced Fredholm transform

3“’:1)(3"/19
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has all the previously mentioned properties of the Fredholm transform B,.
In fact

(6.9) B, = B{+(Po—PY)
and the obvious positivity relations

I,>B,>Bg>0
hold, We also deduce, using Propositions 1 and 2, that

Bo(Pa—P) = (Pg—Ag)(Pg—Pi) = Pi— P P — Ag Pyt Ag P
= Po—Pl—Ag+4g,
and hence
Bn(Pn"P(rs:)) =Pn—~P(3

which means that B, reduces to the identity operator on N (Q). We may

therefore restrict B, to HY (), in which case B, reduces to Bf by virtue of
(6.9). In particular, BY) is trivial on HY(Q)* and the spectrum o (B: L,(Q)) is

() {0} with ¢®(Q) = ¢(Bg: HY(Q)). We also note the relation ¢(€)

=a"(Q)u (1} if N§(Q)+#{0}. It is now clear that almost all theorems

established previously for the space H,(f2) are also valid, with minor

modifications involving the insertion of the superscript “s”, for the space-
HY(Q). This includes the reduced spectrum o®(Q) and its extreme points

a®(Q) and b¥(Q). Here

0<a@<a@Q <R <bEO) <L
with
a"(@Q) = ||BY| = |48

where the operator norms are taken over HY (), and, again, they coincide
with the full operator norms over L, (). In particular, when ¥ (Q) reduces
to only point spectrum we have an orthonormal basis {¢,} of eigenfunctions
in H9(Q) of BY and corresponding eigenvalues {4’} ={[A£]?} with

12Q = 2 W= 2 W) 2l > 2 g=d"@)>0.

Moreover, if 8Q is of class C** (0 <g<1) and £ is of connectivity
pl<p<co) then Ay=..=Apy=1 and A,y =4 >1 for k
=1,2,..

Theorems 2, 3, 4, 5 and their corollaries are now also valid, with the
obvious modifications, in our present setting of H$(€). The analogue for
Theorem 1, however, is different and requires the introduction of some other
concepts. The domain € is said to be canonical with respect to {if{ef and
19(z, ) =0 for every zeQ. In view of (6.6) and (6.7), this condition is
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equivalent to — W, (2:0) = Iz, {) = (z—{)~?, and since the function F(z:{)
=z~ ¥y(z:() is holomorphic with F({:{)=1 and F'({:{)=0, the
condition is equivalent to Wy(z:{) = (z—{)~'. The obvious modification of
the relation (4.3) leads to the following proposition:

ProrosiTioN 3. If Q is canonical with respect to { and ¢ is a Mbius
transformation then @(Q) is canonical with respect to @({). Conversely, if
@: Q- Q* is a biholomorphic mapping of Q onto Q* = ¢(£2), and Q and Q*
are canonical with respect to { and ¢ ({), respectively, then ¢ is a Mdbius
transformation. In particular, a domain Q¢ O,y is canonical with respect to any
point {eQ if and only if Q is of class 4.

For a fixed {e@ ({ # o), the function

Volz:) =+

1
— ze)
Ya(z:l)
maps conformally Q onto a domain D = ,(2:() with {eD and yq({:{)
={, ¥({:{) = 1. In particular, the Schwarzian operator, introduced in (4.4),
for the function ¢(z) = Y,(z:{), zeQ, admits the form

Sp(z, ) = ~¥olz: ) —(z—{)"?2
and thus, in view of (6.6}~(6.7),

8,0z, ) = =18z, 0), 26Q.
Moreover, for v = p(z) =y ,(z:{), we have

Po(v:0) = pa(z:0),
and hence, by (6.3)(6.4),

Pp(v:0) = Py(z:0),  Pp:)= Pp(z:0).

In particular, ¥, (v:{) =(—{)"?, veD, which means that D is canonical
with respect to {e D. This, with Proposition 3, gives:

ProposITION 4. Let {&£2 and © be an arbitrary point in the plane. Then
there exists a canonical domain Q* with respect to t which is conformally
equivalent to Q with t1eQ* corresponding to {eQ. Moreover, such a
correspondence g: Q - Q* may be exhibited via g = ho ¢ where h is a M&bius
transformation with h({) =1 and @(z) = Y4(z:{), ze Q.

