250

J. Batt and G. Schlüchtermann

- cm[©]
- [15] R. J. Hunter and J. Lloyd, Weakly compactly generated locally convex spaces, Math. Proc. Cambridge Philos. Soc. 82 (1977), 85-98.
- [16] E. Michael and M. E. Rudin, A note on Eberlein compacts, Pacific J. Math. 72 (1977), 487-495.
- [17] M. Sion, On analytic sets in topological spaces, Trans. Amer. Math. Soc. 96 (1960), 341-353
- [18] M. Talagrand, Sur une conjecture de H. H. Corson, Bull. Sci. Math. 99 (1975), 211-212.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Theresienstr. 39, D 8000 München 2, Federal Republic of Germany

Received August 13, 1984

(1992)

STUDIA MATHEMATICA, T. LXXXIII. (1986)

Good λ inequalities for the area integral and the nontangential maximal function

by

TAKAFUMI MURAI (Nagoya) and AKIHITO UCHIYAMA* (Sendai)

Abstract. We refine the constants of the good λ inequalities for the area integral A(x) and the nontangential maximal function N(x). As an application we refine the inequalities concerning A(x)/N(x) and N(x)/A(x) which were obtained by R. Fefferman, Gundy, Silverstein and Stein.

1. Introduction. Throughout the paper, functions considered are real-valued. Let $d \ge 1$ be an integer. Let u(y, t) be a harmonic function in the (d+1)-dimensional Euclidean half-space

$$\mathbf{R}_{+}^{d+1} = \{(v, t): v \in \mathbf{R}^{d}, t > 0\}.$$

For $\alpha > 0$ and $x \in \mathbb{R}^d$, let

$$N(x, \alpha) = \sup \{ |u(y, t)| : (y, t) \in \Gamma(x, \alpha) \},$$

$$A(x, \alpha) = \{ \iint_{I(x, \alpha)} |\nabla u(y, t)|^2 t^{1-d} dy dt \}^{1/2},$$

where

$$\Gamma(x, \alpha) = \{(y, t) \in \mathbf{R}_{+}^{d+1} : |x-y| < \alpha t\}.$$

These functions N and A are usually called the nontangential maximal function and the area integral, respectively.

In [4], R. Fefferman, Gundy, Silverstein and Stein showed that if $\lambda > 0$, $\gamma > 2$, k > 1 and if β is sufficiently large, then

$$(1.1)|\{x \in \mathbf{R}^d \colon A(x, 1) > \gamma \lambda, N(x, \beta) \le \lambda\}| \le C_1 \gamma^{-k}|\{x \in \mathbf{R}^d \colon A(x, 1) > \lambda\}|,$$

$$(1.2)|\{x \in \mathbf{R}^d : N(x, 1) > \gamma \lambda, A(x, \beta) \le \lambda\}| \le C_1 \gamma^{-k}|\{x \in \mathbf{R}^d : N(x, 1) > \lambda\}|,$$

where C_1 is a positive constant depending only on β , k and d and where $|\{\cdot\}|$ denotes the Lebesgue measure of the set $\{\cdot\}$. Their argument is a refinement of Burkholder and Gundy [1]. Distribution function inequalities of this kind are called $good \ \lambda$ inequalities.

^{*} Both authors supported in part by Grant-in-Aid for Scientific Research (No. 59540109, No. 59740063 and No. 59740056), Japan.

AMS (MOS) subject classification (1980); 42 B 25.

Good \(\lambda\) inequalities

From (1.1) and (1.2), it was shown in [4] that if k > 1, β is sufficiently large and if 0 , then

(1.3)
$$\int_{\mathbb{R}^d} \{ (A(x, 1)/N(x, \beta))^k A(x, 1) \}^p dx \le C_2 \int_{\mathbb{R}^d} A(x, 1)^p dx,$$

(1.4)
$$\int_{\mathbb{R}^d} \left\{ (N(x, 1)/A(x, \beta))^k N(x, 1) \right\}^p dx \le C_2 \int_{\mathbb{R}^d} N(x, 1)^p dx,$$

where C_2 is a positive constant depending only on β , k, p and d. These inequalities seem to give certain estimates on the growth of the ratios A/N and N/A.

In this paper we refine γ^{-k} in (1.1) and (1.2) into the forms of $\exp(-c\gamma^2)$ and $\exp(-c\gamma)$ respectively, where $\exp(\lambda) = e^{\lambda}$.

