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Good /) inequalities for the area integral and
the nontangential maximal function
by
TAKAFUMI MURAI (Nagoya) and AKIHITO UCHIYAMA* (Sendai)

Abstract. We refine the constants of the good 1 inequalities for the area integral A(x) and
the nontangential maximal function N (x). As an application we refine the inequalities concerning
A(x)/N (x) and N(x)/A(x) which were obtained by R. Fefferman, Gundy, Silverstein and Stein.

1. Introduction. Throughout the paper, functions considered are real-
valued. Let d > 1 be an integer. Let u(y, t) be a harmonic function in the
(d +1)-dimensional Euclidean half-space

' RV ={(y,0): yeR, t>0).

For o >0 and xe RY, let
N(x, o) =sup{lu(y, l: (y, el (x, a)},
Al )= { [[ |Puly, o) et~ 4dyde)'

Ixy0)
where
I(x,0) ={(y, )e RE" " |x—y| <ar}.

These functions N and A are usually called the nontangential maximal
function and the area integral, respectively.

In [4], R. Fefferman, Gundy, Silverstein and Stein showed that if A > 0,
y>2 k>1 and if f# is sufficiently large, then

(LD [{xe R: A@x, 1) > 94, N(x, B) S A} € Cy~*|{xe R A(x, 1) > 1),
(L2){xe R W(x, 1) >4, Alx, <A < Cyy *{xe RS N(x, 1) > 4],

where ('; is a positive constant depending only on f, k and d and where |{ -}
denotes the Lebesgue measure of the set { -}, Their argument is a refinement
of Burkholder and Gundy [1]. Distribution function inequalities of this kind
are called good 1 inequalities.

* Both authors supported in part by Grant-in-Aid for Scientific Research (No, 59540109,
No. 59740063 and No. 59740056), Japan.
AMS (MOS) subject classification (1980): 42 B 25.
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From (1.1) and (1.2), it was shown in [4] that if k > 1, B is sufficiently
large and if 0 < p < oo, then

1.3) f(AG, YN (x, B A(x, DPdx < C, ,LA(x, 1)Pdx,

)
R

(14) JAN G, 1)/4(x, BN (x, D dx < Cy [ N(x, Ddx,
& P

where C, is a positive constant depending only on f, k, p and d. These
inequalities seem to give certain estimates on the growth of the ratios 4/N
and N/A. )

In this paper we refine y™* in (1.1) and (1.2) into the forms of exp(—cy?)
and exp(—cy) respectively, where exp()) = ¢’

THeOREM 1. Let u(y, t) be a harmonic function defined on R%*'. Let

(1.5) 0<a<p,
A>0, and y>1. Then

(1.6)  [{xeR% A(x, a) > yi, N(x, f) < Al

< Cyexp(—cy ) {xeR%: A(x, 2) > A},
WD) [xeR: N(x @) > ok A(x, B) < Al
< Cyexp(—cay)|{xe R: N(x, a) > )],

where Cy and c, are positive constants depending only on a, B and d.

As a consequence of the above theorem we can refine (1.3) and (1.4) as
follows.

COROLLARY 1. Assume all the conditions in Theorem 1. Let pe(0, +o0).
Then

(1.8) '{d exp {cs A(x, @*/N(x, f)2) A(x, @)Pdx < Cg [ A(x, o) dx,
- R

(1.9) ){d exp {5 N (x, a)/4(x, p)} N(x, @) dx < Cs | N(x, 0)dx,
M

where ¢s = ¢4/32 and Cg is a positive constant depending only on o, f, p and d.

Remark. As for the maximal singular integral operator and the Hardy--
Littlewood maximal function, a good A inequality with the constant of
exponential type was obtained by R. Coifman [2]. See also R. Hunt [7].

