As an application of this inequality we assume, without loss, that φ is also in $U(\Omega;\zeta)$, as in (6.1). Then in view of (4.5) and (6.2), the coefficient $a_m(\zeta)$ is $-S_{\alpha}(\zeta,\zeta)$, and thus

$$|a_{\varphi}(\zeta) - l_{\Omega}^{(\mathrm{s})}(\zeta, \zeta)| \leqslant \frac{\sqrt{b} + \kappa}{1 + \kappa \sqrt{b}} K_{\Omega}^{(\mathrm{s})}(\zeta, \zeta).$$

References

- [1] A. F. Beardon and F. W. Gehring, Schwarzian derivatives, the Poincaré metric and the kernel function, Comm. Math. Helv. 55 (1980), 50-64.
- [2] S. Bergman and M. Schiffer, Kernel functions and conformal mapping, Compositio Math. 8 (1951), 205-249.
- [3] J. Burbea, The Schwarzian derivative and the Poincaré metric, Pacific J. Math. 85 (1979), 345-354.
- [4] -, The Bergman projection over plane regions, Ark. Mat. 18 (1980), 207--221.
- [5] C. H. Fitzgerald, Quadratic inequalities and analytic continuation, J. Analyse Math. 31 (1977), 19-47.
- [6] R. Harmelin, Bergman kernel function and univalence criteria, ibid. 41 (1982), 249-258.
- [7] R. Kühnau, Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für augsikonforme Abbildungen, Math. Nachr. 48 (1971), 77-105.
- [8] M. Ozawa, Fredholm eigen value problem for general domains, Ködai Math. Sem. Rep. 12
- [9] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen 1975.
- [10] M. Sakai, On basic domains of extremal functions, Kodai Math. Sem. Rep. 24 (1972). 251-
- [11] L. Sario and K. Oikawa, Capacity Functions, Springer-Verlag, Berlin 1969.
- [12] M. Schiffer, Fredholm eigen values of multiply-connected domains, Pacific J. Math. 9 (1959), 211-269,
- [13] -, Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981), 149-164.
- [14] M. Schiffer and G. Schober, Coefficient problems and generalized Grunsky inequalities for schlicht functions with quasiconformal extensions, Arch. Rational Mech. Anal. 60 (1976). 205-228.
- [15] G. Springer, Fredholm eigenvalues and quasiconformal mapping, Acta Math. 111 (1964), 121-142.
- [16] N. Suita, On Fredholm eigen value problem for plane domains, Kōdai Math. Sem. Rep. 13 (1961), 109-112.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH Pittsburgh, Pennsylvania 15260, U.S.A.

MATHEMATIC I SCIENCE DEPARTMENT, IBM T. J. WATSON RESEARCH CENTER Yorktown Heights, New York 10598, U.S.A.

> Received November 23, 1984 (2015)

STUDIA MATHEMATICA, T. LXXXIII. (1986)

A note on the spectral mapping theorem

CARLOS HERNÁNDEZ-GARCIADIEGO (México, D. F.)

Abstract. We prove that if σ is a semispectrum defined on the commutative subsets of a Banach algebra that satisfies one inclusion of the spectral mapping theorem $P(\sigma(A)) = \sigma(P(A))$ then it also satisfies the other.

1. Introduction. Let \mathscr{A} be a complex unital Banach algebra with unit e. The family of all nonvoid subsets of A consisting of pairwise commuting elements will be designated by $c(\mathcal{A})$. We shall write $c_0(\mathcal{A})$ for the family of all finite elements of $c(\mathcal{A})$. The elements of $c(\mathcal{A})$ will be denoted by $A_{r, \cdot}$ where I is a nonvoid set of indices, so $A_I = \{a_i\}_{i \in I}$. If the set I is finite, we can identify A_I with $A = (a_1, ..., a_n) \in \mathcal{A}^n$ for some $n \in \mathbb{N}$. If A $=(a_1,\ldots,a_n)\in \mathcal{A}^n$ and $B=(b_1,\ldots,b_m)\in \mathcal{A}^m$, then (A,B) will denote the element $(a_1, \ldots, a_n, b_1, \ldots, b_m) \in \mathcal{A}^{n+m}$. If I, J are nonvoid sets of indices, then $P_I(T_I)$ will stand for a family of polynomials $\{p_i(T_I)\}_{i\in I}$, with complex coefficients, in indeterminates $T_I = \{t_i\}_{i \in I}$. Of course, each p_i depends only upon a finite number of indeterminates t_{i_1}, \ldots, t_{i_n} .