We now prove:

PROPOSITION 5. Assume that the spectrum o¥(€) of Q2¢0,p, reduces to only
point spectrum {4}, Then Q is canonical with respect to { if and only if all
eigenfunctions , corresponding to positive eigenvalues 1 > 0 vanish at { €.
In that case, if also (e Q\ Ny, then there exists at least one rzero eigenvalue,

e p)=d"(Q)=0. Here {{} is an orthonormal basis of eigenfunctions in
HY(Q) of BY, corresponding to {)}.

dpv:{) = gq(z:0)
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Proof. For a fixed {eQ, we have

K§(z, ) =Ty(z,{) = Z Y (2) ¥ (O
k=1

In view of (6.8), Q is canonical with respect to { if and only if K§(z, {)
=y(z, {) for every zeQ. The latter is equivalent to K§((, {) = I'q({, {)
which means

k)i AW = 0.

This is equivalent to ,({) =0 for all }¥! >0 and the first part of the
proposition follows. For the second part, if also {e®\ N, then K§(¢, {) >0

or Y, [¥ (O)* > 0 which means that there exists at least one eigenfunction ¥,

=1
witlil Wa()# 0 and hence some u¥=0. In particular 4% =d"(Q) =0,
concluding the proof.

The following theorem is the analogue of Theorem 1 in the H%(Q)-
setting. In this theorem, the implications (1)<>(7) are due to Suita [16] (see
also Ozawa [87]) and (7) <>(8)<>(10) are due to Sakai [10].

THEOREM 6. The following statements are equivalent:

(1) o¥(@) =1{0}; (2) By=0 on HP(Q): (3) Ag=1I, on HF(Q); (4)
oz, {) = KB (z, {) for every z, {eQ; (5) Q is canonical with respect to every
LeQ; (6) 18z, O) = O for every z, L e Q; (T) Wa(-:{) is linear for every {cQ2; (8)
D,(+: L) is linear for some {eQ; (9) either Qe 0y, or Qe Ay, and is canonical
with respect to some point {e(; (10) either Re0,, or Qe N},

Proof. The implications (1)=>(2)=>(3)=>#)=(5)=(6)=(7) are
straightforward while (7) <> (8) <>(10) <>(1) are the above mentioned results of
Ozawa, Sakai and Suita [8, 10, 16]. The implication (10)=(9) is also
straightforward. We now prove (9)=>(10). Let 2¢0,, Then Qe.4', and
there exists a biholomorphic mapping ¢ of £2 onto ¢(f2) = 4\ E, where E is
a set satisfying E n K e Ny, for every compact subset K of the unit disk 4.
Clearly, g(w,7)=0 for every o,ted\E = (). However, by the
analogue of (4.3),

1% (0 (2), ()@’ (2) ') = 1§ (2, D)+ 8, (2, 0)
and thus S, (z, {) = 0 for every ze Q. This condition is equivalent to ¢ being

a Md&bius transformation and thus Qe 4#%. The proof is now complete,

§7. Quasi-conformal mappings. Let ¢ be a homeomorphism of the
complex plane which is conformal on Q and x-quasi-conformal on its
complement C\@, that is ¢ <% <1 and |Jp| < x|d¢| on O\, where the
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partial derivatives are taken in the distributional sense. We write
b=b9(Q), b*="0b"(Q*), * = (Q).
According to a result of Springer [15]
14+./b1—x <1+\/17*< 14/b1+x
1= /b l+x " 1— /b* 1-/b1—%
in which case b <1 if and only if b* < 1. It follows that

7.b ,&i < Jb* < u.\[llf_”.
b 1+x/b

1—xf

The right-hand side of this inequality may therefore replace \/E; in the
HY (Q)-setting of Corollaries 2, 3, 4 and Theorem 5. In particular, using the
HY (Q)-version of (5.17), we have

b+x
(1.2) @y, < LOPE o, e
1+x\/z
A special case of this very general result is when Qe #%. In that case, in
view of Theorem 6, ¢(2) = {0} which means b = b* () =0 and thus

Gy, Dl < x| A EE < x|l  ael,.

A particular case of this result, namely when Q is the unit disk 4, was ’ﬁrst
proved by Kithnau [7] (see also Schiffer and Schober [14] and Schiffer [13]).
We note that in this case %" is the identity matrix and ¥, = (g,,) Where gy,

= ./mnc,, with c,, being the Grunsky coefficients of ¢. The result of
Kithnau is then

- a0
| Y /mncpomo,] <x Y a2
mn=1 n=1
Inequality (7.2) is a considerable extension of it to general domains Q.
Let & be the class of domains Q for which b= b"(Q) < 1. Another
result of Springer [15] states that if Qe 2 and ¢: 2 — Q* is a conformal
mapping of © onto Q* = ¢(R), then ¢ has a x-quasi-conformal (0 < % < 1)
homeomorphic extension to C if and only if Q*e %. Now, the expression
(/b+x)(1+2./b) in (7.1) is always dominated by 1 and it is equal to 1 if
and only if b= 1. This observation, coupled with Springer's result and

following an argument similar to that found, for example, in Pommerenke [9,.

pp. 286-292], leads to the following characterization of quasi-conformal
extensions.

