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Eberlein compacts in L, (X)
by
JURGEN BATT and GEORG SCHLUCHTERMANN (Miinchen)

Abstract. We prove that every compact subset of the space L, (X) of Bochner integrable
functions with values in a Banach space X, endowed with the topology ¢':= 6 (L;(X), L.{X"),
is an Eberlein compact, and moreover that the space (L, (X), ¢') is angelic. For this purpose we
show that the ¢’-closure L of the span of a ¢’-compact subset of L;(X) can be continuously
embedded into some ¢, () with weak topology (in analogy to the well-known result of D. Amir
and J. Lindenstrauss for weakly compactly generated Banach spaces). The spaces L (the o'-
compactly generated subspaces) are further investigated and results concerning the norm and o'~
closures of convex subsets in L, (X) are derived.

1. Introduction. If L, (X) is the space of Bochner integrable functions on
a positive finite measure space (S, Z, ) with values in the Banach space X,
(L;(X), L,(X)> is a dual pairing and it is known that the topology ¢
r=o (L (X), L, (X)) is strictly coarser than the weak topology
a(Ly(X), Ly (X)) if and only if X' does not have the Radon-Nikodym
property. The o'-compact subsets of L;(X) were investigated in [3]. In
particular, it was proved that the notions “relatively compact”, “countably
compact” and “sequentially compact” are equivalent in the topology o'

In the main theorem of the present paper we show that for every
o'-compact subset K of L,(X) there exists a linear bounded injective

mapping T from L:=span K~ into some co(I) which is ¢'-weakly
continuous (Section 3). This result implies that ¢’-compact subsets of L; (X)
are even homeomorphic to weakly compact subsets of a Banach space, that
is, they are Eberlein compacts. It implies further that the space L, (X)
endowed with the topology ¢ has countably determined compactness [11, p.
30], ie. (following D.H. Fremlin) is “angelic”. A separated topological space
is called angelic if every countably compact subset A is relatively compact
and each point in A is the limit of a sequence in A. The rich structure of
Eberlein compacts and angelic spaces was investigated in the work of D.
Amir and J. Lindenstrauss [1], of Y. Benyamini, T. Starbird, M.E. Rudin, M.
Wage and E. Michael [5, 4, 16] and in the book of K. Floret [11] (see also
the papers of W. Govaerts [12] and of R. J. Hunter and J. Lloyd [15] for
more recent developments).

In [1] D. Amir and J. Lindenstrauss have shown that the norm closed
span of a weakly compact subset of a Banach space (a weakly compactly
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generated space) can be mapped into some ¢o(I') by some injective bounded
linear mapping. This fact is used for the proof of our main result together
with the construction of a “long” sequence of conditional expectation operators
(similar to the one of a “long” sequence of projections in the proof of that
result). There exists a relationship between the weakly compactly generated
spaces and the subspaces L of L;(X) in our main theorem (termed o¢'-
compactly generated), which is reflected in comparable characterizations
(Section 4).

In Section 5 we show that for a ¢’-compact subset K of L, (X) the o'
and norm closures of the (absolutely) convex hull coincide, but that these
closures of the linear span are in general different. The equality of the
closures of aco K makes it possible to show — in connection with a well-
known result of M. Talagrand for weakly compactly generated spaces [18]
— that the norm closed span of a ¢’-compact set K is -analytic and hence
a Lindelsf space in the ¢’-topology.

