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STUDIA MATHEMATICA, T. LXXXIIL (1986)

Periodic points of linked twist mappings
by
FELIKS PRZYTYCKI (Warszawa)

Abstract. Consider a connected surface which is the union of two finite families of annuli,
{P;} and {Q,}, such that P;s (analogously Qj's) are pairwise disjoint and P;s intersect Q;'s
transversally. A linked twist mapping (Lt.m.) is a composition of a few families of twists on P,
alternately with families of twists on {JQ;, such that on each of P; and Q; all the twists go in the
same direction. Contrary to the usual definition we do not assume that Lebesgue measures on
the intersecting annuli coincide.

It is proved that, for any lt.m. H composed of sufficiently strong and at least double
twists, periodic saddles and homoclinic points are dense in the domain of H. H also turns out to
be topologically transitive.

The problems of estimating the number of periodic points and of the existence of Smale
horseshoes are also considered.

§ 1. Introduction. In the paper we prove the following

THEOREM. If a linked twist mapping (L.t.m.) H is composed of sufficiently
strong (a certain Condition & is satisfied) and at least double twists, then the
periodic saddles and homoclinic points are dense in the domain X of H. H also
turns out to be topologically transitive.

I shall explain precisely all the terms used here (except Condition &) in
Section 2. The dynamics properties following from Condition & needed in
this paper will be described in Section 3. Precise definitions of Condition &
and the related Condition # will be recalled (from [P1]) in the Appendix (as
they involve a great deal of notation not needed in the rest of the paper). Let
me now give an informal explanation:

The domain of an 1t.m. is a connected surface which is the union of two
families of annuli {P;}/-;, {Q;}9-; such that P/s (analogously Q;s) are
pairwise disjoint (we call each P; a “horizontal” strip and Q; a “vertical” strip
as if they were in the torus T?; P; and Q; intersect each other transversally
(ie. the “horizontal” circles of P; intersect the “vertical” circles of Q;
transversally). An Lt.m. H is a composition of a few families of twists on (JP;
alternately with familiés of twists on (JQ;, such that on each of P; and @; all
the twists in the composition go in the same direction, each of P; and Q;
being twisted at least once: H = GyoFy0...0G, 0F;. Although the twists
preserve the Lebesgue measures on P;, Q;, respecthot assume
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anything about H-invariant measures on X. In particular, we do not assume
that the Lebesgue measures on P;, Q; coincide on P, nQ;.

In [P1] I studied lt.m.’s with “good” invariant measures (satisfying the
(K~S) condition, see the definition below, and equivalent to the Lebesgue
measures on P, Q;; see [P2] for the toral case). I proved there, under the
Qassumptions of the Theorem from the present paper, the ergodicity of H. In
fact, I proved topological transitivity purely geometrically, and only then I
used a “good” invariant measure to deduce ergodicity from the abstract
Pesin theory (in the version with singularities, see [K~S]). (In fact, I proved in
[P1] even topological mixing and the Bernoulli property, see the comments
at the ends of § 4 and of 52 of the present paper.)

The density of periodic points follows, due to this “good” measure, from
the Pesin theory and the Katok theory [K]. However, by analogy with
topological transitivity, I expected in [P1] that this should be a geometrical
fact. Let me discuss the whole problem with more precision.

Let an H-invariant measure u satisfy the following Katok-Strelcyn [K-S]
condition: :

(K-8)  There exists w >0 such that for every ¢ >0
w(B(SingH, g)) < ¢

(Sing H is the set where H is not differentiable and B(-, ") is a ball in a metric
equivalent to Euclidean metrics on P, Q)).

Assume that p is hyperbolic, ie. the Lyapunov characteristic exponents
are nonzero p-almost everywhere. Then Katok’s theorem [K] states that the
set of periodic saddles is dense in supp p.

Recall that for 1Lt.m’s considered in [P1] I assumed the existence of a
“good” invariant measure, hence satisfying the above Katok assumptions,
with supp u = X. Here we do not know a priori whether a (K-S) hyperbolic
measure u with suppu = X exists. Of course, this follows a posteriori from
the Theorem (one can take the limit of a sequence of suitable measures
supported on a finite number of periodic saddles). In particular, I am not
able to answer the following

QuesTioN 1. Does the Bowen-Ruelle measure exist and satisfy (K-S) if
the twists are strong enough?