THEOREM 1. Let u(y, t) be a harmonic function defined on \mathbb{R}^{d+1} . Let

$$(1.5) 0 < \alpha < \beta,$$

 $\lambda > 0$, and $\gamma > 1$. Then

$$(1.6) \quad |\{x \in \mathbf{R}^d \colon A(x, \alpha) > \gamma \lambda, N(x, \beta) \leqslant \lambda\}|$$

$$\leq C_3 \exp(-c_4 \gamma^2) |\{x \in \mathbf{R}^d \colon A(x, \alpha) > \lambda\}|,$$

$$(1.7) \quad |\{x \in \mathbf{R}^d \colon N(x, \alpha) > \gamma \lambda, \ A(x, \beta) \leqslant \lambda\}|$$

$$\leq C_3 \exp(-c_4 \gamma) |\{x \in \mathbf{R}^d \colon N(x, \alpha) > \lambda\}|.$$

where C_3 and c_4 are positive constants depending only on α , β and d.

As a consequence of the above theorem we can refine (1.3) and (1.4) as follows.

Corollary 1. Assume all the conditions in Theorem 1. Let $p \in (0, +\infty)$. Then

(1.8)
$$\int_{\mathbb{R}^d} \exp \left\{ c_5 A(x, \alpha)^2 / N(x, \beta)^2 \right\} A(x, \alpha)^p dx \leqslant C_6 \int_{\mathbb{R}^d} A(x, \alpha)^p dx,$$
(1.9)
$$\int_{\mathbb{R}^d} \exp \left\{ c_5 N(x, \alpha) / A(x, \beta) \right\} N(x, \alpha)^p dx \leqslant C_6 \int_{\mathbb{R}^d} N(x, \alpha)^p dx,$$

where $c_5 = c_4/32$ and C_6 is a positive constant depending only on α , β , p and d.

Remark. As for the maximal singular integral operator and the Hardy-Littlewood maximal function, a good λ inequality with the constant of exponential type was obtained by R. Coifman [2]. See also R. Hunt [7].

Acknowledgement. The second author would like to thank Mr. Shûichi Sato for his beautiful lecture on the results of [4]. The authors would like to thank the referee for the very careful reading of our manuscript.

2. Preliminaries.

Notation. For a measurable set E, χ_E denotes its characteristic function. For $x \in \mathbb{R}^d$, r > 0 and $\alpha > 0$, let

$$B(x, r) = \{ y \in \mathbf{R}^d : |x - y| < r \},$$

$$Q(B(x, r)) = \{ (y, t) \in \mathbf{R}^{d+1} : y \in B(x, r), t \in (0, r) \},$$

$$\Gamma(x, \alpha, r) = \{ (y, t) \in \Gamma(x, \alpha) : t \in (0, r) \},$$

$$\Gamma(x, \alpha, r)' = \{ (y, t) \in \Gamma(x, \alpha) : t \ge r \}.$$

For the sake of convenience we define the supremum of the empty set to be zero (not $-\infty$). Let $N = \{1, 2, 3, ...\}$ and $Z = \{0, \pm 1, \pm 2, ...\}$. The letter C denotes various positive constants that depend only on α , β and d unless otherwise explicitly stated.

DEFINITION 2.1. For $f \in L^1_{loc}(\mathbf{R}^d)$ and for a positive measure ν defined on \mathbf{R}^{d-1}_+ let

$$||f||_{\text{BMO}} = \sup_{B} \inf_{a \in \mathbb{R}} \int_{B} |f(x) - a| \, dx/|B|, \quad ||v||_{c} = \sup_{B} v(Q(B))/|B|,$$

where the supremum is taken over all balls B in R^d .

LEMMA 2.1. Let $f \in L^1_{loc}(\mathbf{R}^d)$,

$$(2.1) ||f||_{\mathsf{BMO}} \leqslant 1$$

and $\gamma > 1$. Then

$$(2.2) |\{x \in \mathbf{R}^d : f(x) > \gamma\}| \le Ce^{-c\gamma} |\{x \in \mathbf{R}^d : f(x) > 1\}|,$$

where C and c are positive constants depending only on d. Proof. We may assume

$$(2.3) |\{x \in \mathbf{R}^d : f(x) > 1\}| < +\infty.$$

Let $\{I_i\}_{i\in\mathbb{N}}$ be the maximal dyadic cubes in \mathbb{R}^d such that

$$(2.4) |\{x \in I_i: f(x) > 1\}|/|I_i| > 1/2.$$

Condition (2.3) implies

$$(2.5) \qquad \bigcup_{l \in \mathbb{N}} I_l \supset \{x \in \mathbb{R}^d \colon f(x) > 1\} \quad \text{a.e.}$$