2. Preliminaries. Throughout the paper, (S, Z, ) denotes a positive finite
measure space and L,(Z, X)=L,(X) and L,(Z, X)=L,(X) are the
corresponding spaces of Bochner integrable and essentially bounded
measurable functions with values in a Banach space X. The symbol X will be
omitted for the spaces of scalar functions. The topology

0(Ly(Z, X), Ly (2, X)) = o(Ly (X), Lo (X))

will be denoted by ¢'. If for some index §f, Z,, is a sub-g-algebra of X we
write

o= 0'(Ly (Zp, X), Lo (25, X)) =0’ A Ly (5, X)

(with the measure u |5,) 3 ) and let EB Ly (Z, X) = L (Z;, X) be the conditional
expectation operator, Wthh is o aﬂ-contlnuous If Lis a linear subspace of

LI(E,,, X) we remark that If = I L (in fact, 1ffeL then x'feL(Z) for
all x’e X' because L;(Z,) is weakly closed in L,(Z), hence feL(Z;, X) by
Pettis’ measurability criterion [7, p. 42] and so f eL”)

For subspaces L= L((Z, X) we let L*:=L,(Z, X')/L° (the polar L°
taken in L, (Z, X"). If we let of :=0o(L, L*), (L, 61) 18 a subspace of
(Li(Z, X), 6) [14, p. 163], that is, o} = ¢’ L. In general, L* is not the
norm dual of L. We consider L* endowed with the quotient norm. Tt
follows from the fact that L (Z, X") is norming for L, (X, X) [9, p. 232] that
Lis canonically isometrically embedded in L*’ with the canonical norm. By
B(Y) we denote the unit ball of a Banach space Y; ¢ is always the weak
topology of a Banach space, and co A [aco A] the convex [absolutely
convex] hull of a subset 4 in a linear space.
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3. The main result.
Tueorem. If (S, X, p) is a positive fmzte measure space, let K < L, (2, X)

be a o'-compact subset and L:= span K’. Then there exists a set I' and a
linear bounded injective operator T: L——> co(D), IT|| <1, which is o'—0o-
continuous.

Proof. We shall first prove the theorem for countably generated o-
algebras X and then proceed by transfinite induction.

(1) Let there exist a countable algebra £, = £ which generates X. Then
there exists a countable subsystem 4 < X, with @, Sed and closed under
finite intersections, which generates £ and which has the following property:
For all § > 0 the number of sets Ae 4 for which u(4)> 6 is at most finite.
In fact, this is clear if (S, Z, y) is purely atomic or is the interval [0, 1] with
Lebesgue measure; the case of a nonatomic separable positive finite measure
space is reduced to the latter case by using the isomorphism established in
[13, p. 173]. For all Ae 4 the mapping

IA: LI(ZaX)_)X’ fH_ffd“
A

is o'—o-continuous, hence I,(K) is a weakly compact subset of X. By the
result of D. Amir and J. Lindenstrauss [1, p. 35] there exists a set I'y and a
linear bounded injective operator
——i-ll
T,: span I,(K) ~ —co(la), T <1

Let I':= |J I', (disjoint union). We can define
Aed

T: Loco),  f((TaoLuf)her  (for yel).

In fact, the range of T lies in ¢o(I): Since for fe Lthe measure m;: ¥ — X,
A1,fis absolutely continuous with respect to g, for all ¢ > O there exists
5 >0 such that for all AeX with u(4) <56 we have [|I,f|| <& By the
property of 4, the number of sets Ae 4 for which ||I,f]] > ¢ is at most finite
and hence in view of || T,|| < 1 the number of ye I' for which |(Tf),| > ¢ is at
most finite. T'is linear with ||T]} < 1 and injective because all T are injective
and 4 generates Z. For ¢ely(I) and fe L we have &, el (I',) and

<é Tfy =2 & (Tf), = ;AKEIA’ Tioluf>

el

= X (ToL) €. 1>

Aed

=X (T LY €la, £

Aed

where the first component of the last pair is an element in L, (Z, X)
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because Tyol,: Li(Z, X)— co(I'y) is o'-o-continuous. This shows that T
is ¢'—g-continuous.
(2) Now we prove the following assertion P(r):

For all positive finite measure spaces (S, X, u) with the property that
there exists a subsystem 4 < X generating ¥ and having the cardinal
number |4| = n and for all o'-compact subsets K = L, (X, X) there exist a
set I'=1Tyy, and a linear bounded injective operator