Orne can consider, as a candidate for the Bowen—Ruelle measure, any
measure py p which is the weak limit of a subsequence of the sequence of

n—1
measurcs n”* Y HY(v), where v is the length measure on a local unstable
manifold. ke
If X ={J)P,=)Q; (H is uniformly hyperbolic) the answer to Question
1 is: yes. py p turns out to be the Bowen-Ruelle measure. The proof is the
same as for the Lozi attractor (see for example [Y]). In fact, to use Katok’s
theorem about density mentioned above one needs only to know that the
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trajectory of u-almost every point approaches Sing more slowly than the
shrinking rate in the stable direction. This assumption can be proved. (with
the use of the Borel-Cantelli lemma) for Lebesgue-almost every point
x (x€ X1ap, Moy (X\ Xpe) = 0) if the twists are strong enough (in particular,
the stable and unstable manifolds exist for Lebesgue-almost every point). So
we arrive at the following

QuestioN 2. Is it true that p, R (X\X,,) =07
The question of density of periodic points for an Lt.m. was considered

by Devaney [D1] for the simple example of a toral Lt.m. Take for example
at least double linear twists

10 18 :
(a ), (0 ), af > 0.

Devaney gave purely geometric arguments for the density: First observe the
density of global (un)stable manifolds W*(p), W*(p) of a fixed point p. Next
observe that since they go, roughly speaking, in different directions and have
no turn-back points, they must intersect each other. The points of
intersection are dense in X.

In [P1], p. 48, I asked about a geometric proof of the density in the case
where turn-back points exist, for example when aff < —4. See in Fig. 1 how
the consecutive images of an unstable segment y = " can look like.

7,
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Fig. 1

Although I proved in [P1], under Condition &, that the H"(y) contain
long line segments for large n and I proved the density of global (un)stable
manifolds, I did not know how to exclude the possibility shown in Fig. 2.
The point was how to deduce the existence of an intersection (homoclinic)
point in W'(p)nW*(p) close to an arbitrary nonperiodic ¢ from the
existence of a cycle of length 2 of heteroclinic intersections. If we knew that,
the argument for the existence of a periodic point (but not a horseshoe!) near
the homoclinic one would be standard, cf. the proof of Proposition 5.3.

From the existence of an invarjant measure with support X one could


GUEST


4 F. Przytycki

infer (Poincaré Recurrence Theorem) X = Q(H). But even then it is not
possible to repeat directly the standard proof of the density of periodic
saddles for Anosov diffeomorphisms. The trouble is the shadowing argument.

In this paper we cope with these difficulties. Namely we find pieces of
trajectories, with beginnings and ends close to an arbitrarily chosen point,
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Fig. 2

which do not approach Sing H too closely. Then to shadow these pieces of
trajectories by periodic ones we adjust the geometric part of Katok’s
arguments [K]. We do all this in §§ 3,4. In [D2] Devaney showed the
existence of large horsehoes; we do this locally.

Remark. In the proof of the density part of the Theorem in §§ 3,4,
I introduce Condition & and the double twisting assumption since I use
topological transitivity. The question arises whether these assumptions are
not unnecessarily strong. When a (K-S) hyperbolic measure u exists, one
infers the density of saddles in suppu even without assumptions about the
strength of twists yielding the ergodicity of u.

The reader will see that in the proof of the Theorem in § 4 the periodic
orbit found there need not shadow the origjpal trajectory z, H(z), ..., H(z).
Thus T cannot cope with the following ,*

QuesTioN 3. Is it true that

hpe (H) = limsup (n™ ! log Card (Fix H") 2

n- o

(H)?

lup

Fdr an ltm. preserving a (K-S) measure u we know at least that
hh,(H) = h,(H), by Katok’s theory [K]. So a positive answer to.Question 3
would fqllow from a positive answer to

QuesTioN 4. Is it true that
T hiop(H) = sup {h, (H): u is a (K-S) measure}?

Question 3 has a positive answer in the special case where global
(un)stable manifolds do not have turn-back points; e.g. if X is orientable, F,
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are positively oriented and G, negatively oriented Dehn twists (see
Proposition 5.5).

Part of § 5 is devoted to estimating h,,(H), hp,(H) by computable
numbers detecting global expansiveness. I define and use some matrices
connected with the horseshoe-like intersections of F,(P;nQ;) with P, 0,
or G,(P;nQ;) with P, Q;. This is a development of Devaney’s idea (see
[D2]), and of the idea of “graph of linkage” (see [P1]).

The assumption that the twists are at least double in Theorem 1 can be
weakened to the assumption of the connectedness of the respective matrix

(graph).

§ 2. Definitions. Recall some basic definitions from [P1].