Treorem 7. Let Q2 be a domain of class 2, ie. b= b (Q) < 1, and assume
that @: Q— Q* is a conformal mapping of Q onto Q%= ¢(£2). Then, the
Jollowing statements are equivalent:
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(1) ¢ has a »'-quasi-conformal (0 < %' < 1) homeomorphic extension to C;

(i) (%, @yl < [(V/D+0L+2 /b | &3 for some 0 < x < 1 and all
oel,.

§8. Fredholm determinant. We let A, and 4% denote the disks
{zeC: |2l <||Bgll™'} and {zeC: |z| <||BY|" '}, respectively, thus
4 €4, < 4% We may then introduce the operator

Lo(z) = log(Io—zBy)
given by
o1
Ln(z) = - Zl '-;(ZBQ)",

which converges absolutely for ze 4. This is a bounded operator on L,(£2)
for any zed, and, moreover, Ly(-) is an operator-valued holomorphic
function on 4. Clearly, Lg(z) is zero on H,(2)* and, in view of the spectral

‘theorem,

(8.1) Lo(2) = | log(1—zpdE(W), zedg,
a(d

(8.2) ILo(2)| = sup {[log(1 —zu)|: pea(Q)}.

Therefore

ILo(2)l < [ILg(2)l = —log (1~ 2| || Ball),

and Lg(z)* = L,(z), while — Ly (2) is a positive operator on L, () for all real
z in dg.

The domain Q is said to be of Fredholm trace class, in short Qe #, if
the nonnegative function

ga(2) = |llg(, b =Kg(z, 2)—Tglz, 2), zeQ,

is in L,(€). In this case, the operator A, belongs to the Hi]bert-Sc.hmidt
class .#, and hence B, = A% A, belongs to the trace class .#,. In particular,
Ag and By, are compact, and

zedg,

(83) loall = 3 < oo.

In terms of trace norms

89 IBal=TeB = (TP =120
we have

1Bdl, < lIBalli™™"iBlm",  n=m,
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and thus

o
8.5) py = 1Bl <IBL <IBdlli = ¥ e (1=1,2,..),

k=1

8.6) /u =lAdl <llAgll, =1Bdlsff = { ¥ w*}'"" (m=2,3,..).

k=1
The condition Qe.# is also equivalent to the requirement that the operator
Lo(z) belongs to the trace class #, for every zed,. In that case

8.7) Tr {Lg(2)} = kZL fog(1—zu), zedy,

8.8 ILo@Nl; = i [log (1 —zp).
k=

In particular,

0
(8.9) Lol < ILg(2Dlly = — X log(1~|zl ),  zedg,
k=1
and we note that the convergence of the sum in (8.9) is equivalent to (8.3).
The Fredholm determinant for a domain Qe .# is defined by

8.10) Dg(z) = exp Tr {Lg(2)} = exp Tr{log(I,—zBg)}.
Initially this function is defined only for ze 4, However, using (8.7), we
have the alternative expression

(8.11) Do) =[] 1 —zw)

k=1
for the Fredholm determinant, showing that, in fact, D, is an entire function.
Moreover, as By, is compact and self-adjoint, the multiplicity of g, # 0 is
finite and thus, for w4, # 0, z =y ' is a zero of finite order of D,. In
particular, there exists an integer n, > 0 so that

(8.12) Dy(z) =(1-2)"Dy,, (2)

where Dy, is an entire function satisfying Dy, (1) # 0.
A very parallel theory for the reduced Fredholm transform BY) can be

given in the HY (Q)-setting. Thus,
I%(2) = log(Ig—zBY),

is an operator-valued holomorphic function on 4%, and L}z) =0 on
HY(Q)*. Moreover, L)z)* = IE)z) and —I§z) is a positive operator on
L,(9) for all real ze 4. Also, ‘

ze 49,
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(8.13) LYz)= [ log(l—zp) dE(p), zed$,

oSl
[1E2) == sup {[log(1—zp)|: ped™ ()},
1B < 12D = —log (1~ |z{ |BEID,

The theories for H,(2) and HY(Q) are trivially identical when N¥(Q)
= H,(QOHY(Q) is trivial. On the other hand, ¢(Q) =" (2)u {1} when
N%() # {0} and hence, comparing the expressions (8.1) and (8.13), we obtain

Lo(2) = Ijz) +log (1~2) E(1),
where E(1)= E(1) E(1) is a bounded projection on L, (). In particular,

zedY.

zedyg

Lo (@)l = max {|| E42)|l, |log(1 —2)|}, -
(La@ £, f)a = (L) [, f)a+log (L= |E(1) fIIZ,

whenever N9 (Q) # {0}. It follows that always [|E}N2) < ||Lg(2)| for every
zedy < 49 and that —Lg(z) > —I5z) > 0 for all real z in 4Y.