T=Ty Li=span K —co(D), [TI<1
which is o'—o-continuous,

by transfinite induction with respect to n > w.
P{w) is true by part (1) of the proof. Now let A > w be a cardinal
number and assume that

(1)  P(y) is true for all cardinal numbers  with o <7 <4

Let (S, 2, p), 4 and K be as in P(4). Let 4 = {4,, « < A} and for all ordinals
Bwitho < p<iletd;:={A,, 0 <p}and X, be the s-algebra generated by
4. For an ordinal f with @ < 8 < A the o-algebra X, ; is generated by the
system 4y, which has the cardinal number |4, = |f+1]= |l <f < i;
furthermore, L,(Zy, X) Nap.q = 0),

Eﬁ+1“Eﬁ5 Ly (Z, X)— Ly (Zg1 1, X)

is o'-0p4 -continuous and K,y :=(Es.;—EgK is oj. -compact. By (1),
P(f+1l) is true, and there exist a set I'p, and a linear

=T
L 1 EATRY AR
bounded injective operator ’

P+ 1

Tpyq:i= TEB+1,K,3+1: span Kj. =collp+1), Tl €1

which is ¢, ;~0-continuous. Similarly, there exist a set I', := Iy ek anda

linear bounded injective operator
[}
7::) = TEU,.E“,K: span EmK — Co (rw)n ”T;u” < 1
which is o),~o-continuous. Let us define

I''=T,uv |J I+ (disjoint union),
wSp<i

T:span K = co(T),  fr=((Tf)hers
where
(’1:0 Em]) ) Ve T
(Tf} :___._{ k4 w?
U (G By~ Ep) S, velpey

(note that (Ey,, —Eg)span K’ < (Ep+,— Ej)span K”Y“'l  span K”H'}sﬂ).
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The range of T lies in c¢o(I); in fact, let fespan K * and e> 0. If the set

of ordinals

2 Bso<B <A ||Egsrf— Eifll, > ¢}

were not finite, there would exist a sequence (8;);y of ordinals such that
3) w<p<Br<..<i and ||Ep.if—Egflly >e, ieN.

For the limit ordinal o :=sup f; we have
ieN
4, =) 4y,
ieN
Therefore 2, is the smallest o-algebra containing all X, and E, f - E,f by
the martingale convergence theorem. This contradicts (3) and the set (2) is at
most finite. Hence the subset

B0 < B <2331 Tps 1 (Bpry —Ep)fll 2 &}

is at most finite and |(Tf),| > & for at most finitely many yeI. T bemg linear

with ||T]| < 1, we have to show that Tis injective. Let fespan K and Tf
= 0. By transfinite induction with respect to the ordinals § satisfying w <
< A we prove

@ Esf =0.

Tf = 0 implies T, (E,f) =0 in ¢,(I',) and E,f = 0 by the injectivity of T,
Now let a, @ < a < 4, be an ordinal and assume E;f =0foro < f<a. Ifx
is a limit ordinal, then 4, = (J 45 and

B<a

‘Eaf=limE,,f=0.

If « =p+1 for some B with @ < B <a then Tf =0 implies

7}+1(Ep+1f'“Eaf)=
and hence by the injectivity of Tpy

E.f =Ep+1f =Eﬁf= 0.
This shows (4). Since A is a limit ordinal it follows that
f=HmEsf =0,
B<a

in co(I'g+1)

hence T is injective. By using the a’~a-continuity of the components of T
with values in co(I,) and co(I44), the o’-o-continuity of T follows as in
part (1) of the proof. This shows that P(1) is true, and the proof of the
theorem is complete.
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4. Corollaries of the main result.

CoroLLARY 1. Every o'-compact subset of L,(X, X) is an Eberlein
compact.

CoroLLARY 2. (L, (2, X), ¢') is angelic.