Each such system of polynomials induces a map, denoted by the same symbol $P_I: C^I \to C^J$, given by $Z_I \to (p_I(Z_I))_{i \in I} \in C^J$, where $Z_I = (z_i)_{i \in I}$. Such a map is called a polynomial map. Also if $A_I \in \mathcal{C}(\mathcal{A})$, we can evaluate P_I on A_I obtaining an element $P_I(A_I) \in c(\mathcal{A})$.

In [4], Żelazko gave the following axioms and definitions.

Suppose that to each $A_r \in c(\mathcal{A})$ there corresponds a nonvoid compact subset of C^{I} :

$$(1) A_I \to \sigma(A_I) \subset C^I.$$

1.1. Axioms.

$$\sigma(A_I) \subset \prod_{i \in I} \sigma(a_i)$$

where $A_i = \{a_i\}_{i \in I} \in c(\mathscr{A})$ and $\sigma(a_i)$ is the usual spectrum of an element $a_i \in \mathcal{A}$.

 $\sigma(\{a\})$ is the usual spectrum, $\sigma(a)$, of a for $\{a\} \in c(\mathscr{A})$.

(III) Spectral mapping property:

$$\sigma(P_J(A_I)) = P_J(\sigma(A_I))$$

where $A_I \in c(\mathcal{A})$, P_J is a polynomial map.

(IV) Projection property:

$$\sigma(A_I) = \pi(\sigma(A_I))$$

where $A_I \in \mathcal{C}(\mathscr{A})$, J is a nonvoid subset of I and π is the projection of C^I onto C^J given by $\pi(Z_I) = Z_J$.

(V)
$$\sigma(A_I + \Lambda_I e) = \sigma(A_I) + \Lambda_I$$

where $A_I \in \mathcal{C}(\mathcal{A})$, $A_I = \{\lambda_i\}_{i \in I}$, $\lambda_i \in \mathcal{C}$, $A_I + A_I e = \{a_i + \lambda_i e\}_{i \in I}$.

- 1.2. DEFINITIONS. A map (1) is called:
- a spectroid if it satisfies (I) and (V);
- a semispectrum if it satisfies (I), (IV), (V);
- a subspectrum if it satisfies (I), (III);
- a spectrum if it satisfies (II), (III).

Let us note that (II), (III) \Rightarrow (I), (III) \Rightarrow (IV) and (III) \Rightarrow (V), so every spectrum is a subspectrum, every subspectrum is a semispectrum and every semispectrum is a spectroid.

In [3], Słodkowski and Żelazko prove that if σ is a semispectrum defined on elements of $c_0(\mathscr{A})$, there exists a unique semispectrum on $c(\mathscr{A})$ which, restricted to $c_0(\mathscr{A})$, equals σ , and if σ is a subspectrum or a spectrum, then its extension is also a subspectrum or a spectrum, respectively (see also [4, 3.4]). Therefore, from now on we will work only with semispectra defined on $c_0(\mathscr{A})$.

1.3. Definition [1]. Let $A \in \mathcal{A}^n$, $B \in \mathcal{A}^m$, and $\lambda \in \mathbb{C}^n$. We shall write

(2)
$$\sigma_{A=\lambda}(B) = \{ \mu \in C^m : (\lambda, \mu) \in \sigma(A, B) \}.$$

In [1, 4.2], Harte proves that the joint spectrum has the following property.

Let $A \in \mathcal{A}^n$ be a commuting system that commutes with $B \in \mathcal{A}^m$. Then

(3)
$$\sigma(B) = \bigcup_{\lambda \in \mathcal{C}^n} \sigma_{A=\lambda}(B).$$

Harte uses this result to prove that the joint spectrum of a commuting system of elements of \mathscr{A} satisfies the spectral mapping property.

On the other hand, in [3] Słodkowski and Zelazko prove that if X is a Banach space and σ is a semispectrum defined on $c(\mathcal{L}(X))$, then the spectral mapping property (III) is equivalent to

(4)
$$\sigma(P_J(A_I)) \subset P_J(\sigma(A_I)).$$

The principal goal of this note is to prove, for a semispectrum, that

$$(5) P_J(\sigma(A_I)) \subset \sigma(P_J(A_I))$$

is also equivalent to the spectral mapping theorem (III).

2. Spectral mapping property.

2.1. Lemma. If σ is a map (1) defined on $c_0(\mathcal{A})$ which satisfies axiom (I), then the following properties are equivalent:

(i)
$$\sigma(\pi(S)) \subset \pi(\sigma(S))$$

where $S \in \mathcal{A}^r$ for some $r \in \mathbb{N}$ and π is a projection.