The domain  is said to be of reduced Fredholm trace class, in short
Qe #Y, if the nonnegative function

g8 (@) = I8¢, 2% = Kz, 9~ Talz. 2),

is in L,(). Since g% < g, on 2 we deduce that # < #¥ and, moreover, a
domain Q in #¥ is also in & if and only if N§(£) is of finite dimension.
Recall that B, and BY always reduce to the identity and zero operators,
respectively, on N9 (Q). For Qe &, we may therefore define the deficiency
index d, = 0 as the integer dj = dim {N% (Q)}. For example, if 4@ is of class
C** (0 <5 <1) and Q is of connectivity p (1 < p < o) then Qe & and d,
=p—1

pThe relations (8.3}-(8.12) are also valid when Qe #", provided the
superscript “s” is inserted in the quantities gg, 4g, Ba, La(*), Da("), 44, m
and n,,. In particular, the reduced Fredholm determinant

zedg,
zed, feL,(Q),

ze (2,

(8.14) DY(2) = ﬁ 1=z, ReFY,
k=1

is an entire function with

n)
(8.15) Dif(z) = (1~-2)'9 D, (2)
where D), is an entire function satisfying D', (1) # 0. If, in addition, Q is
also in &, then, assuming without loss that d, = dim {N§ (Q)} = 1,

Wo=.o= =1, u,,mk:u‘,"’ k=1,2,..).
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It follows that for any Qe #
: IBalln = do+IIBRI:  (n=1,2,..),
(8.16) Dy(z) = (1—2)"2 DY(z2).

A comparison of (8.16) with (8.12) and (8.15) also shows that dg = n,~n
and Dg; = D, with

o0

H (1 —"Z/"k)’

k=np+1

Dgy(2) = Qe F.

Here
121Bl=py 2. 2 pages =B Z .. 2 tgur 2 ..,
k =nn+1, nn+2, e

Clearly, d; =ny, if and only if |Bfl| < 1, in which case D, = DY,

We return to the more general case of Qe #¥. In this case DY = D4, if
and only if |[BYl| <1 or if and only if nf) = 0. Let Qe #* with ||BY] « 1, or
n§ = 0. By (8.14) we deduce that 0 < D¥(1) <1 and, in view of Theorem 6,
DY) =1 if and only if Qe.#%. We now cousider a circular domain 4,
whose boundary consists of p disjoint circles. The conformal type of 4, is
determined by 7(p) real parameters (Riemann moduli) m;, ..., My, Where
(1) = 0 (i.e. zero number of parameters), 7(2) =1 and 7(p) = 3p—6, p=3.
The circular domain 4, will be denoted by 4 p(Mys .., myy) once the t(p)
moduli are specified; thus 4, () is a disk, 4,(m,) is an annulus with modulus
my, my >1, A3(my, my, my) is a concentric annulus with modulus
my, my > 1, minus a disk whose center and radius are determined by my, my,
and m;, and so on. We shall now extend the classes .47, and A%, introduced
previously in § 6. A domain @ is said to belong to class .4 DMy oo, myy) if
Q is conformally equivalent to 4 (my, ..., m)\E, where E is a set
satisfying EnKeNy, for every compact subset K of the circular domain
4p(my, ..., myp). The subclass A (m,, ..., Myp) of Ay p(My,y vy Miypy)
consists of those domains Q which are Mobius images of 4 p(Myy ooy M)

\E, with EnKeN, for every compact subset K of dp(my, ..o, My
Evidently,

ﬂk<1:

A1 () =Hp, 51 ()= AP,

We are now in a position to state the following theorem, first proved by
Schiffer [12] under some additional smoothness assumptions on the domains
in question. As the original proof of Schiffer [12] is also applicable to the
present more general case, the proof of the following theorem is omitted.