2.1. Let x" <x", y' <y” be real numbers and
P={(x,)eRYZx{0}: y Sy <y},
Q = {(x, NeR{0} xZ: X' <x<x'}.
Let ¢: P—e(P)=P,cX, i=1,...,p, and E;: Q—=E;(Q)=0,<X,
j=1,..., ¢, be continuous mappings into a compact topological space X

with the following properties: each é =¢;|,p and each Ej =Ejlug is a
homeomorphism onto its image, é H(P) ¢ (P) @ and E;(Q)n E;(Q) = @ for

i, U e(P)u U E;(Q) = X, U &(P)u U E;(Q) is connected, each of the

composmons ér oEJ, E 08 1s C2 with ﬁrst and second derivatives upper-
bounded. We shall cons1der metrics on J & (P)u ) E (Q) equivalent {i.e. with
bounded ratio) to the Euclidean metrics on P;, Q;. There will be no need to
specify a metric.

Denote the components of & (P) nEj (Q) by % (s labels the
components) and denote % = |J %;;,. Assume that the circles ¢;({y = const})
for y <y < y" intersect the circles E;({x = const}), x’ < x < x”, transversally.
More exactly, on each %, introduce the coordinates

® =, (yoe !, xoE ")

and assume that $oé, dioE, and the inverses have upper-bounded C?-
norms.
We call the object described a pair of transversal families of annuli.
22. 1et N>1, and let I <= {1, ..., p}, J(n) = {1, ..., ¢} be some sets
chosen. for every n=1, ..., N so that

N N
UI(")={1,...,p}, U ( :{ 7q}'
n=1 n=1

For every n and every icl(n), jeJ(n), let fi,: < ,J’">/—* R gj.: <X, ff">"’ R
be some C*-functions with f£;,(y) = gj.a(x) =0, fin(¥') =kKins 9jn(x") = Ln-
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Here k, ,, I; , are nonzero integers and df; ,/dy, dg; ,/dx are nowhere zero and
for each fixed i (j) have the same sign for all n.
Define the twists F;,: P—P, G;,: Q—0 by

Fi,n(x: y) = (x +j1:,n(y)= ,V), Gj'n(x: Y) = (xa y+gj,n(x))~
Define

egoF,,0oet on P,

F,=<. ’
id on X\ U Ph
. i=]
E;0G;,0Ej' on @,

G, =< . ?

" id on X\ U Qn
i=1

Finally define the linked twist mapping:
H =GyoFyo0...0G,0F,.

2.3. We call oy, = inf(df;, ,/dy) for k; ,, > O (jsup.. | if k;, < 0) the slope of
F; . Analogously we define the slopes §;, of G;,. By strong twists we mean
twists with slopes large enough, by at least double twists we mean twists with
Iki,nl’ ”j.n' 22

Remark. All the above assumptions about smoothness of functions are
only to make correct the discussion involving the Pesin and Katok theories

in § 1. In fact, in the rest of the paper, in particular for the Theorem, it is .

enough to assume that the mappings ®0é, dok, and their inversés are
Lipschitz continuous, and that f,, g;, are just continuous. In the defini-
tion of slopes one then has to consider, instead of derivatives, ratios like
(f G2 =f GWy2=y1), of course.

Let me finish the section of definitions by recalling that usually
topological  tramsitivity means that for all open nonempty  sets
U, V, H"(U)nV @ for some integer n. Here by topological transitivity I
mean that for every pair of smooth curves 3", y* = % with tangent directions
. in unstable and stable cones respectively (see the beginning of § 3) there
exists an integer n such that H™(y*) ny* % @. For an ltm. topological
transitivity defined in the standard way obviously follows from the above
one. For (uniformly) hyperbolic differentiable dynamics the two definitions
are equivalent. I do not know whether this is true for an 1t.m. The trouble is
how to deduce |J H"(y") m y* # @ from the density of | H"(y*) in X (see Fig.

n n
2'in §1).

Topological mixing usually means H*(U)nV @ for every n with In|

sufficiently large. Another definition would be H"(y*)y*# @ when || is
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large (the discussion how both definitions are connected is similar to that for
topological transitivity).

§ 3. Dynamics properties following from Conditions 5 and &. In [P1] I
considered two conditions about the strength of twists: Condition 2# and a
stronger Condition &.