(ii) If $A \in \mathcal{A}^n$, $B \in \mathcal{A}^m$ for some $n, m \in \mathbb{N}$, are commuting systems, and the elements of A commute with the elements of B then

$$\sigma(B) = \bigcup_{\lambda \in C^n} \sigma_{A=\lambda}(B).$$

Proof. (i) \Rightarrow (ii). Let $S = (A, B) \in \mathcal{A}^{n+m}$, and let π be the projection with $\pi(S) = B$. Then

$$\sigma(B) = \sigma(\pi(A, B)) \subset \pi(\sigma(A, B)).$$

Let $\mu \in \sigma(B)$. Then there exists $\lambda \in \mathbb{C}^n$ such that

$$(\lambda, \mu) \in \sigma(A, B)$$
 and $\pi(\lambda, \mu) = \mu$

so $\mu \in \sigma_{A=\lambda}(B)$.

(ii) \Rightarrow (i). Let $S \in \mathscr{A}^r$ and let π be a projection. Reordering the coordinates, we can assume that π is the projection onto the last m coordinates. We take n = r - m and write

$$S = (A, B)$$
 with $A \in \mathcal{A}^n$, $B \in \mathcal{A}^m$ and $B = \pi(S)$.

If $\mu \in \sigma(\pi(S)) = \sigma(B)$, then by hypothesis there exists $\lambda \in C^n$ such that $\mu \in \sigma_{A=\lambda}(B)$. Thus,

$$(\lambda, \mu) \in \sigma(A, B) = \sigma(S),$$

so $\mu = \pi(\lambda, \mu) \in \pi(\sigma(S))$.

In order to prove our main theorem, we need the following result due to Harte [1, 3.3]:

2.2. LEMMA. If

$$P(\sigma(A)) \subseteq \sigma(P(A))$$

for every polynomial map $P: \mathcal{A}^n \to \mathcal{A}^m$, then

$$P(\sigma(A)) = \sigma(P(A))$$

for every polynomial map of the form P(z) = (z, Q(z)) where Q is a polynomial map from \mathcal{A}^n to \mathcal{A}^{m-n} .

C. Hernández-Garciadiego

- 2.3. Theorem. If σ is a semispectrum defined on $c_0(\mathcal{A})$ then the following properties are equivalent:
 - (i) For every $A \in c_0(\mathcal{A})$ and every polynomial map P

$$P(\sigma(A)) \subset \sigma(P(A)).$$

(ii) For every $A \in c_0(\mathcal{A})$ and every polynomial map P

$$P(\sigma(A)) \supset \sigma(P(A)).$$

(iii) For every $A \in c_0(\mathcal{A})$ and every polynomial map P

$$P(\sigma(A)) = \sigma(P(A)).$$

Proof. (i) \Rightarrow (ii) and (i) \Rightarrow (iii). Let $\mu \in \sigma(P(A))$. By hypothesis, σ satisfies the projection property (IV), so by Lemma 2.1 there exists $\lambda \in C^n$ such that $\mu \in \sigma_{A=\lambda}(P(A))$. Thus, $(\lambda, \mu) \in \sigma(A, P(A)) = \sigma(\tilde{P}(A))$ where $\tilde{P}(z) = (z, P(z))$.

By Lemma 2.2, $(\lambda, \mu) \in \tilde{P}(\sigma(A)) = \{(\lambda, P(\lambda)): \lambda \in \sigma(A)\}$ so $\mu \in P(\lambda)$ with $\lambda \in \sigma(A)$. Hence

$$\sigma(P(A)) \subset P(\sigma(A))$$

and thus

$$\sigma(P(A)) = P(\sigma(A)).$$

On the other hand, (ii) \Rightarrow (i) and (ii) \Rightarrow (iii) are part of Theorem 3.3 of [3].

Note. There is a misprint in formula (3.4) of [3]: it must be read as $\sigma^*(PS) \subset P\sigma^*(S)$.

References

- [1] R. E. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1972), 89-107.
- [2] -, Tensor products, multiplication operators and the spectral mapping theorem, Proc. Roy. Irish Acad. Sect. A 73 (1973), 285-302.
- [3] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148.
- [4] W. Zelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261.

INSTITUTO DE MATEMATICAS UNAM CIRCUITO EXTERIOR Cludad Universitaria 04510 México 20 D. F., México