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As an application of this inequality we assume, without loss, that ¢ is also in-

U(Q:¢), as in (6.1). Then in view of (4.5) and (6.2), the coefficient 4, (() is
—58,(, {), and thus

. b+ .
la, )18, Ol < I\{Z/—;KB(C, 0.
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A note on the spectral mapping theorem
by
CARLOS HERNANDEZ-GARCIADIEGO (México, D. F.)

Abstract, We prove that il ¢ is a semispectrum defined on the commutative subsets of a
Banach algebra that satisfies one inclusion of the spectral mapping theorem P (o (4)) = o (P(4))
then it also satisfies the other.

1. Introduction. Let o/ be a complex unital Banach algebra with unit e.
The family of all nonvoid subsets of .o/ consisting of pairwise commuting
elements will be designated by c¢(/). We shall write c¢q(s/) for the family of
all finite elements of ¢(«/). The elements of c¢(s£) will be denoted by Ay,-
where I is a nonvoid set of indices, so 4y = {a;};.;. If the set I is finite, we
can identify A4, with A=(ay,...,a)ex" for some neN. If A4
= (dy, ..., ae " and B=(by, ..., b,)e o™, then (4, B) will denote the
element (a3, ..., dy by, ..., by)eaf™™™ If I, J are nonvoid sets of indices,
then P,(T;) will stand for a family of polynomials {p;(Tp)};es, With complex
coefficients, in indeterminates T; = {t;},.,. Of course, each p; depends only
upon a finite number of indeterminates ¢, ..., f;,.

Each such system of polynomials induces a map, denoted by the same
symbol P,: C'— C’, given by Z; — (pj(Z)))s € C’, where Z; = (2);;. Such a
map is called a polynomial map. Also if A;ec(</), we can evaluate P, on 4,
obtaining an element P,(A;)ec(.).

In [4], Zelazko gave the following axioms and definitions.

Suppose that to each A;ec(/) there corresponds a nonvoid compact
subset of C';

() A~ a(d)=Ch
1.1. Axioms.

U] a(4) =[lo(@)

iel

where Ay = {a};ec(s#) and o(g) is the usual spectrum of an element
a,G-M.
(I)  o({a}) is the usuval spectrum, o (a), of a for {a}ec(s¥).
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(IIY)  Spectral mapping property.

U(PJ (Az)) = PJ(U(AI))
where A;ec(of), P; is a polynomial map.

(IV)  Projection property:

o(4)=mn (U(AI))

where A;ec(s), J is a nonvoid subset of I and = is the projection of C’
onto C’/ given by n(Z)) = Z,.

(V) o(A;+4,e) = o(A)+4;

where Ayec(), Ar = {Aher, heC, Ar+dAre = {a+ e}

1.2. DeriNniTIONs. A map (1) is called:

a spectroid if it satisfies (I) and (V);

a semispectrum if it satisfies (I), (IV), (V);

a subspectrum if it satisfies (I), (III);

a spectrum if it satisfies (II), (ITD).

Let us note that (II), (IIT) = (I), (III) = (V) and (III) = (V), so every spectrum
is a subspectrum, every subspectrum is a semispecttum and every
semispectrum is a spectroid.

In [3], Stodkowski and Zelazko prove that if ¢ is a semispectrum
defined on elements of ¢, (), there exists a unique semispectrum on ¢ ()
which, restricted to ¢q (), equals o, and if ¢ is a subspectrum or a spectrum,
then its extension is also a subspectrum or a spectrum, respectively (see also
[4, 3.4]). Therefore, from now on we will work only with semispectra defined
on cy().

1.3. DeriniTION [1]. Let Ae o/", Be ™, and Ae C". We shall write

@ 04=3(B) = (ue C™: (A, Wea(4, B}.

In [1, 4.2], Harte proves that the joint spectrum has the following
property.
Let Ae o/ be a commuting system that commutes with Be.«/™ Then

) o(B)= U 04xs(B).

Harte uses this result to prove that the joint spectrum of a commuting
system of elements of o/ satisfies the spectral mapping property,

On the other hand, in [3] Stodkowski and Zelazko prove that if X is a
Banach space and ¢ is a semispectrum defined on ¢ (% (X )), then the spectral
mapping property (II) is equivalent to

Q] o(P;(4))) = Py (0 (4)).
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The principal goal of this note is to prove, for a semispectrum, that
®) P, (‘T (AI)) co (P J (AI))
is also equivalent to the spectral mapping theorem (III).

2. Spectral mapping property.

2.1. Lemma. If ¢ is a map (1) defined on co (=) which satisfies axiom (I),
then the following properties are equivalent:

(i) o (9)) = n(a(S))
where Se.of" for some reN and m is a projection.

(i) If Ae A", Be LA™ for some n, me N, are commuting systems, and the
elements of A commute with the elements of B then

o(B)= U 04=1(B).
AeCh
Proof, (i) =»(ii). Let § = (4, B)e &/"*™ and let = be the projection with
7 (8) = B, Then
a(B) = ¢(n(4, B)) = n(o (4, B)).
Let peo(B). Then there exists Ae C" such that

A, peo(4,B) and xw, wW=u

SO PE T 4m 1 (B)

(ii)=(). Let Ses” and let = be a projection.- Reordering the
coordinates, we can assume that m is the projection onto the last m
coordinates. We take n=r—m and write

8§ =(A4,B) with Ae /", Be&#™ and B = n(S).

If peo(n(S) =oc(B), then by hypothesis there exists AeC” such that
ne U'A;gl(B). Thus, .
. (A, Weo (4, B) =a(S),
so p=x(i, Wen(o(s). ‘
In order to prove our main theorem, we need the following result due to
Harte [1, 3.3]:
2.2. LEMMA. If
P(a(4)) s o(P(4))
for every polynomial map P: " — sl™, then
P(o(4)) = o (P(4))

for every polynomial map of the form P(z) =(z, Q(2)) where Q is a polynomial
map from " to ™"
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2.3. TaeoreM. If @ is a semispectrum defined on cy(s7) then the following
properties are equivalent:
(i) For every Aecy(¥) and every polynomial map P

P(o(A)) = a(P(A)).

(i) For every Aecy(s#) and every polynomial map P
P(c(A)) = o(P(A)).

(iii) For every Aecy (o) and every polynomial map P
P(o(4)) = o(P(A)).

Proof. (i)=(ii) and (i)=>(iii). Let uea(P(4)). By hypothesis, o satisfies
the projection property (IV), so by Lemma 2.1 there exists A C" such that
1€ 0421 (P(A4). Thus, (A, peo (4, P(A)) = a(P(4)) where P(z) = (z, P(z)).

By Lemma 22, (4, weF(o(4) = {(A, P(D): Aec(4)} so pe P(4) with
Aea(A). Hence

o(P(4)) = P(o (4))
and thus
o (P(A)) = P(s(4)).

On the other hand, (i) = (i) and (ii) = (iii) are part of Theorem 3.3 of
31

Note. There is a misprint in formula (3.4) of [3]: it must be read as
a*(PS) < Po*(8$).
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