Acknowledgement. The second author would like to thank Mr. Shiichi
Sato for his beautiful lecture on the results of [4]. The -authors would like to
thank the referee for the very careful reading of our manuscript.
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2. Preliminaries.
Notation. For a measurable set E, y; denotes its characteristic function.
For xe R, r>0 and o >0, let
B(x,r) = {yeR": |x—yl <r},
Q(B(x,r) = {(y, NeRY": yeB(x, r), te(0, r)},
I'x,a,r)={y el (x, a): te(0, n},
Fix,a,r) ={(y, )el'(x, 0): t Zr}.
For the sake of convenience we define the supremum of the empty set to be
zero (not —oo). Let N ={1,2,3,...} and Z= {0, £1, £2,...}. The letter C

denotes various positive constants that depend only on o, f and d unless
otherwise explicitly stated.

DermniTioN 2.1. For fe LL.(R) and for a positive measure v defined on
R let

1fllsmo = sup inf [|f(x)—aldx/|B|, M. = supv(Q(B))IBI,
B aecR B B

where the supremum is taken over all balls B in R‘.
Lemma 2.1. Let feLb (RY),

(2.1) [ fllamo < 1
and y > 1. Then
(2.2) [{xe R': f(x) >y} < Ce™"|{xe R": f(x) > 1}|,

where C and c are positive constants depending only on d.
Proof. We may assume

(2.3) [{xeR: f(x)> 1} < +o0.

Let {I,};v be the maximal dyadic cubes in R? such that
(24) | lixel: £()> 1L > 1/2.
Condition (2.3) implies

(2.5) UL {xeR: f(x)>1} ae.

laN
Let I¥ be the dyadic double of I;. Then the maximality of I, implies

Hxel¥: f(x) < LA 2 1/2,
which combined with (2.1) implies

[feadeid < C,

A
1
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which again combined with (2.1) implies
(2.6) [fx)ydx/lI] < C,
Ii
where the two C’s are not the same. Applying the result of John—Nirenberg
[8] to each I;, we get
Hxe R: f(x) >}l = T lxel: £(x) > )l

ieN

by (2.5)

<Y Ce |y

ieN
< Ce2{xe R f(x) > 1}
3. Proof of (1.6). Let r >0,
Q=IxeR" N(x, p)>1],

by (2.6) and [8]

by (24). =

W= {J I'x,a),
xeﬂ"
A= [ pul, Oy,
W AI(x,a)
A ()= ([ |Puly, ot 4dydr,

W Al(x,a,r)

A(x)? = ”

WAllxe,rn’

|Puly, H)*t' 4 dydr.

In all the lemmas in this section the above notation is used.
LemMa 3.A. Assume all the conditions in Theorem 1. Let (y, t)e W. Then

ER) [u@y, Bl <1,
(6.2) u(y, 01 < C,

where C is a constant depending only on o, B and d.

Inequality (3.1) is clear. Inequality (3.2) follows from [9, p. 207, Lemmal].
LEMMA 3.B. Assume all the conditions in Theorem 1. Then

(33) I”V“(J"v I)IZXW(y, t)rdydt”u < C,

where C is a constant depending only on o, p and d.

This is essentially proved in [1].

Proof. Take any ball B = B(x,, ry). Let ee(0, ro). Applying Green’s
theorem to each connected component of the open set

R =R =Wy, 1): [xo—y| <ro+at, e <t <ry},

icm
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we have
(3.4) 2'&!'fl7u (v, ) tdydt < J'” Hul2+ul [Pul t) do
< [Cda by (3.1) and (3.2)
i
< OB

by the Lipschitz continuily of @W, where da denotes the surface element in
R4 and &4 the boundary of 4. (I ¢.# is not smooth enough to apply
Green's theorem, then we approximate cach connected component of .4
by subregions with very smooth boundaries. See [9, p. 206, Lemma].
Then a limiting argument gives [|[Vul®rdydi < C|B|) Letting ¢ - +0 in
A
(3.4), we have
([ IPulrdyde < lim [[|Pul*tdyde < CiBI,
W AQB) e+ 0 Y,