Let us call a linear subspace L < L (X, X) o'-compactly generated if

there exists a o’-compact subset K = L, (Z, X) such that L = span K *. The
result of D. Amir and J. Lindenstrauss and our main result show that weakly
compactly generated spaces and o'-compactly generated subspaces of
L; (%, X) have an important property in common. We now show that they
can be similarly characterized.

CoroLLARY 3. For a o'-closed linear subspace Lof Ly (£, X) the following
conditions are equivalent: ‘

() Lis o'-compactly generated.

- (i) There exist a set I' and a linear bounded operator U: 1, (I') » Lwhich
is o(ly (I, co(IN))-o'-continuous and whose range is o'-dense in L.

(i) There exist a set I' and a linear bounded injective operator V: L*
— ¢o(I) which is o(L*, L)~o-continuous.

(iv) There exists a norm bounded set {f,,yeI} in L such that

L=span{f,, yel}  and <F,fdeco(I) for all FeL™.

Proof. (i) =(iii): Let L = span K’ for a o’-compact set K. Corollary 1

implies that K is an Eberlein compact. Hence [1, p. 37] C(K, ¢') is weakly
compactly generated and there exists a linear bounded injective operator
T: C(K, 6') > ¢y (I) for some set I'. V is obtained as the composition ToR,
where R is the restriction operator R: L* — C(K, ¢'). To get the o(L*, L)~
o’continuity of R from Choquet’s theorem one has to know that one can
assume K tg be convex. But this follows from the fact proved in [3, p. 416]
that aco K is o'-compact if K is. .

(iii) = (ii): U is obtained as the adjoint of V with respect to the dual
systems <L*, L and {co(I"), Iy (I); the boundedness of U follows from the
fact that L is isometrically embedded in L*’,

(i) = (iv): If {e,, yeI'} are the unit vectors in I (I'), the set {Ue,, yeI'}
has the desired properties. ’

(iv) = (iii): V' is obtained as the operator Firs(F,f> FeL*. If £l (I
and FeL* then by Lebesgue’s theorem

G VEy =3 & <F, f,5=(F, ¥ &1,
yel' yel'

where Y &,f,€ L(because Lis o'<closed and hence norm closed). Hence V is
yel' -

o (L*, Ly-o-continuous. For further details, we refer the reader to the theory
of weakly compactly generated Banach spaces (e.g, [8, p. 147-153]).
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5. Norm closure and o’~closure in L, (X).
ProrosiTioN 1. If K is a o'-compact subset of L,(Z, X), then

. —' -l —_—c
oK“H=coK and acoKHi=acoK
Proof. For the first equality, we only need to show

0K ccok
(1) We assume there exists a norm separable subspace L < L, (2, X)

such that C:=co K < L. In this case we show that the o'~compact set
(C, o) [3, p. 416] is metrizable. There exists a countable subalgebra .o/ = X
and a closed separable subspace X, — X such that L = L, (Z,, X,), where X,
is the o-algebra generated by o/ [10, p. 168]. We construct a countable set
F c Ly(Zo, Xp), which is 6(Ly,(Zo, Xp), Ly (2o, Xo))-dense in L, (Zo, Xo),
as follows. The unit ball B(Xp) is compact and metrizable [10, p. 426] and
hence separable in ¢(Xp, X,), and the same holds for all scalar multiples of
B(X}). Hence there exists a countable o(Xp, Xo)-dense subset H, of Xb.
Furthermore, let & = {A;, 45, 43, ...} be an enumeration of <, =,

= [EP, ..., E}{;‘} a finite partition of S which contains 4,, ..., 4,, and &/,
the algebra generated by =,. We let
kﬂ
F:= g«' > zg-ng,.), 24, .ovy 2, € Ho, EP, ..., Eﬁ"")en,,}.
ni i=1

To show that this countable set is dense, let geLy,(Zo, X0)
Fisoosfu€ Li(Zo, Xo) and & > 0 be given. There exists ne N such that for the

conditional expectation operator E,('f’: Li(Zo, Xo)— Ly (,, X,) we have
IEZ S~ <ell4llgll+1],  j=1,...m.