THEOREM 8. Let

FOUmy, ooy ) = Wy (my, ., mp) 0 {Re F9: |BY) < 1),

icm
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Then )
"’V‘g),p(mlﬁ CRERTY "’l,(p)) = %s (mh [AXS] mt(p))
and the reduced Fredhohbn determinant DY is an imariant of

A p(ys s, M), Ly

DY(z) =D(z:my, ..., my), zeC,

Jor all Qe A, ,(my, ..., Myy). Moreover,
D(limy, ..., my,) = max {DP(1): Qe FO(my, ..., my)}
and the maximum is attained only by (any) member Q of ‘/V‘rl).pfmu cies m,(,,)?‘
Here, 0 <D(Limy,...,mp) <1 and D(L:my, ..., my) =1 if and only if
p=1
§ 9. Area-excess function. For any [eQ\N,, we consider the function

_gmoyz
k3G Of -

The analogous function, where K$((, {) is replaced !)y K,(¢, 0), will not be
treated here as it is less interesting than B(Q:{). Since

0< KH(WL, O-Tall, D <KJ(E D)

we deduce that 0 < B(Q:{) < 1. In the case that {e Ny, we set, in consistency
with K8, ) =Ta, ) =0, p(:)) =0 and thus 0 < B(Q:2) <1 for all z
in Q. . ) .

An alternative expression for (2:{) may also be given through t e
notion of area, described in § 6. Recall that for (e, the outer area is
A, (2:0) = nK8((, {) while for {eQ\N, the inner area A(Q:0) satisfies
A (R2:0) A,(R:0) = =*. We now define :

ﬂ(QIC)E{

Ay @:0) = c{nu—z_;r'* dm(t), (eQ.

: i he mapping
Thus Ay(R:¢) represents the area of the image of C\Q under t
=0 ‘[.) In view of (3.2) we also have 4, (R:0) = nl'n({, {). It follows that

ﬁmac%—zm@} {1-n72 40(2:0) 4,(@: 1)}
For this reason, B(2:() is called the area-excess function at {eQ. lts
prdperties are summarized in the following theorem: .
Tueorem 9. The function p(§2:+) maps Q into [0, 11, it is continuous on
Q\ N, and satisfies the following properties:
1°. For all (e Q\ Ny, Os\/?s ﬂ(ﬂ:C)Sﬁ < 1 where a =d®() and
b = b¥ ().

7 ~ Studia Mathomatica LXXX1IL2
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2. For LeQ\Ny, B(Q:0)=1if and only if m(C\Q) = 0.

3°, For e, B(€2:0) =0 if and only if Q is canonical with respect to . In
particular, if {e Q\ Ng and if the spectrum ¢ (Q) of Q¢ 0, reduces to only
point spectrum {2}, then B(Q:0)=0 if and only if all eigenfunctions Y,
corresponding to positive eigenvalues 1 > O vanish at , in which case there
exists at least one zero eigenvalue, ie. [ = d®(Q) = 0.

4. B(Q) = Sup {B(Q:2): zeQ} is zero if and only if either Qe 0y, or
QeND.

5°, Let ¢: Q— Q* be a biholomorphic mapping of Q onto O* = ()
Then for e, B(Q:0) = B(2*:0 () if and only if
©.1) IS, (- OllE = —2Re (1§ ¢, s S, (4 D)o
In particular, if ¢ is a M&bius transformation then p(Q:z) = B(2*: 0 (2)) for
every zeQ.

Proof. Item 2° is straightforward and follows directly from the

definition of B(:¢). The first part of item 3° is also straightforward and
follows from the identity

©2) MY, OIE =K, O—Tall, O

which is a special case of (6.8). The second part of item 3° follows
immediately from Proposition 5. Item 4° is a consequence of the equivalence
of the statements (4) and (10) of Theorem 6. As for item 5°, we use the
identities (4.2)(4.4) in their HY (Q)-setting. It follows that {e Ny if and only if
@(0)& Npp, in which case B(@2:0) = B(2*: (D)) =0 and 1(, ) = I(-, 0 (0)
=8,(-,{) = 0. We may therefore assume that (e 2\ N and thus ¢ ({)e Q*
\Ng with @, 2*¢0,,. In this case B(R:() = p(Q2*:¢(()) is equivalent to
o€, ) = Tr(9©), 9(©)l¢')* and hence to

K9, D=T o, ) = K (00, () —Tar(@ ), 0O} e O

which means, in view of (9.2), that

¢, OlE =o' QP IS 0 ©N2
or, by (4.3),

WEC Ol =R ¢, O+Se (5 Ol
The latter is equivalent to (9.1). If ¢ is a Md&bius transformation, then
S,(-, 2) =0 for any zeQ and hence (9.1) is trivially satisfied. It follows that
B(R:2) = B(2*:¢(2)) for any ze Q. This proves item 5°. We now prove item
1°. By definition

a=d"(Q) =Inf{(B}f, o fe HY @), |Ifllo= 1},

b =b"(Q) = Sup{(BY} 1. Na: fe HY(D), |Ifllo=1}
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and 0 < a<b=|BY| <1 Fix {eQ\N, and choose