which implies the desired result. m

LemMmA 3.1, Assume all the conditions in Theorem 1. Assume that =/ (x)
+o0. Let r>0. Then «/.(x) < +co for any xeR" and
(3.5 [, (X)2 =/ (2)4 < Clx—zl/r

for any x, ze R, where C is a constant depending only on «, f§ and d.
Proof. Note that

i [Vu(y, D24 dydt
WA Hxe,rn’ ~ Iz
+ oo
< " Ct™ ' |lyeR: (y, el (x, 0, 1Y ~ I'(z, a, r)'}]dt

r

by (3.2)

+ oo
< [ v x—z T At < Clx—zlfr

r

for any x, ze R', where ~ denotes the symmetric difference. The desired
conclusion follows ecasily from the above incquality. m

LeMMA 3.2, Assume all the conditions in Theorem 1. If o/ (x) % + 50, then
2 4
1/ *lamo < €,

where C is a constant depending only on o,  and d.
Proof, Take any ball B = B(xq, r¢). Since .o/ = .f/;"o+.f.>/;g and since

oy (50) = oy (92 < €
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for any xe B by (3.5), we get

l inf [|o/ (9 —aldx < [{of,, (x)*+C}dx
acR B B
<C I \Pul?tdydt+C|B|

W AQUB(x(,(1 +a)rg))
<C|Bl by(33). =

Proof of (1.6). We give the proof in the case A = 1; consider u(y, t)/A if
necessary. We have

(3.6) {xeR*: A(x,0) >y, N(x, p)< 1}
=|{xe@: A(x, o) >y}
<lixeR: o (x)? > y*}|  since A(x, a) =
< Cexp(—cyd)|{xe R & (x)?*> 1}
< Cexp(—cy?)| {xe R A(x,0) > 1}

o (x) for xe
by Lemmas 2.1 and 3.2
by & (x) < A(x,a). w
4. Proof of (1.7). Let r > 0, B = B(xg, 1),

o= {xeR": Alx, ) > 1},

w={) I'(x, %),

n(x) = sup{lu@y, O: (v, Jewn I'(x, 4},
n(x) = sup {{u(y, Ol: (v, Jewn I'(x, a, 1)},
mx) =sup{lu@, Ol: ¢, dewnI(x, a,r)},
u(xo, (1+42)rofa),

ng(x) = sup {lup(y, ]: (v, DewnI'(x, a, ry).

UB(y, l) = u(y, t)—

In all the lemmas in this section the above notation is used.

LemMMA 4.1 If w+# @, then there exists a nonnegative function 0,(x)
defined on R® such that

@41) w={
and that

42) (B0 (x)~8o(2)| <
for any x, ze R°.

This is an easy geometrical property of the region w,
LemMa 4.2, Let xqeR® andirg> 0. Let wT(x, a,re) # @ for some

¥, e RE: 05 0) <2},

|x —z|/a

icm
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xe B(xq, ro). Then
4.3) (%0, (1 4+20) rofajew.
Proof. Let (yq, to)ew N I'(x, a, rg). Then

[xo = Yol < [xo—xX|+|x—yo| < ro+aty <o {(142u)rofa—to}.

Thus the point (xo, (1+2x)rofa) is contained in the cone
{0, e R £ > 1o, [y—yol <

which is contained in w by the geometrical property of w. m
LemMa 4.A. Assume all the conditions in Theorem 1. Let (y, tyew. Then

(44) [Fu(y, )t < C
where C is a constant depending only on a, B and d.