We note that
9, EXOf> = @, ExX(Er2N)) = <Exl g, EnlfD-

-s X, ;€ Xo such that

There exist elements xi, ..., %, € Xo and x, j, ..

ky kp
X Xor _ . =
Ee)g= 3 X g Eefi= X Xy dey J=1ocm
i=1 A=

For i =1, ..., k, there exist elements y;e Hy, ||yl <|lgll., such that
[<x— i xi ) < e/[2(n(EM+1)],
kﬂ
For go:= Y, yi'xgmeF it follows that
i=1 : .
1<g—gos )1 < <9 = g0, EXOSD +3e
< CEx0g—go, B fpl+3e <.

j=1..,m
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Hence F is dense. If F = {gy, g2, ..., is an enumeration of F, then

&1 KgwS=h)l
"_12n1+|<£],,,f'—h>|

is a metrlc on C which defines a topology equivalent to ¢'. Now let

d(f, =

foeco K' . We want to show foeco K . According to Choquet’s theorem
[6 II, p. 140] there exists a nonnegative Borel measure v on the set ex C of
extreme points of C with v(ex C) =1 such that for all

ge(Ll (Zo, Xo)s 0 (Ll (Zos Xo), Loy (Zo, )) = L, (2o, Xo)
we have

4 9, fo)> = j'c . > ().

We consider the function

®:ex C— L(Zo, Xo), [rof.

Since & takes its values in the separable subspace L and since go® is
continuous on C and hence v-measurable for all gye L, (Z,, X;) (which is a
norming subspace of (L;(Xy, Xo), |I°]l)), @ is v-measurable by Pettis’
measurability criterion [7, p. 42]. Since & is also bounded, it is Bochner
integrable and we have from (5)

Jo= [ 2(Ndv ().

exC

This implies [7, p. 48]

fo= v(e)l( C)c‘f D(f)dv(f)eco(P(ex C))“ I P~ C)M. ‘

On the other hand, we have ex C = K [10, p. 440]. Hence fyeco K

(2) The general case is reduced to case (1) as follows. Let ﬁ;eco K By
Corollary 2, there exists a sequence (f,) = co K such that f, - f, in o’. Let Ky
be the countable set of those elements in K which are used for the convex

representation of the f,, ne N. We note that fyeco K KQ There exists a closed
separable subspace X, =X and a o-algebra I 1 <=2 such that Lg
=1L, (21, X} is separable and K, = L,. Hence also co K, < Ly and Cy

1=co KO is o’-compact. We show C, < L,. For each he C, there exists
again a sequence (h,) < co K, with h,— h in ¢’, Since the closed subspace X
is also weakly closed, we have jhdueX 1 for all AeZX and hence

e ||+ H

heL,(Z, X,). Similarly, since L, (Zl) is weakly closed in L,(X) we have
x'oheL((X;). By Pettis measurability criterion it follows that
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1) = LO Hence CO < Ly and by case (1)

-1l IR
= CO Ko ccoK .

hELl(Elv

foeco KO

The equality of the closures of the absolutely convex hull is proved in a
similar way.

An example, Let X = [, and S = [0, 1] with Lebesgue measure p. There
exist norm compact, absolutely convex sets K, and K, in L;(X) such that

(R

- a o
gspan K, =span K,  =span K, .
In fact, let (¢,) be the unit vector basis in [, and (r,) the sequence of

Rademacher functions on [0, 1]. For a sequence (z,) with z, > 0, ke N and

span K,

i z, =1 consider the sequence (f,) in L;(X) given by
k=1 )