Let I_i^* be the dyadic double of I_i . Then the maximality of I_i implies

$$|\{x \in I_i^*: f(x) \le 1\}|/|I_i^*| \ge 1/2,$$

which combined with (2.1) implies

$$\int_{I_i^*} f(x) \, dx / |I_i^*| \leqslant C,$$

Good \(\lambda\) inequalities

255

which again combined with (2.1) implies

$$(2.6) \qquad \qquad \int\limits_{I_i} f(x) \, dx / |I_i| \leqslant C,$$

where the two C's are not the same. Applying the result of John-Nirenberg [8] to each I_i , we get

$$|\{x \in \mathbb{R}^d \colon f(x) > \gamma\}| = \sum_{i \in \mathbb{N}} |\{x \in I_i \colon f(x) > \gamma\}| \quad \text{by (2.5)}$$

$$\leq \sum_{i \in \mathbb{N}} Ce^{-c\gamma} |I_i| \quad \text{by (2.6) and [8]}$$

$$\leq Ce^{-c\gamma} 2|\{x \in \mathbb{R}^d \colon f(x) > 1\}| \quad \text{by (2.4).} \quad \blacksquare$$

3. **Proof of (1.6).** Let r > 0,

$$\Omega = \left\{ x \in \mathbf{R}^d \colon N(x, \beta) > 1 \right\},
W = \bigcup_{\mathbf{x} \in \Omega^2} \Gamma(x, \alpha),
\mathscr{A}(x)^2 = \iint_{W \cap \Gamma(\mathbf{x}, \alpha)} |\nabla u(y, t)|^2 t^{1-d} \, dy \, dt,
\mathscr{A}_r(x)^2 = \iint_{W \cap \Gamma(\mathbf{x}, \alpha, r)} |\nabla u(y, t)|^2 t^{1-d} \, dy \, dt,
\mathscr{A}_r'(x)^2 = \iint_{W \cap \Gamma(\mathbf{x}, \alpha, r)} |\nabla u(y, t)|^2 t^{1-d} \, dy \, dt.$$

In all the lemmas in this section the above notation is used.

LEMMA 3.A. Assume all the conditions in Theorem 1. Let $(y, t) \in W$. Then

$$(3.1) |u(y,t)| \leq 1,$$

$$(3.2) |\nabla u(v, t)t| \le C,$$

where C is a constant depending only on α , β and d.

Inequality (3.1) is clear. Inequality (3.2) follows from [9, p. 207, Lemma]. Lemma 3.B. Assume all the conditions in Theorem 1. Then

(3.3)
$$|||\nabla u(y, t)|^2 \chi_{W}(y, t) t \, dy \, dt||_{c} \leq C,$$

where C is a constant depending only on α , β and d.

This is essentially proved in [1].

Proof. Take any ball $B = B(x_0, r_0)$. Let $\varepsilon \in (0, r_0)$. Applying Green's theorem to each connected component of the open set

$$\mathscr{R} = \mathscr{R}_{\varepsilon} = W \cap \{(y, t) : |x_0 - y| < r_0 + \alpha t, \ \varepsilon < t < r_0\},$$

we have

(3.4)
$$2 \iint_{\mathcal{H}} |\nabla u(y, t)|^2 t \, dy \, dt \leqslant \int_{\mathcal{C}, \mathcal{H}} \{|u|^2 + |u| |\nabla u| \, t\} \, d\sigma$$
$$\leqslant \int_{\mathcal{C}, \mathcal{H}} C \, d\sigma \quad \text{by (3.1) and (3.2)}$$
$$\leqslant C |B|$$

by the Lipschitz continuity of ∂W , where $d\sigma$ denotes the surface element in \mathbb{R}^{d+1} and $\partial \mathscr{R}$ the boundary of \mathscr{R} . (If $\partial \mathscr{R}$ is not smooth enough to apply Green's theorem, then we approximate each connected component of \mathscr{R} by subregions with very smooth boundaries. See [9, p. 206, Lemma]. Then a limiting argument gives $\iint |Vu|^2 t \, dy \, dt \leqslant C|B|$.) Letting $\varepsilon \to +0$ in

(3.4), we have

$$\iint\limits_{W\cap Q(B)} |\nabla u|^2 t \, dy \, dt \leqslant \lim\limits_{\varepsilon \to +0} \iint\limits_{\mathscr{U}_{\varepsilon}} |\nabla u|^2 t \, dy \, dt \leqslant C|B|,$$

which implies the desired result.

Lemma 3.1. Assume all the conditions in Theorem 1. Assume that $\mathcal{A}(x) \not\equiv +\infty$. Let r > 0. Then $\mathcal{A}'_r(x) < +\infty$ for any $x \in \mathbb{R}^d$ and

$$(3.5) |\mathscr{A}'_r(x)|^2 - \mathscr{A}'_r(z)^2| \le C|x - z|/r$$

for any x, $z \in \mathbb{R}^d$, where C is a constant depending only on α , β and d.