Jo = K30, O/VKRE,D.
Then foe HY(Q) and || follg = 1. Moreover, (BY fo, fo)o = [B(R:¢)]* and item
1¢ follows. This concludes the proof. :
Item 5° could also be established by using the identities

(9.3) NS¢, Ollg = /KB, 0 B(2:0),
9.4) NS C O+8, ¢, Dllg = VKBE, O B(@*: 0 (1)

Also, the example at the end of § 4 shows that B(2:z) = p(Q*: ¢(2)) for all
ze £ does not, in general, imply that ¢ is a Md&bius transformation.
We now consider the maximum area excess

{9.5) B(R2) =Sup{B(Q:2): ze Q)
which, in view of 1° of Theorem 9, satisfies
(9.6) BQ) < /BV(Q).

In the following analysis it is convenient to assume that co e . Since, by 5°
of Theorem 9, f(£:z) is invariant under Mb&bius transformations, this
assumption amounts to no loss of any generality. Some minor modifications
are required in this case. Using the previous definitions, one easily shows
that

7 lim {z}* K (z, 2) = 4,(Q: ),

z-=00

7 lim |z[* Ty (z, z) = Ap(Q: 0) = m(C\Q)

Zr oo

o A (Q: 0) )2
ﬁ(Q.W)—{l'—AO(Q’—OO;} B wel.

These are, of course, consistent with the quantities for { 5 co. In particular,
A, (Q: 00) = m(C\Q) if and only if 2 is canonical with respect to coe Q. The
latter is equivalent to ¥g(z:00) =2z on Q.

Let 4, = C\J denote the exterior of the unit disk 4 and consider the
subclasses .4, (00) and % (00) of .47, and ¥}, respectively, consisting of
those domains £ for which coeQ. Clearly, .47} (c0) <.¥(c0) and
A,6.4% (). Any Qe.4'5(c0) may be mapped conformally onto 4.\ E, where
E is a set satisfying E ~KeNy, for every compact subset K of 4,, with
infinity going to infinity. Let ¢ denote the inverse of this mapping. Near
infinity this function admits the expansion

and thus

€N
z= (@) =r@)[o+ Y o™, wed\E, zeQ,
n=0
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where r(Q) > 0 is the mapping radius of Qe.4 b(c0). It follows easily that

2@ = A (Q:0), LQed"p(0)
and hence 2
m(C\) | " e

In particular, for any Qe.+"(00)

with equality if and only if Qe.4% (o), in which case Q is the exterior £, of
a disk of radius r(@Q) less (possibly) a set E, satisfying EnKe N, for every
compact subset K of Q,.

As an example, we consider the mapping

=g =0+cw™!, 0<c<l.

This mapping maps 4, onto £,, the exterior of an ellipse with the major axes
14¢ and 1—c (any ellipse is similar to such an ellipse). Since £, is simply
connected, HY(£2,) = H,(£2,) and, moreover, the spectrum o(2,) consists of

only eigenvalues and () =0o(C\Q). In fact, any two complementary

simply connected domains have the same set of eigenvalues {y,] and the
corresponding eigenfunctions {,} and {¢@,} are related by ¢, =Ii(l
—u) ? Ty, where Tis the (extended) Hilbert transform of L,(C). This
result may be easily deduced from the discussion of § 3 (see also Bergman
and Schiffer [2]). The spectrum ¢(2,) can be easily determined, as is done in
Bergman and Schiffer [2]. In fact, since /, (w, 7) =0 we deduce, using (4.3),
that

Lol e@I™" _ »

©8) lo (&0 = —e ST = 3 @40

where
Y(2) = iﬁ[tl/(l)]”"‘*”lll’(Z), V=0, z=00)eQ,.

Since {i./nw~"*Y} is an orthonormal basis of H,(4), {¥,} is an
orthonormal basis of H,(£,). Moreover, a comparison of (9.8) with (3.10)
shows that the i, are the eigenfunctions of B, and that their corresponding
cigenvalues are

Uy=Ayi=c" (n=12..)