This is an easy consequence of the harmonicity of Fu (cf. [9, p. 207]).
Lemma 4.B. Assume all the conditions in Theorem 1. Then

@.5) I7u v, 97 % (v, Otdydt|. < C
where C is a constant depending only on a, f and d.
This is essentially shown in [4].
Proof. We put

aGyt=ff

Wl (B ~a)/2)
Let xeR! and let z be the point of w® closest to x. Since I'(x, (B
—a)f2)nw = I'(z, ), we get
(4.6) a(x?*<1

(This geometrical observation is pointed out in [4, p. 7959]) Let B be any
‘ball. Then, by (4.6), we get

[ (Puly, 9tdyde <
wnQ(B)
which implies (4.5). =
Limma 4.C. Assume all the conditions in Theorem 1. Let B = B(x,, r'¢)
and y > 0. Then
@7 |{xe B: ng(x) > y}| < Cy™?|B|,
where C is a constant depending only on a, B and d.
This is essentially proved in [1] and [4].
Proof. We may assume that y >0 is large enough. We may also

assume that wn I'(x, a, ro)# @ for some xeB. Then (4.3) holds by
Lemma 4.2.

a(t—1o)},

[Pu(y, D)2t~ 4dydt.

C ja (x)*dx < C|B|
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In the following, 04 (x) denotes the function obtained by Lemma 4.1, Let
xeB and let ng(x) >y Then there exists

(4.8) (z,9)ewn T (x, 2, ro)
such that
49 |up(z, 8)| > 7.

Since the line segment joining (z, s) and (xq, (1+2x)ro/a) is contained in w,
(4.4) implies

C log {((1 + 2y rofa)fs] = .
Since y is large enough, this implies

(4.10) 3s <ro.

The geometrical property of w and (4.8) imply B(x, as) x {3s} = w, ic.,

4.11) Oo(y) <3s for any ye B(x, as).

Since the line segment joining (z, s) and any point of B(x, as)x {3s} is
contained in w, (4.4) and (4.9) imply that
4.12)

lug(y, 3s)) >y—C for any ye B(x, as).

Namely, if xeB and if ng(x) >, then we can find a ball B(x, as) that
satisfies (4.10)—(4.12). Hence, by Stein [9, p. 9, Lemma], there exists a finite
sequence of balls {B(x;, as;)}% such that x;&B,

(4.10y 3s; < rg,

(4.11y 0o(y) <3s; for any ye B(x, usy),

4.12) lug(y, 35)l >y—C  for any ye B(x;, as,),
(4.13) “B(x;, 2a5) " B(x;, 205) = @, i #],
(4.14)

HxeB: ng(x) >9)| < C|B U Blx;, asy)|.
=1

For 1<igm let

3s; if yeB(x, as),
0; () =< 65, ~3ly—xilfa il yeB(x, 20s)\ B(x,, as),
0 otherwise.
Let
80) = {O fyeB,
~ y—xolfe—ro/a  otherwise,

icm
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and let

0() = max {&, T(v), 05(y), 01 (), 0209), -, 6,03}
where

¢=min {3s;: 1 <i<m}.

Note that if 1 <i< m and if ye B(x;, as;) 0 B, then
(4.15) 0(y) = 0;(y) = 3,
by (4.11)" and by the disjointness of {the support of 0;};<;<m (recall (4.13)).
Note that

(4.16) l{xe B: ng(x) > y}| < C|B mxul B(x;, as;)| by (4.14)

< Cl{xeB: 0(x) < ro, jug(x, 8(x)) > y—C}I
by (4.15), (4.10) and (4.12).
Let # = !(y, e R 0(y) <t <ro}. Then
417 A =wn{B(xo, (1+a)re) x(0, ro)}
by 0(y) = max {0o(), O(y)). Let
a* =y, ro)e 04: ye R},

8" =y, e d#: ye R, t <ro) = {(y, 00): ye R, 0(y) <ro}.

Since the line segment joining (%o, (1+2%)r¢/a) and any point of 8"
is contained in w, (4.4) implies

(4.18) lug (v, ro)l < C  for any (y, ro)e dt.