Proof. Note that

$$\iint_{W \cap (I(x,\alpha,r)^{*} \sim I(z,\alpha,r)^{*})} |\nabla u(y,t)|^{2} t^{1-d} dy dt$$

$$\leq \int_{r}^{+\infty} C t^{-1-d} |\{y \in \mathbf{R}^{d} : (y,t) \in \Gamma(x,\alpha,r)^{t} \sim \Gamma(z,\alpha,r)^{t}\}| dt \quad \text{by (3.2)}$$

$$\leq \int_{r}^{+\infty} C t^{-1-d} |x-z| t^{d-1} dt \leq C|x-z|/r$$

for any $x, z \in R^d$, where \sim denotes the symmetric difference. The desired conclusion follows easily from the above inequality.

LEMMA 3.2. Assume all the conditions in Theorem 1. If $\mathcal{A}(x) \not\equiv +\infty$, then

$$||.\sqrt{2}||_{\text{BMO}} \leqslant C$$
,

where C is a constant depending only on α , β and d.

Proof. Take any ball $B = B(x_0, r_0)$. Since $\mathcal{A}^2 = \mathcal{A}_{r_0}^2 + \mathcal{A}_{r_0}^{\prime 2}$ and since

$$|\mathscr{A}'_{r_0}(x_0)^2 - \mathscr{A}'_{r_0}(x)^2| \le C$$

for any $x \in B$ by (3.5), we get

$$\inf_{a \in \mathbb{R}} \iint_{B} |\mathscr{A}(x)^{2} - a| \, dx \leqslant \iint_{B} \{\mathscr{A}_{r_{0}}(x)^{2} + C\} \, dx$$

$$\leqslant C \iint_{W \cap Q(B(x_{0}, (1 + a)r_{0}))} |\nabla u|^{2} t \, dy \, dt + C |B|$$

$$\leqslant C|B| \quad \text{by (3.3).} \quad \blacksquare$$

Proof of (1.6). We give the proof in the case $\lambda = 1$; consider $u(y, t)/\lambda$ if necessary. We have

(3.6)
$$\begin{aligned} & |\{x \in \mathbf{R}^d \colon A(x, \alpha) > \gamma, N(x, \beta) \le 1\}| \\ & = |\{x \in \Omega^c \colon A(x, \alpha) > \gamma\}| \\ & \le |\{x \in \mathbf{R}^d \colon \mathscr{A}(x)^2 > \gamma^2\}| \quad \text{since } A(x, \alpha) = \mathscr{A}(x) \text{ for } x \in \Omega^c \\ & \le C \exp(-c\gamma^2)|\{x \in \mathbf{R}^d \colon \mathscr{A}(x)^2 > 1\}| \quad \text{by Lemmas 2.1 and 3.2} \\ & \le C \exp(-c\gamma^2)|\{x \in \mathbf{R}^d \colon A(x, \alpha) > 1\}| \quad \text{by } \mathscr{A}(x) \le A(x, \alpha). \quad \blacksquare \end{aligned}$$

4. Proof of (1.7). Let r > 0, $B = B(x_0, r_0)$,

$$\omega = \{x \in \mathbf{R}^d : A(x, \beta) > 1\},\$$

$$w = \bigcup_{x \in \omega^c} \Gamma(x, \alpha),\$$

$$n(x) = \sup\{|u(y, t)| : (y, t) \in w \cap \Gamma(x, \alpha)\},\$$

$$n_r(x) = \sup\{|u(y, t)| : (y, t) \in w \cap \Gamma(x, \alpha, r)\},\$$

$$n'_r(x) = \sup\{|u(y, t)| : (y, t) \in w \cap \Gamma(x, \alpha, r)'\},\$$

$$u_B(y, t) = u(y, t) - u(x_0, (1 + 2\alpha)r_0/\alpha),\$$

$$n_B(x) = \sup\{|u_B(y, t)| : (y, t) \in w \cap \Gamma(x, \alpha, r_0)\}.$$

In all the lemmas in this section the above notation is used.

LEMMA 4.1. If $w \neq \emptyset$, then there exists a nonnegative function $\theta_0(x)$ defined on \mathbf{R}^d such that

(4.1)
$$w = \{ (y, t) \in \mathbb{R}_+^{d+1} \colon \theta_0(y) < t \},$$

and that

$$(4.2) |\theta_0(x) - \theta_0(z)| \le |x - z|/\alpha$$

for any $x, z \in \mathbb{R}^d$.