Condition # ensures the existence of invariant cones. We recall from
[P1] what we mean by that:

To simplify notation assume that N =1, ie. that we compose two
families of twists only. Consider. the induced (first return) mapping
Hy: % —%. Clearly Hy = G40F,. Let C# and C; be cones containing the
y- and x-axis respectively, considered in the coordinates . We assume that
ClnCs = {0} for every ze% and DF(JCY) =UC: DGe(UC:) =UCE.

We require also that DH should expand every vector from uc: -(and
contract every vector from |J C) by a factor greater than a. constant A > 1
(see Fig. 3).

Fig. 3

In particular, in connection with the Remark in § 1, observe that this
implies that every H-invariant measure p such that p(Par) = 0 is hyperbolic
(Par denotes the set of all H-periodic orbits which undergo exclusively the
horizontal twisting F, or exclusively the vertical twisting G,; of course Par is
finite).

giondition & is adjusted to proving the topological transitivity of H
(which implies ergodicity for a “good” measure).

The dynamics property proved in [P1] and implied by Condition & is
recalled in the following

LemMma 3.1. There exist numbers & >0, &>0 for i=1,...,p,

.j=1, ..., q such that &&' > 1 if &(P) nE;(Q) % @ and for which the following
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is satisfied: For every smooth curve y < %, such that every tangent vector y(t)
belongs to Cyqy, Fy(y) contains a smooth subcurve y' such that either

(3.1 length, () =
or

& - length, (7),

q
(3.2) Y joins two. points from 0Q = |) FrQ;
=1

(length,,, denotes the length in ® coordinates of the projection onto the x- (y-)
axis).
Analogously, if §(1)eC},. there exists a Y < Gg (y) such that either

length, () = &/ -length, (y) or ¥ joins points from P = U Fr P;.

i=1
To prove the Theorem the following will be found to be important:
CoMPLEMENT TO LemmA 3.1, There exists a { > 0 such that for every y
with ye C* one can choose a y' with the above properties and additionally such
that if we denote (Fy)~'(y) =6 and denote by n(8) the integer such that
F"(b)[,s = F(gla then

(3.3) dist (F"(8), 6Q) > ¢ -length, ()

for every n with 0 <n < n(d) in case (3.1) and for 0 < n < n(d) in case (3.2).

An analogous property holds for vy with yeC>.

Proof. Choose any system of numbers &, & satlsfymg 5>0 8>0,
8 >1if ¢ (P)r\E (Q) # @ and § < ¢, &7 < &/, where ¢, ¢’ are the numbers
from Lemma 3.1. To prove (3.3) one can refer to Lemma 3.1 with each %;;
thickened in P; to %jj = B(%y,, 1) wWhere r = C-4(g;—&)-length,(y). (C is a
constant connected with the fact that we do not specify what metric from
what chart is considered).

The crucial fact is that Condition & concerns only the number of the
components %;; in P; and not the size or position of %;;. The %;;’s could
even overlap. Condition & depends on changes of coordinates on %;;, but the
corresponding functions do not change much for small thickenings. The
system ¢, &/ can be chosen the same for all small thickenings.

Since  F"8)n %y =0, we Thave dist(F"(0), %) =r for
0 <n<n(d).

Let F"®($) = Denote

'Joso
& = F~"(F"®(3)\ B(P,\ $00p: 1))-
Then

dist (F"® (5, 8Q) = r
and in case (371)

 length, (F*()) > 5 -length, ().
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§ 4. Density of saddles. We retain N =1 to simplify notation. Denote
P q
0=0PudQ =) FrP,u | FrQ;.
i=1 Jj=1

We shall use the notation f" for (Go)Fo...0GoF(oG) (n times),
understanding that f* denotes F or G alternately. Brackets at the beginning
(and end) of the composition mean that it can start (end) from either G or F.
Denote analogously (G¢0)Fg0...0F¢(0Gy) (n times) by f§.

Lemma 4.1, Under Condition & there exists an n > 0 such that for every
26 %y, and r with 0 <r < %dist(z, 0) there exists an xeB(z, 1) such that
H™(x)eB(z,r) for an integer no>0 and dist(f"(x), 9 =
n=0,1,...,2ng.

Proof. Take in B(z, r) arbitrary smooth curves y“, y*2z of lengths

about r such that 3'eC", y°eC®. For y=19" find y, =y <= Fe(y) = F™ (y)
from the Complement to Lemma 3.1, next find y, =y = Gg(yy) = G"(yy)
and so on. We end with y,, joining two points from 80 or 0P. Denote
f’"‘o(ym ) by 8", By induction with the use of (3.3) we easily obtain

(4.1) dist (f"(6"), 8) >
mo

(Z"t) L.