1
fyi= n(z Zy egp-1+ry €s), NHEN.
k=1

Then f,— 0 in norm and since r,-e;,—0 in ¢’ [2, p. 300] we have

©0
- sz'ezk.—1=:f0 ing'.
k=1
o«
For any scalar sequence A:= (k) with ||/1||,1(w):=‘§1 |4d/k <oo and any

scalar A, we have

Aol < Z Ao+ Z zk+|”‘”ll(w) = H Zo/lnj;lnl
k=1 n=
k; (Ao'*‘ngk Zy" €1 +k=1 P

< ol + 211 M1y
This shows
u b d
K,i=aco {f, n=10,i+1,. _’ZMMZIM

nsm n=i

i = {5 1~—zmoi+z' ol =01

n nw=

' I, .
. To prove span K, =span Ko it is sufficient

is o'-closed. Any function ¢ in the ¢'-closure of

‘ o A
and hence f,éspan K,

to show that span Ko
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span K(,l ! has the form

g:

Tr1s

o A‘k
(o zi) ea— 1+ 2, ',;""k'ezu
k=1

with Y [4l/k < co "and
k=1

A Ay
0(1—1+...+Z‘~:~1'+0(k, k=2,3,...,
because this holds for any element in span K, Il If we let Zo = lim a, then
k-~
m w0 m .A" o ll“l .
lo= 3 afl = T - 3220 52 P
n=0 k=1 n=k 1 k=m+1
A
<2y ’—iclw~>0 (m— o0),
k=m+1

I
so that gespan K,

Proposiion 2. If-K is a o'-compact subset of L,(Z, X), then L
————]| || )

t=span K is A'-analytic (and hence Lindeldf) in its o'-topology.
Proof. Since aco K is o’-compact [3, p. 416] and coincides with

||| "
aco K by Proposition 1, we may assume that K is absolutely convex; so
1l
L=\ nK
n=1
Let x: L— L*' be the canonical isometric embedding. Since x(L) is norm
closed in L™’ we have

1

»L=N U (n-x(K)+—-B(L"’)).
meN neN m

Since the set n-x(K)+(1/m) B(L*" is compact, % (L) is #’-analytic in the

topology ¢(L*’, L'y and hence L is A-analytic in the topology o (L, L*)

[6 L p. 142] and a Lindelsf space [171.

6. Remarks.

L. In case X is generated by a countable algebra of = {4, A4,, ...} let

T t?e the locally convex topology of L, (Z, X) generated by the base of
0-neighbourhoods

1 n
{;ig G?, neN, meN}
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with the (L (Z, X'), Ly (X, X))-compact sets
i
Gii={Y X" X1, ..., ;e B(X")}, ieN.
j=1

Then (L, (Z, X), T )' = E(</, X') (space of X'-valued .o/-simple functions), 7~
is metrizable and J < t(L;(Z, X), E(</, X")). By a theorem of J. Dieudonné
and L. Schwartz [11, p. 39 (2)], (L (£, X), 0(Ly(Z, X), E(«/, X)) is angelic
and hence [11, p. 31 (2)] (L, (£, X), o) is angelic. This follows also from the
representation
Lo (2, X)=U UnG ot e
neN ieN

and a theorem of W. F. Eberlein and Yu. L. Shmul'yan [11, p. 38]. These
arguments, however, seem to be restricted to the case of a countably
generated c-algebra .

2. One of us (G. S.) has recently constructed a o’-compactly generated

space [, for which there does not exist a o'-compact subset K, such that

References

[1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces,
Ann. of Math. 88 (1968), 34--46, '

[2] J. Batt, On weak compactness in spaces of vector-valued measures and Bochner integrable
Junctions in connection with the Radon-Nikodym property of Banach spaces, Rev. Roumaine
Math, Pures Appl. 19 (1974), 285-304.

[3] J. Batt and W. Hiermeyer, On compactness in L,(u, X) in the weak topology and in the
topology a(L,(1t, X), L,(4, X)), Math. Z. 182 (1983), 409-423. ;

[4] Y.Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets
of Banach spaces, Pacific J. Math. 70 (1977), 309-324, ’

[5] Y. Benyamini and T. Starbird, Embedding weakly compact sets into Hilbert space,
Israel J. Math. 23 (1976), 137-141.