This is an easy geometrical property of the region w.

LEMMA 4.2. Let $x_0 \in \mathbb{R}^d$ and $r_0 > 0$. Let $w \cap \Gamma(x, \alpha, r_0) \neq \emptyset$ for some

 $x \in B(x_0, r_0)$. Then

(4.3)
$$(x_0, (1+2\alpha)r_0/\alpha) \in w.$$

Proof. Let $(y_0, t_0) \in w \cap \Gamma(x, \alpha, r_0)$. Then

$$|x_0 - y_0| \le |x_0 - x| + |x - y_0| < r_0 + \alpha t_0 \le \alpha \{(1 + 2\alpha)r_0/\alpha - t_0\}.$$

Thus the point $(x_0, (1+2\alpha)r_0/\alpha)$ is contained in the cone

$$\{(y, t) \in \mathbb{R}^{d+1}_+: t > t_0, |y-y_0| \le \alpha(t-t_0)\},$$

which is contained in w by the geometrical property of w.

LEMMA 4.A. Assume all the conditions in Theorem 1. Let $(y, t) \in w$. Then

$$|\nabla u(y,t)t| \leqslant C,$$

where C is a constant depending only on α , β and d.

This is an easy consequence of the harmonicity of Vu (cf. [9, p. 207]). LEMMA 4.B. Assume all the conditions in Theorem 1. Then

(4.5)
$$|||\nabla u(y, t)|^2 \chi_w(y, t) t \, dy \, dt||_c \leqslant C,$$

where C is a constant depending only on α , β and d.

This is essentially shown in [4].

Proof. We put

$$a(x)^{2} = \iint_{w \cap I(x,(\theta-\alpha)/2)} |\nabla u(y, t)|^{2} t^{1-4} dy dt.$$

Let $x \in \mathbb{R}^d$ and let z be the point of ω^c closest to x. Since $\Gamma(x, (\beta -\alpha)/2) \cap w \subset \Gamma(z, \beta)$, we get

$$(4.6) a(x)^2 \leq 1.$$

(This geometrical observation is pointed out in [4, p. 7959].) Let B be any ball. Then, by (4.6), we get

$$\iint\limits_{W \cap Q(B)} |\nabla u(y, t)|^2 t \, dy \, dt \leqslant C \iint\limits_{B} a(x)^2 \, dx \leqslant C |B|$$

which implies (4.5).

Lemma 4.C. Assume all the conditions in Theorem 1. Let $B = B(x_0, r_0)$ and $\gamma > 0$. Then

$$|\{x \in B: \ n_B(x) > \gamma\}| \leqslant C\gamma^{-2} |B|,$$

where C is a constant depending only on α , β and d.

This is essentially proved in [1] and [4].

Proof. We may assume that $\gamma > 0$ is large enough. We may also assume that $w \cap \Gamma(x, \alpha, r_0) \neq \emptyset$ for some $x \in B$. Then (4.3) holds by Lemma 4.2.

Good \(\lambda\) inequalities

In the following, $\theta_0(x)$ denotes the function obtained by Lemma 4.1. Let $x \in B$ and let $n_B(x) > \gamma$. Then there exists

$$(4.8) (z, s) \in w \cap \Gamma(x, \alpha, r_0)$$

such that

$$(4.9) |u_B(z, s)| > \gamma.$$

Since the line segment joining (z, s) and $(x_0, (1+2\alpha)r_0/\alpha)$ is contained in w, (4.4) implies

$$C \log \{((1+2\alpha)r_0/\alpha)/s\} > \gamma.$$

Since γ is large enough, this implies

$$(4.10) 3s < r_0.$$

The geometrical property of w and (4.8) imply $B(x, \alpha s) \times \{3s\} \subset w$, i.e.,

Since the line segment joining (z, s) and any point of $B(x, \alpha s) \times \{3s\}$ is contained in w, (4.4) and (4.9) imply that

$$(4.12) |u_B(y, 3s)| > \gamma - C \text{for any } y \in B(x, \alpha s).$$

Namely, if $x \in B$ and if $n_B(x) > \gamma$, then we can find a ball $B(x, \alpha s)$ that satisfies (4.10)-(4.12). Hence, by Stein [9, p. 9, Lemma], there exists a finite sequence of balls $\{B(x_i, \alpha s_i)\}_{i=1}^m$ such that $x_i \in B$,

$$(4.10)'$$
 $3s_i < r_0$

$$(4.11)' \theta_0(y) < 3s_i \text{for any } y \in B(x_i, \alpha s_i),$$

$$(4.12)' |u_B(y, 3s_i)| > \gamma - C \text{for any } y \in B(x_i, \alpha s_i).$$

$$(4.13) B(x_i, 2\alpha s_i) \cap B(x_j, 2\alpha s_j) = \emptyset, i \neq j,$$

$$|\{x \in B \colon n_B(x) > \gamma\}| \leqslant C \left|B \cap \bigcup_{i=1}^m B(x_i, \alpha s_i)\right|.$$