Therefore, applying Green’s theorem to each connected component of the
open set .#, we have
| lupgl?de < C| [qulzldyd(
K 3
+C j {|u3|2+'u”l I Vlll r} do+C .[ ‘unl | VUI tdo
at o
<C f |Pul® tdy dt
W AQU(x0.(1 + o))
+C | do+C | |ugldo
2t [
< CIB|+C[B"Y*{ | |ug|* do}*/?
-

by (4.17), (4.18) and (4.4)
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by (4.5), the Lipschitz continuify of 6 and by Holder’s inequality. Thus
{ lugl*do < C|B|,

. O

which, combined with (4.16), implies (4.7). (If d# is not smooth enough to
apply Green’s theorem, then we approximate each connected component of
A by subregions with very smooth boundaries. See [9, p. 206, Lemma]. Then

a limiting argument gives the desired result.) m

Lemma 4.3. Assume all the conditions in Theorem 1. Assume that n(x) s
+00. Let ¥ > 0. Then ni(x) < +o0 for any xeR* and

(4.19) Im.()—m(2) < Clx—zl/r
for any x, ze R, where C is a constant depending only on a, B and d.
Proof. If (y, )ewnI'(x, a, r), then we get
(y+(z—x)/2, t+iz—xl/2a)ew N T (z, o, 1)’
by the geometrical property of w, and
[u(y, )—u(y+@E—x)2, t+|z—xl/2) < C|x—z|/r

by (44) and by t>r. The desired conclusion follows easily from this
observation. m

Lemma 4.4. Assume all the conditions in Theorem 1. If n(x) # + o0, then
Inllgmo < €,

where C is a constant depending only on o, B and d.

Proof. Take any ball B =B(xo, o). By Lemma 4.2 we can take
rie{re, (1+2a)rofa} so that

(4.20) wnl(x,a,r)=0@ for any xeB
or that
4.21) wnl(x,a,r)#® for any xeB.
Since

n(x) = max {n,, (x), nf, (x)}
and since

Iy, (Xo)—my, (¥ < C
for any xe B by (4.19), we get

mfjln(x) aldx < mf]"lmax{n,l(x m, (o)} ~aldx-+C|B|

< m'Ejln,1 (x)—aldx+C|B| = (4.22)+C 8B|.
aeR B

In the case (4.20), we get (4.22) = 0. In the case (4.21), we get
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(4.2 < [, (09 =Ju(x0, (1+28)r/af|dx

= [lsup {lu(y, 0l =u(xo, (1+20) ri/a)): (v, Hewn I'(x, o, ry)}| dx
H

< j”ﬁ(xo.q)(‘x) dx
B

< C|Bl by 47),
which implies the desired result, w
Proof of (1.7). We give the proof only in the case A = 1. We have

(423)  |ixeR': N(x,0) >y, A(x, f) < 1}
= |{xew’: N(x, o) >y}
<{{xe R n(x) >} since N(x, ®) = n(x) for xeo*
<Cexp(—cy){xeR" n(x)>1}] by Lemmas 2.1 and 44
< Cexp(—cy){xeR" N(x,0) >1}| by n(x) <N(x,a). u

5. Proofs of (1.8) and (1.9). Since the proofs of (1.8) and (1.9) are very
similar, we prove only (1.8). We follow the argument in [4]. Then
6.1)  fexp{drcs A(x, 2)*/N(x, B)*} A(x, 2)? dx
I'd
Y3 [ expidrca A(x, 9)*/N(x, B)*} A(x, )P dx+C [ A(x, 0)?dx,
leZ JeN Ep '
where

N

Ej={xeR": 2 <A(x,0) <2, 27771 < N(x, p) < 2"}
By (1.6), we have with ©(4) =|{xe R%: A(x,a) > 1}|,
|Ey )l < Cyexp(—cy2*)z(2'7))

so that the first quantity in the right-hand side of (5.1) is dominated by:
<3, ¥ explds 20 4) 20 exp(—cs 27)1(27)

leZ JeN
= Cy2r Y Y 2Wexp(—~4cy 22)v(27Y)
, leZ JeN
= Cy 20y Y 207y (270) 2 exp(—4 ey 2)
leZ jeN
= Cy 2P Z 2mP g (2M) Z Ve exp(—%cy 2%)
meZ *

=C, Y 2"r(2") &

meZ ]

where C, denotes positive constants depending only on a, §, p and d. This
gives (1.8).