The domain €, is clearly a member of the class .47, (c0). Furthermore,
r() =1, m(C\Q) = n(l —c?) and b¥(Q) = p, = c* It follows from (9.7) that
B(Q,:0) = ¢, and hence equality holds in (9.6), that is

B(R.:00) =max {B(R,:2): zeR,} = P(R) = /() =c.
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This observation, coupled with the preceding discussion, yields the following ‘
result (compare Bergman and Schiffer [2):

" Treorem 10. Let Q. be the exterior of an ellipse, 0< ¢ < 1, as before.
en

Sup {B(Q)//D¥(Q): Q¢0,p} =1
and the supremum is attained by Q=¢(Q), where ¢ is any Mébius
transformation. Moreover,
ﬁ(Q:(p(oo)) =max {f(Q:2): zeQ} = f(R) = . /B9(Q) = c.

7?he Spectrum o () consists of eigenvalues {c®} with corresponding
eigenfunctions {4} given by ’

Vn(2) = i /n [ (217" Dy (2),

We now consider the quasi-conformal aspect of Theorem 10. Let 0, be
the family o'f all pairs (2, ¢p), where Q¢0,, is a domain and ¢ is a
homeomorphism of the (extended) plane which. is conformal on Q and

n-quasi-conformal, 0 < x <1, on its complement. From (7.1) and (9.6) we
deduce that

y=90""op !, zeQ.

b
(9.9) Blo(@) < S » b=b0(Q),
. 1+u\/l;
for any pair (2, )eQ,. Let
)= z+xz”Y,  zed,,
ble)= z+ %z, zeA.

Clearly, (4., ¢,)eQ,. As before,

B(p,(4): ) = max {B(p(4): ¢.(2)): ze 4.} = B0, (4,) = x,

and since b¥(4,) =0 we conclude that equality holds in (9.9) for the pair
(4., ¢,). This gives:

Treorem 11. For any 0§ x <1,
1+2%/b
Su {m«ww-' Q): (2, 0)eQ,, b=bY Q}:l
p N Ble@): (2, p)eQ (@

and the supremum is attained by the pair (4,, ¢,), in which case
Blgu(d)) = Blox(d): 00) =%,  b(4) =0.
The identities (9.3)}~(9.4) imply, by using the triangle inequality,
[B(2:0)—B(2*: @) < {KYE, O} 12118, (-, Dl < BR:D+B(Q*: 0(D)
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for any biholomorphic mapping ¢ of @ onto Q* = ¢ (€) and any [ Q. These
inequalities have been observed previously by Harmelin [6]. Here, however,
by using (9.5), (9.6) and (9.9), we obtain the following improvement on the
result of Harmelin [6]:

TueoreM 12. Let ¢ be biholomorphic on Q. Then

Sup {K(z, 2)} 7211, (-, 2llo < B(Q)+A(0(R))

ze 2
< JF@+ Jz;ﬁf“;;zﬁ))

<1+ /9 (9) <
In particular, if also (Q, p)eQ,, 0<% <1, then
' <2/t (L+b)
Sup {KY(z, 2)} ~12|IS, (-, 2)ll g § = b = b¥(Q).
mr;{ Bz )28, (L 2lla < 1+%\/B

Moreover, the constants in these inequalities are sharp.

These inequalities can be localized to give bounds for the Schwarzian
derivative S,(-, ©). This was done earlier in Burbea [3] (compare also
Beardon and Gehring [1] and Harmelin [6]). In order to understand the
meaning. of the results, it is useful to .introduce certain Banach spaces
B, (), By, (f), called Bers spaces, of measurable functions on . These
spaces are defined as follows: Let 2¢0; and consider its Poincaré metric
2o("); the space B, () is defined as the space of all measurable functions f/
on £ with the finite norm

I llaq = = Sup {agtz)}"l 7@
If also 2¢0,,, then By () is defined as the space of all measurable
functions f on Q with the finite norm

I/ Mok, = SurI: {K8(z, 2} 1211 ().

The (closed) subspaces of B, ., (Q) and By ,(2) whose elements are also
holomorphic on Q are denoted by H, ., () and Hy (), respectively, It is
easily seen that all these spaces are conformally invariant in the sense that
the linear transformation T, in (4.1) is also an isometry of By, o (2%),

Hy (Q%), By ,(Q* and me(ﬂ*) onto B, (), H,, (%), By (2) and
Hy, (£2), respectively. Moreover, since 0 < 0,, and {K%(z, 2)}/2 < gq(2) for
every zeQ, Q¢ 0, (see Burbea [3]), we conclude that

IMoew < llokw  feBr (@), 2¢04p,

and thus By ,(Q) € B, () and Hy () € H, (), the injections being
continuous and contractive in both cases, In a similar fashion, one defines

' This inequality may also be deduced from the
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the Banach spaces B, (2 xQ), H, ,,(Q xQ), Bg ., (2 x®) and Hy (2 %x£).
For example, Hy,,,(@x) is a closed subspace of By . (2 x€) and it
consists of all holomorphic functions f(-,.-) on 2 xQ with the finite norm

S llox ok, = Sup (KB(z 2 KJ(E, O} 21/ (2, Q).