For $1 \le i \le m$ let

$$\theta_{i}(y) = \begin{cases} 3s_{i} & \text{if } y \in B(x_{i}, \alpha s_{i}), \\ 6s_{i} - 3|y - x_{i}|/\alpha & \text{if } y \in B(x_{i}, 2\alpha s_{i}) \setminus B(x_{i}, \alpha s), \\ 0 & \text{otherwise.} \end{cases}$$

Let

$$\tilde{\theta}(y) = \begin{cases} 0 & \text{if } y \in B, \\ |y - x_0|/\alpha - r_0/\alpha & \text{otherwise.} \end{cases}$$

and let

$$\theta(y) = \max \{ \varepsilon, \, \tilde{\theta}(y), \, \theta_0(y), \, \theta_1(y), \, \theta_2(y), \, \dots, \, \theta_m(y) \},\,$$

where

$$\varepsilon = \min \left\{ 3s_i \colon 1 \leqslant i \leqslant m \right\}.$$

Note that if $1 \le i \le m$ and if $y \in B(x_i, \alpha s_i) \cap B$, then

$$\theta(y) = \theta_i(y) = 3s_i$$

by (4.11) and by the disjointness of {the support of θ_i } $_{1 \le i \le m}$ (recall (4.13)). Note that

(4.16)
$$|\{x \in B: \ n_B(x) > \gamma\}| \le C \left|B \cap \bigcup_{i=1}^m B(x_i, \alpha s_i)\right| \quad \text{by (4.14)}$$

$$\le C \left|\{x \in B: \ \theta(x) < r_0, \ \left|u_B(x, \theta(x))\right| > \gamma - C\}\right|$$

$$\text{by (4.15), (4.10)' and (4.12)'}.$$

Let
$$\mathcal{R} = \{(y, t) \in \mathbb{R}^{d+1}_+ : \theta(y) < t < r_0\}$$
. Then

$$\mathscr{R} \subset w \cap \{B(x_0, (1+\alpha)r_0) \times (0, r_0)\}$$

by
$$\theta(y) \ge \max \{\theta_0(y), \tilde{\theta}(y)\}$$
. Let

$$\partial^+ = \{(y, r_0) \in \partial \mathcal{H} \colon y \in \mathbf{R}^d\},$$

$$\partial^{-} = \{ (y, t) \in \partial \mathcal{R} \colon y \in \mathbf{R}^{d}, t < r_{0} \} = \{ (y, \theta(y)) \colon y \in \mathbf{R}^{d}, \theta(y) < r_{0} \}.$$

Since the line segment joining $(x_0, (1+2\alpha)r_0/\alpha)$ and any point of ∂^+ is contained in w, (4.4) implies

$$(4.18) |u_B(y, r_0)| \leq C \text{for any } (y, r_0) \in \partial^+.$$

Therefore, applying Green's theorem to each connected component of the open set \mathcal{M} , we have

$$\int_{\partial^{+}} |u_{B}|^{2} d\sigma \leq C \iint_{\mathcal{A}} |\nabla u|^{2} t \, dy \, dt
+ C \iint_{\partial^{+}} \{|u_{B}|^{2} + |u_{B}| |\nabla u| \, t\} \, d\sigma + C \iint_{\partial^{-}} |u_{B}| |\nabla u| \, t \, d\sigma
\leq C \iint_{w \cap Q(B(x_{0},(1+\alpha)r_{0}))} |\nabla u|^{2} t \, dy \, dt
+ C \iint_{\partial^{+}} d\sigma + C \iint_{\partial^{-}} |u_{B}| \, d\sigma \quad \text{by (4.17), (4.18) and (4.4)}
\leq C |B| + C |B|^{1/2} \{ \iint_{\partial^{-}} |u_{B}|^{2} \, d\sigma \}^{1/2}$$

by (4.5), the Lipschitz continuity of θ and by Hölder's inequality. Thus

$$\int_{a^{-}} |u_{B}|^{2} d\sigma \leqslant C|B|,$$

which, combined with (4.16), implies (4.7). (If $\partial \mathcal{H}$ is not smooth enough to apply Green's theorem, then we approximate each connected component of \mathcal{H} by subregions with very smooth boundaries. See [9, p. 206, Lemma]. Then a limiting argument gives the desired result.)