Iterate [ another fev; times with the last f equal to G and consider the
images f™(ym,)- The set S Oy ) contains a family of arcs in % with end-points

nr for every

Const - {r

for every n =0, 1,
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in AP (or 60). Denote the family of arcs by {v,,+1}- Then f(U%hg+1)
t

contains a family {y,, .} of analogous arcs and so on. It is easy to prove,
due to at least double twisting (see [P1]), that after a time m,, independent
of y, every %;;, contains an arc from the family {y{,,oml}, with ends in @P.

Observe that (4.1) also implies dist (y,,, 6Q) = Const-{r if the mo-th f
is Gy (or dist(y,,, OP) > Const-{r if it is Fy). Each 1 p+ also has this
property with the right-hand side quantity I**-Const-{r for a constant L,
Since {Ypug+m+1} consists only of components of f (¥g+m) N % not containing
the end-points of f(Ju,+m). Call this property (+); the reason it holds is
illustrated in Fig. 4 (where a =9, 4m b =y',,}0+m+,, ¢ = yf}o+m+1, d
= 3’;?0 tmt 1) .

Concluding, there exists §® =y,,‘,’0+,,,1 intersecting an analogous arc ¥
constructed for backward iterations on y°. Due to (x) we can sl}rorten g, g
to y™, y, which still intersect each other. Define 8 = fz"°* ™ (y®), and
analogously define §°. Of course §® = §"¥, Thus we have §* = y" = B(z, r),
§* —y* < B(z, r) such that

H"@YnH "8« @ for some m, n> 0,
dist (f*(8"), 8) > L™ - Const -{r
dist(f (8%, 8) > L' -Const - {r

for 0 << i< 2n,

for 0<j< 2n.
Let y be the unique point in H"'(S“) mH'"(S‘), Define x = H™"™(y).

Proof of the Theorem. Take an arbitrary point ze %;;,\ U ' 4.
k=— o0

Let ky(2), ... (I;(2), ...) be consecutive times for z of return to ¥ under
forward (backward) iterations by H. Let 41> 1 be, as in § 3, a hyperbolic
constant for Hy. Choose a large constant M > 0. Let t > 0 be an integer
such that

A>CMnp~?
for n from Lemma 4.1. What is C will be explained later.

Fix an arbitrary r such that for —2l <n <2k,
(4.2) Bz, M+1r)né=0.

Take x found for these z and r by Lemma 4.1. Now we prove that we

can approximate (shadow) the trajectory x, ..., H°(x) by a periodic one,
repeating more or less the proof of Katok’s main lemma [K]J.
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Denote y = H™(x). Let 9", »* « % be smooth curves such that y°eC",
e C*, y'ax, y*ay. Let

59(x) = H "(H (YA B(y, Mr)), &*(y) = H"™(H "(y°) A B(x, Mr)).

By A we mean intersection with a ball and the choice of the component
containing the origin of the ball.

By construction, for every k =0, ..., 2n,,
.3) T ) na=0, @) no=0.

Indeed, in the case of &(x) for example, (43) follows for
k =2ny, 2ng—1, ..., 2ny—2l, from (42). For k smaller it follows from
Lemma 4.1. To see that exactly one can use induction. I present its beginning
and the first step. ‘

Denote
2ng .
§=(U 1" @) 0 H" (" ();
here each £2"°”* completes f* from (4.3) to

fznohkofk - ong - HnO.
(S is just the set of all points of nondifferentiability of H™(8"(x)). Our aim is
to prove S = Q).
Let 7 < H"(5"(x)) be a smooth curve joining two points of S {end-

points of H" (8" (x))} which are consecutive in H"®(5*(x)) and such that ye7.
We shall prove

(43/) fk(f"ZHO(m)m‘a:Q)_
For k > 2ny—2l,(z) = 2no— 2L, (y), (4.3) holds. Also
(4.4) length, (H"” (7)) < 27" C, 2Mr < C™* M~ 4C, 2Mr
=C"'Cy2r.
Here C; is a constant,
C; = sup{length(x:{0, 1) — %)/dist (2(0), «(1)): & is differentiable, de Ccv}.
Consider the sequence
{length G~*(H ™" (7))}
for t=0,1,..,1, =inf{r;(W): weH " (3)} where t,(w) =inf{zreR":

G™*(w)e%}. This sequence is decreasing if we consider the Euclide:an metrics
on {Q;}. Thus, due to Lemma 4.1, if C is sufficiently large we obtain (4.3') for
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k > 2ny~2l,~21,, and 7, (w) turns out to be constant for we H ™ "% (7). Now
we proceed analogously with F™° and end with (4.3) true for k > 2n,—21,,,
and with (4.4) true for t+1 in place of t. (Choosing C one needs to take into
account that the metric in Lemma 4.1 is not specified. At the step from k
= 2no—~2l,—2t; to 2ny—2l,—2t; —1 we pass from the Euclidean metrics on
U Q, to the Euclidean metrics on |J P;.)