C, [ Alx, a)'dx,
~


GUEST


262 T. Murai and A. Uchiyama

References

[1] D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area
integral, Studia Math. 44 (1972), 527-544.

[2] R.R. Coifman, Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci.
US.A. 69 (1972), 2838-2839.

[3] C. Fefferman and E. M. Stein, H” spaces of several variables, Acta Math. 129 (1972),
137-193. :

[4] R.Fefferman, R. F. Gundy, M. Silverstein and E. M. Stein, Inequalities for ratios of

functionals of harmonic functions, Proc. Nat. Acad. Sci. US.A. 79 (1982), 7958--7960.

[5]1 R.F. Gundy, The density of the area integral, in: Conference on Harmonic Analysis in
Honor of Antoni Zygmund, Wadworth Math. Ser. Wadworth, Belmont, Calif. 1983, 138
149,

[6]1 R.F. Gundy and R. L. Wheeden, Weighted Integral inequalities for the nontungential
maximal finction, Lusin area integral, and Walsh-Paley series, Studia Math. 49 (1974),
107-124.

[7] R. A. Hunt, An estimate of the conjuyarefunction, ibid. 44 (1972), 371 377.

[8] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure
Appl. Math. 14 (1961), 415-426.

[9]1 E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, Princeton 1970.

DEPARTMENT OF MATHEMATICS

COLLEGE OF GENERAL EDUCATION, NAGOYA UNIVERSITY
Chikusa-ku. Nagoya. 464, Jupan

and

DEPARTMENT OF MATHEMATICS

COLLEGE OF GENERAL EDUCATION, TOHOKU UNIVERSITY
Kawauchi, Sendai, 980, Japan

Received November 27, 1984 (2017)
Revised version April 15, 1985

icm

STUDIA MATHEMATICA, T. LXXXII. (1986)

A characterization of the Banach property
for summability matrices
by
F. MORICZ and K. TANDORI (Szeged)

Dedicated to Prof. Z. Ciesielski on his 50th hirthday

Abstract. A doubly infinite matrix A = {ay: n k=1,2,...} of real numbers is said to
have the Banach property if for every orthonormal system {¢, (x): k =1, 2, ...} in (0, 1) we have

"
lim Y app(x)=0 ae
vt g |

We define a norm ||4]] in such a way that a matrix 4 has the Banach property if and only if
||l < co. Some consequences of this characterization are also included.

1. Introduction. Let ¢ = {¢.(x): k=1, 2,...} be an orthonormal system
(in abbreviation: ONS) in the unit interval (0,1) and let A = {ay,: n k
=1,2,...) be a doubly infinite matrix of real numbers. Following Banach
(see eg. [2]) we say that the matrix 4 has the Banach property (shortly,
AeBP)) il for every ONS ¢ in (0,1) we have

(1.1) im Y au@e(x) =0 ae
nerot k=g
Taking ¢ to be the Rademacher ONS r= {r,(x) =sign sin2*nx: k
=1,2,...] (see eg. [5, p. 212]), one can easily deduce that if Ae(BP), then
(1.2) lim a,=0 (k=1,2,..).
ner ot

In fact, since

rxkd) = —r (%), R(xHD) =nx) k=2,3,..)

one can write

o

3 apr(x+4) = ~2a,r, (x)+kZ g Ti (%)
k=1 =1

If (1.1) with ¢ = r holds for both x and x-+1/2 (which happens for almost
every x in (0,1)), then letting n— co in the last equality yields (1.2) for k = 1.
The proof for k =2, 3, ... is quite similar.
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