Lemma 4.3. Assume all the conditions in Theorem 1. Assume that $n(x) \not\equiv +\infty$. Let r>0. Then $n'_r(x) < +\infty$ for any $x \in \mathbb{R}^d$ and

$$(4.19) |n'_r(x) - n'_r(z)| \le C |x - z|/r$$

for any $x, z \in \mathbb{R}^d$, where C is a constant depending only on α , β and d.

Proof. If $(y, t) \in w \cap \Gamma(x, \alpha, r)'$, then we get

$$(y+(z-x)/2, t+|z-x|/2\alpha) \in w \cap \Gamma(z, \alpha, r)'$$

by the geometrical property of w, and

$$|u(y, t) - u(y + (z - x)/2, t + |z - x|/2\alpha)| \le C|x - z|/r$$

by (4.4) and by $t \ge r$. The desired conclusion follows easily from this observation.

LEMMA 4.4. Assume all the conditions in Theorem 1. If $n(x) \not\equiv +\infty$, then

$$||n||_{BMO} \leq C$$

where C is a constant depending only on α , β and d.

Proof. Take any ball $B = B(x_0, r_0)$. By Lemma 4.2 we can take $r_1 \in \{r_0, (1+2\alpha)r_0/\alpha\}$ so that

$$(4.20) w \cap \Gamma(x, \alpha, r_1) = \emptyset \text{for any } x \in B$$

or that

$$(4.21) w \cap \Gamma(x, \alpha, r_1) \neq \emptyset \text{for any } x \in B.$$

Since

$$n(x) = \max \{n_{r_1}(x), n'_{r_1}(x)\}$$

and since

$$|n'_{r_1}(x_0)-n'_{r_1}(x)| \leq C$$

for any $x \in B$ by (4.19), we get

$$\inf_{a \in \mathbf{R}} \int_{B} |n(x) - a| \, dx \le \inf_{a \in \mathbf{R}} \int_{B} |\max \{ n_{r_1}(x), \, n'_{r_1}(x_0) \} - a| \, dx + C \, |B|$$

$$\leq \inf_{a \in \mathbf{R}} \int_{B} |n_{r_1}(x) - a| dx + C |B| = (4.22) + C |B|.$$

In the case (4.20), we get (4.22) = 0. In the case (4.21), we get

which implies the desired result.

 $\leq C|B|$ by (4.7),

Proof of (1.7). We give the proof only in the case $\lambda = 1$. We have

$$(4.23) \quad |\{x \in \mathbf{R}^d \colon N(x, \alpha) > \gamma, A(x, \beta) \le 1\}|$$

$$= |\{x \in \omega^c \colon N(x, \alpha) > \gamma\}|$$

$$\leq |\{x \in \mathbf{R}^d \colon n(x) > \gamma\}| \quad \text{since } N(x, \alpha) = n(x) \text{ for } x \in \omega^c$$

$$\leq C \exp(-c\gamma)|\{x \in \mathbf{R}^d \colon n(x) > 1\}| \quad \text{by Lemmas } 2.1 \text{ and } 4.4$$

$$\leq C \exp(-c\gamma)|\{x \in \mathbf{R}^d \colon N(x, \alpha) > 1\}| \quad \text{by } n(x) \leq N(x, \alpha). \blacksquare$$

5. Proofs of (1.8) and (1.9). Since the proofs of (1.8) and (1.9) are very similar, we prove only (1.8). We follow the argument in [4]. Then

(5.1)
$$\int_{\mathbb{R}^{d}} \exp \left\{ \frac{1}{32} c_4 A(x, \alpha)^2 / N(x, \beta)^2 \right\} A(x, \alpha)^p dx$$

$$\leq \sum_{l \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \int_{E_{l,j}} \exp \left\{ \frac{1}{32} c_4 A(x, \alpha)^2 / N(x, \beta)^2 \right\} A(x, \alpha)^p dx + C \int_{\mathbb{R}^{d}} A(x, \alpha)^p dx,$$

where

$$E_{l,l} = \{ x \in \mathbb{R}^d \colon 2^l < A(x, \alpha) \le 2^{l+1}, 2^{l-j-1} < N(x, \beta) \le 2^{l-j} \}.$$