Using the above notation, Theorem 12 and (9.3)«9.4) admit alternative
geometric interpretation in terms of spheres of By () and By . (Q*), and
hence of B, . (2) and B, , (Q*. Moreover, since for any {eQ

JO =/ K§C, Do feHY (),
we deduce, using the Cauchy-Schwarz inequality, that
Siflles  feHE(R), 2¢0,p

and hence HY(R) = Hy (), with the injection being continuous and
contractive. In particular, using (9.4),

11l ak,w

(9.10) Iun)( s )+S (¢, )Hr)xﬂ,x o S /3(‘/’(9))
and thus [§(- )+S (s, ") is in Hg (2 xQ) < H, ,,(Q x&). Moreover, if also
(2, 9eQ,. 0<% <1, then, by (9.9),

ﬁ+x

w< 2
”ﬂxﬂK \1+x\/B

Similarly, Theorem 12 shows that S,(-,')eHg (2 %) whenever ¢ is
biholomorphic on £, and

1S5Cs Maxaxe < B@+B(0@) < /b+/b* <1+./b<2
where b = b(Q), b* = b (p(Q)) (¢ 04p), and if also (2, p)eQ,, 0

then
2 /brx(i+b)

1+x\/—

We remark that if ¢ is meromorphic on @ and §,(-, ") B, (2 xQ),
i IS, (", Waxgnae < o0, then @ is biholomorphic on €. Indeed, in this case
S, (-, -) is free of poles and thus S, (-, *) is holomorphic on £ x £, a condition
equivalent to ¢ being biholomorphic on Q. Finally, (9.10) implies that for
any biholomorphic mapping ¢ on Q and any z, (e,

18 (2, )+ S, (z, O < JB* KBz, DKHE, OPA 0% = b (p ().

HY (Q)-version of Corollary 4,
and constitutes an improvement on the well-known inequality for which b* is
replaced by 1. In particular, if also (Q, @)e Q,, 0 <% <1, then for {eQ,

€, O+5,6, O < Vot ene b,
LengB

1E8 (s )+ Sy b =b(Q).

Sx<l,

l1Sp(s Maxakw <

b =b9(Q).
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As an application of this inequality we assume, without loss, that ¢ is also in-

U(Q:¢), as in (6.1). Then in view of (4.5) and (6.2), the coefficient 4, (() is
—58,(, {), and thus

. b+ .
la, )18, Ol < I\{Z/—;KB(C, 0.
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A note on the spectral mapping theorem
by
CARLOS HERNANDEZ-GARCIADIEGO (México, D. F.)

Abstract, We prove that il ¢ is a semispectrum defined on the commutative subsets of a
Banach algebra that satisfies one inclusion of the spectral mapping theorem P (o (4)) = o (P(4))
then it also satisfies the other.

1. Introduction. Let o/ be a complex unital Banach algebra with unit e.
The family of all nonvoid subsets of .o/ consisting of pairwise commuting
elements will be designated by c¢(/). We shall write c¢q(s/) for the family of
all finite elements of ¢(«/). The elements of c¢(s£) will be denoted by Ay,-
where I is a nonvoid set of indices, so 4y = {a;};.;. If the set I is finite, we
can identify A4, with A=(ay,...,a)ex" for some neN. If A4
= (dy, ..., ae " and B=(by, ..., b,)e o™, then (4, B) will denote the
element (a3, ..., dy by, ..., by)eaf™™™ If I, J are nonvoid sets of indices,
then P,(T;) will stand for a family of polynomials {p;(Tp)};es, With complex
coefficients, in indeterminates T; = {t;},.,. Of course, each p; depends only
upon a finite number of indeterminates ¢, ..., f;,.

Each such system of polynomials induces a map, denoted by the same
symbol P,: C'— C’, given by Z; — (pj(Z)))s € C’, where Z; = (2);;. Such a
map is called a polynomial map. Also if A;ec(</), we can evaluate P, on 4,
obtaining an element P,(A;)ec(.).

In [4], Zelazko gave the following axioms and definitions.

Suppose that to each A;ec(/) there corresponds a nonvoid compact
subset of C';

() A~ a(d)=Ch
1.1. Axioms.

U] a(4) =[lo(@)

iel

where Ay = {a};ec(s#) and o(g) is the usual spectrum of an element
a,G-M.
(I)  o({a}) is the usuval spectrum, o (a), of a for {a}ec(s¥).
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