[6] G. Choquet, Lectures on Analysis 1, 11, W. A, Benjamin, Amsterdam 1969.

[7] J. Diestel and J. Uhl jr, Vector Measures, Math, Surveys 15, Amer. Math. Soc.,
Providence, R.I. 1977.

[8F ). Diestel, Geometry of Banach Spaces ~ Selected Thpics, Lecture Notes in Math, 485,
Springer, Berlin-Heidelberg-New York 1975

[9] N. Dinculeanu, Veetor Measures, Pergamon, New York 1967,

[10] N.Dunfordandl). T.Schwartz Linear Operators, Part I: General Theory, Interscience, New
York 1966, :

[117 K. Floret, Weakly Compact Sets, Lecture Notes in Math, 801, Springer, Berlin-Heidelberg--
New York 1980,

[12] W.Govaerts, 4 productive class of angelic spaces, J. London Math, Soc. (2) 22 (1980), 355
364. o

[13] P. R. Halmos, Measure Theory, Van Nostrand, New York 1950,
{14] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981,


GUEST


250 J. Batt and G. Schliichtermann

[15] R. J. Hunter and J. Lloyd, Weakly compactly generated locally convex spaces, Math.
Proc. Cambridge Philos. Soc. 82 (1977), 85-98.

[16] E. Michael and M.E. Rudin, 4 note on Eberlein compacts, Pacific J. Math. 72 (1977),
487-495.

[17] M. Sion, On analytic sets in topological spaces, Trans. Amer. Math. Soc. 96 (1960), 341-
353.

[18] M. Talagrand, Sur une conjecture de H.H. Corson, Bull. Sci. Math. 99 (1975), 211-212.

MATHEMATISCHES INSTITUT DER UNIVERSITAT MUNCHEN
Theresicnstr. 39, D 8000 Mtinchen 2, Federal Republic of Germany

Received August 13, 1984 (1992)

icm®

STUDIA MATHEMATICA, T. LXXXIII (1986)

Good /) inequalities for the area integral and
the nontangential maximal function
by
TAKAFUMI MURAI (Nagoya) and AKIHITO UCHIYAMA* (Sendai)

Abstract. We refine the constants of the good 1 inequalities for the area integral A(x) and
the nontangential maximal function N (x). As an application we refine the inequalities concerning
A(x)/N (x) and N(x)/A(x) which were obtained by R. Fefferman, Gundy, Silverstein and Stein.

1. Introduction. Throughout the paper, functions considered are real-
valued. Let d > 1 be an integer. Let u(y, t) be a harmonic function in the
(d +1)-dimensional Euclidean half-space

' RV ={(y,0): yeR, t>0).

For o >0 and xe RY, let
N(x, o) =sup{lu(y, l: (y, el (x, a)},
Al )= { [[ |Puly, o) et~ 4dyde)'

Ixy0)
where
I(x,0) ={(y, )e RE" " |x—y| <ar}.

These functions N and A are usually called the nontangential maximal
function and the area integral, respectively.

In [4], R. Fefferman, Gundy, Silverstein and Stein showed that if A > 0,
y>2 k>1 and if f# is sufficiently large, then

(LD [{xe R: A@x, 1) > 94, N(x, B) S A} € Cy~*|{xe R A(x, 1) > 1),
(L2){xe R W(x, 1) >4, Alx, <A < Cyy *{xe RS N(x, 1) > 4],

where ('; is a positive constant depending only on f, k and d and where |{ -}
denotes the Lebesgue measure of the set { -}, Their argument is a refinement
of Burkholder and Gundy [1]. Distribution function inequalities of this kind
are called good 1 inequalities.

* Both authors supported in part by Grant-in-Aid for Scientific Research (No, 59540109,
No. 59740063 and No. 59740056), Japan.
AMS (MOS) subject classification (1980): 42 B 25.
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