(4.3) implies that in fact = H"(5"(x)). The end-points of H" (5" (x))
obviously lie in the sphere Fr B(y, Mr), assuming that we always consider "
long (say joining points from @) and r is sufficiently small.

HMo(8Y00)

A 3%(3)

o i
)
84(x)
[H"o(K)
{»%
Fig. 5

For every weH "°(&*(y)) choose y*(w)aw, 7*eC* so that {y'} is a
foliation by arcs and y"(x) > 8"(x). Analogously choose a foliation {yé} of a
neighbourhood of H™(8"). The foliations {H " () ~ B(x, Mr)! and y* form
a coordinate system on a rectangle K (rectangle in these coordinates) in a
common domain (see Fig. 5) and f*(K) 9= @ for every k=0, ..., 2n,.

All this holds by arguments similar to those which we used to prove
(4.3). Now the proof that there exists an H°-fixed point in K AH™(K) is
standard; we: only sketch it. s
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Consider a space I" of graphs in K of Lipschitz continuous functions
from 8"(x) " K to H "(8*(y)) nK (these two arcs play the role of axes in
our coordinate system on K), with Lipschitz constants uniformly bounded.
The operator I's¢ — H"®(¢) K is a contraction in C°-topology. So there
exists a fixed point (graph) ¢". Analogously onme constructs ¢°. The
intersection " N ¢@® contains exactly one point. This point must be fixed
under H", N

The topological transitivity of H follows directly from Lemma 3.1 and
the assumption |k; |, |[;,/ 2 2. The density of homoclinic points of every
saddle follows from the density of the set of saddles.

Remark. Even topological mixing of H follows from Lemma 3.1 and
\kinls 1l 2 2. So if a “good” measure is preserved, H turns out to be
Bernoulli.

§ 5. Strong connectedness of graphs, estimations of hp, (H), h,, (H).

5.1. Let us begin with the definition of the graph I'(H) of an lLtm. H.
Call an h-curve (a v-curve) a curve y < %, such that e C*” and y joins the
left and right (lower and upper) sides of ;.

Repeat each %y, as a vertex %, of I'(H), for teI(i). Repeat it another
J(j) times and denote %y, teJ(j).

Consider two vertices, %, and %}.;,¢. Let i =i and let m > 0 be an odd
integer such that m = 2(t'—t)+1(mod2N). Suppose there exists in %, a
family of k strips, S,, v=1, ..., k, each with left ‘and right sides in Fr(Q;,,
with lower and upper sides being h-curves and with the following property:
for each v-curve y < %;;, and each v, f™(ynS,) = %y is an h-curve and

k
FHU S)nsupp fers = o

for every odd ¢ with 1 < ¢ < m—2. Here in the composition f™ = f,0...0f;
the first f = f; is F,, the mth one is F,.. (Recall that as in § 4 we denote any
composition (G,0) F,0...0F;0Gy0oFy0...0G,(0F,) (n times) by f* To
understand what each f in f" means it is enough to specify the first f)

Then supply the graph with k edges directed from %, to %', each of
length m (the path of edges, alternating with new vertices, of length m).
Analogously supply the graph with edges directed from %y, to %, for
j=J.

Intuitively, a k-edge connection between vertices corresponds to a
horseshoe-like intersection with k bends,

In [P1] I considered a slightly different definition; the changes are:

omit the fragment about the existence of S, then change the beginning of the
sentence which follows that fragment to: for each vcurve y = €y, there éxists
a family of subcurves y, =y such that f™(y,) < %y, Call the defined graph
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a weak graph I'(H). We are interested in the strong connectedness of
graphs and all assumptions sufficient for the strong connectedness of the
weak graph considered in [P1] also imply the strong connectedness of the
graph of H. (The weak graph corresponds to the derived graph of the “graph
of linkage” from [P1], for N = I, where the vertices were annuli, Edges of
the “graph of linkage” correspond to vertices of the “weak graph”.)

Denote by M(H) (M™(H)) the matrix corresponding to the (weak)
graph.