By (1.6), we have with $\tau(\lambda) = |\{x \in \mathbb{R}^d : A(x, \alpha) > \lambda\}|$,

$$|E_{l,j}| \leq C_3 \exp(-c_4 2^{2j}) \tau(2^{l-j})$$

so that the first quantity in the right-hand side of (5.1) is dominated by:

$$\begin{split} &\leqslant \sum_{l \in \mathbb{Z}} \sum_{j \in \mathbb{N}} \exp(\frac{1}{32} c_4 \, 2^{2(j+2)}) \, 2^{(l+1)p} C_3 \exp(-c_4 \, 2^{2j}) \tau(2^{l-j}) \\ &= C_3 \, 2^p \sum_{l \in \mathbb{Z}} \sum_{j \in \mathbb{N}} 2^{lp} \exp(-\frac{1}{2} c_4 \, 2^{2j}) \tau(2^{l-j}) \\ &: = C_3 \, 2^p \sum_{l \in \mathbb{Z}} \sum_{j \in \mathbb{N}} 2^{(l-j)p} \tau(2^{l-j}) \, 2^{jp} \exp(-\frac{1}{2} c_4 \, 2^{2j}) \\ &= C_3 \, 2^p \sum_{m \in \mathbb{Z}} 2^{mp} \tau(2^m) \sum_{j \in \mathbb{N}} 2^{jp} \exp(-\frac{1}{2} c_4 \, 2^{2j}) \\ &= C_p \sum_{m \in \mathbb{Z}} 2^{mp} \tau(2^m) \leqslant C_p \int_{\mathbb{R}^d} A(x, \alpha)^p \, dx, \end{split}$$

where C_p denotes positive constants depending only on α , β , p and d. This gives (1.8).

References

- [1] D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44 (1972), 527-544.
- [2] R. R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838–2839.
- [3] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [4] R. Fefferman, R. F. Gundy, M. Silverstein and E. M. Stein, Inequalities for ratios of functionals of harmonic functions, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), 7958-7960.
- [5] R. F. Gundy, The density of the area integral, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadworth Math. Ser. Wadworth, Belmont, Calif. 1983, 138-149.
- [6] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh-Paley series, Studia Math. 49 (1974), 107-124.
- [7] R. A. Hunt, An estimate of the conjugate function, ibid. 44 (1972), 371-377.
- [8] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
- [9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970.

DEPARTMENT OF MATHEMATICS COLLEGE OF GENERAL EDUCATION, NAGOYA UNIVERSITY Chikusa-ku. Nagoya. 464. Japan and

DEPARTMENT OF MATHEMATICS COLLEGE OF GENERAL EDUCATION, TOHOKU UNIVERSITY Kawauchi, Sendai, 980, Japan

> Received November 27, 1984 (2017) Revised version April 15, 1985

STUDIA MATHEMATICA, T. LXXXIII. (1986)

A characterization of the Banach property for summability matrices

by

F. MÓRICZ and K. TANDORI (Szeged)

Dedicated to Prof. Z. Ciesielski on his 50th birthday

Abstract. A doubly infinite matrix $A = \{a_m; n, k = 1, 2, ...\}$ of real numbers is said to have the *Banach property* if for every orthonormal system $\{\varphi_k(x): k = 1, 2, ...\}$ in $\{0, 1\}$ we have

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} \varphi_k(x) = 0 \quad \text{a.e.}$$

We define a norm ||A|| in such a way that a matrix A has the Banach property if and only if $||A|| < \infty$. Some consequences of this characterization are also included.

1. Introduction. Let $\varphi = \{\varphi_k(x): k = 1, 2, \ldots\}$ be an orthonormal system (in abbreviation: ONS) in the unit interval (0,1) and let $A = \{a_{nk}: n, k = 1, 2, \ldots\}$ be a doubly infinite matrix of real numbers. Following Banach (see e.g. [2]) we say that the matrix A has the Banach property (shortly, $A \in (BP)$) if for every ONS φ in (0,1) we have

(1.1)
$$\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} \varphi_k(x) = 0 \quad \text{a.e.}$$

Taking φ to be the Rademacher ONS $r = \{r_k(x) = \text{sign } \sin 2^k \pi x \colon k = 1, 2, ...\}$ (see e.g. [5, p. 212]), one can easily deduce that if $A \in (BP)$, then

(1.2)
$$\lim_{n \to \infty} a_{nk} = 0 \quad (k = 1, 2, ...).$$

In fact, since

$$r_1(x+\frac{1}{2}) = -r_1(x), \quad r_k(x+\frac{1}{2}) = r_k(x) \quad (k=2,3,\ldots),$$

one can write

$$\sum_{k=1}^{\infty} a_{nk} r_k(x + \frac{1}{2}) = -2a_{n1} r_1(x) + \sum_{k=1}^{\infty} a_{nk} r_k(x).$$

If (1.1) with $\varphi = r$ holds for both x and x+1/2 (which happens for almost every x in (0,1)), then letting $n \to \infty$ in the last equality yields (1.2) for k = 1. The proof for $k = 2, 3, \ldots$ is quite similar.