5.2. A directed graph is called strongly connected if for any two vertices
there exists a directed path joining them. The Markov chain related to the
matrix corresponding to a strongly connected graph is called irreducible (and
so is the matrix itself). Recall from [P1] some examples of the assumptions
under which I'(H) is strongly connected:

l. For N =1, each intersection &(P)nE;(Q) has at least two
components and one intersection at least 3 components. (This is an
assumption about the topology of X —the pair of transversal families of

annuli.)

2. Ikl',n|a| nl
twisting).

3. Let N =1, Let {4;}f.; be a family of circles in a surface, pairwise
disjoint. Let {Bj}f-; be another such family. Assume |JA4,u{JB; to be
connected and each pair A4;, B; in general position. More exactly, each A;
intersects each B; transversally and for at least one circle 4; (or By if A;

2, N arbitrary (the assumption about the topology of

q 4
(resp. By) intersects () B; (resp. (J 4;) at exactly two points, then. these two
j=1 i=1

points are not antipodal in A4; (B). Thicken these circles to annuli. Finally
assume the thickness of the annuli to be sufficiently small. (This assumption
is about the geometry of twisting caused by the geometry of the domain X.
Narrow annuli carry twists which must have large slopes.)

Now we can formulate a sufficient assumption for the Theorem as
follows:

" H satisfies Condition & and its weak graph ' (H) is strongly connected.

To have topological mixing of H it is sufficient to assume, in addition to
the irreducibility of M™ (H), the aperiodicity of at least one of the matrices
MY (H),, M™ (HY, defined similarly to M (H),, M(H)' at the beginning of 5.4.
(An irreducible matrix is called aperiodic if all the entries of every sufficiently
large power of the matrix are positive.)

The assumption |k; |, |I; | = 2 implies the aperiodicity of all the matrices
M (H),, M(H). The proof is in [P1].

5.3. In fact, the following holds: §

‘ProrosiTioN 5.3. Condition & and the strong connectedness of I'™(H)

icm
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imply the existence of an invariant hyperbolic set on which H is conjugate to a
subshift of finite type. In particular, hop (H) >0 and hg, (H) > 0.

Proof. Any periodic saddle x has at least two different homoclinic
trajectories. This is visible since we can consider iterations f "Wioe) (Wiioe
denotes the local unstable manifold) until these sets intersect for the first time,
say Ho, the boundary set 8 = () ¢;(Fr P) u J E;(Fr Q). The orbits of two short
arcs in f"°(W2,.) on both sides of  are clearly disjoint, and further forward
iterations of H on each of these arcs lead to long smooth arcs, hence to
homoclinic intersections with a long stable arc. With two homoclinic
trajectories one obtains a picture as in Fig. 6.

Fig. 6

54. Denote by r(H) the spectral radius of the matrix M (H). For every
t=1,..., N denote by M(H), the submatrix of (M (H))*" consisting exactly
of rows and columns indexed by %;;,. Analogously M (H) consists of rows
and columns %j;,. Since these matrices need not be {0, 1}-matrices, consider
instead the {0, 1}-matrices (M(H),)*, (M(H))* of graphs derived from the
graphs of M(H),, M(H)' (one obtains the graph derived from I' by treating
the edges of I' as vertices and the paths of length 2 as edges).

Condition & in Proposition 5.3 can almost be omitted. Namely we have
the following

ProrosiTiON 54. If for an Lt.m. H Condition 3# holds and logr(H) > 0,
then for every t there exists an H-invariant hyperbolic set X, (and X*) on which
H is conjugate to the subshift given by the matrix (M (H),)" (or (M (H)’)’)


GUEST


16 F. Przytycki

We have
h’P:r (H)’ hmp (H) 2 max (hP:r(top)H'Xt) > 2Nlogr(H) > O'
N

=1,

The same holds for X*.

Proof. The matrix M (H) has been defined in such a way as to ensure
the existence of appropriate horseshoes.

It is easy to prove that for each of the examples 1-3, except the toral
Lt.m. with k = —/ =2, the assumptions implying the transitivity of I'(H) also
imply r(H) > 0. Proposition 54 is better than Proposition 5.3 because jt
gives a concrete estimate of yoppery (H).

Other important numbers which describe global expansiveness are: y(H),
which denotes the exponential growth rate of images of (free) elements of the
fundamental group under iterations of H,,, and r, (H), which is the growth in
the first homology group. How is r(H) related to y(H) or r, (H)?

By Manning’s theorem (see the version in [F-S], hy, (H) = y(H). By the
Lefschetz formula, hy, (H) = r, (H). In fact, it is even true that hee. (H) = y(H).
(When H is isotopic to Thurston’s pseudo-Anosov homeomorphism on X,
this follows from the Nielsen-Thurston Theorem [Th]. In the general case
this. follows from Thurston’s classification of homeomorphisms of surfaces
and from the homotopy invariance of the so-called Nielsen numbers; see for
example [I] for the definition and references. I owe the Nielsen numbers
argument to N. V. Ivanov.) ‘

5.5. Let us go back to Question 3 from § 1. I can prove the following
special case:

ProposiTion 5.5. If the domain X of an Lt.m. H is orientable, if each twist
eoF,,0e”" on any horizontal annulus P, is positively oriented (i.e. for any
curve 7y joining two boundary circles of ‘P;, y and F,(y) have a positive index of
intersection), if each twist E;0G;,0E; " on Q, is negatively oriented (i.e. the
inverse is positively oriented), if the twists are strong enough to imply the
existence. of invariant families of (un) stable cones, if, finally, the graph I' (H) is
strongly connected, then

(1) Per H is“ dense in X,
(2) hPer(H) 2 hlop(H)v

Proof. This is virtually a case where Devaney’s proof [D1] of density
(see  discussion in § 1) works. The curves H"(y") can have points of
nondifferentiability but no turn-back points. :
To prove (2) observe that singularities. are only apparent, and Katok’s
idea from [K] can be applied;, owing to invariant measures one has the
N

Jy
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return property and keeps track of the return time. Then the geometric part
of the proof (shadowing by a periodic orbit) is based on the contraction in
the space of Lipschitz continuous graphs of functions as in § 4. (Incidentally,
one obtains the existence of Lipschitz continuous local (un)stable manifolds,
not necessarily differentiable.) One considers of course the first return map to
% (in the case N = 1). One can assume that the trajectories to be shadowed
have the first and the last points in % and far away from the boundary Fr %
due to the following

PROPOSITION 5.6. For every Lt.m. H such that invariant families of cones
exist, and for every probabilistic H-invariant measure p, ergodic and of positive
entropy, we have u() = 0. (Recall 0= |)¢;(FrP)u E;(FrQ))

Proof. @ intersects its H"images in a countable set Y. Since
H'(@\Y)n(8\Y)=0@ for every n#0, we have pu(0\Y)=0. Also

( G H"(Y))=0; if this were equal to 1, we would have h,(H)
n=-o
= h(Hluyn(y)) =0. '
Appendix. Conditions ;# and & We begin with suppl?me.ntmg .the
notation from § 2. Denote &;;(%y) = ;. Consider the disjoint union
R =\ Rys. So P: ¥ R. Denote %, =%nP, W =6nQ, ®(%)= R,
D(#)= &, &7 (6) = Py, B () = 2. . .
Define functions ¢;, ¥; on the sets Z, % respectively by the formulas:
dioe,-(x, y) = ((Pl (X, y)a ,V), dSOEj(x: y) = (x: l//j(xn }’))-
Define functions ¢, ¥; on the sets %;, A’ respectively by
(B0e)™ ' (x, ) = (@1 (%, ), ¥),  (BOE) ™ (x, y) = (x, ¥j(x, y)-

Condition #:

s =1
= @i\ 4@ " ag:
(Wl) Aim = <ai,m_ .%’;‘) Fd_; %‘ > 0’
AN A
(H#2) Bj,n = (ﬂ]-n""ﬂ) }'&7 dx >0,
(o#3) Tyym By > (L+ ) (L + 1) where
do| [doi|  _ . d_‘/'f‘
W= x| ax | dy| |dy

for all m, n, ieI(m), jeJ (n) such that &(P) N E;(Q) # (25: By |¢| we denote the
supremum of £ over its domain, for any positive function & (Gfsometncally,
&ms By bound from below the slopes of the induced mappings (Fm)z,,
(é,,,,)gj in the coordinates @ oe;, POE;) -

2 ~Studia Mathematica LXXXIIL1
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Condition &:
(1) Fom = (s (20 0+ 3X) }‘%’D ]‘—fi%jl >0,
) Bin= (D004 v ) ) "
(£3) T Biw > max(X(i), 1+ ) max (Y (j), 1+ )

for all m, n iel(m), jeJ(n) such that é,(P) nEj(Q) # (. Here X (i) and Y(j)
are, respectively, the largest solutions of the equations

40, g0, 2
1= % %300 X

20, 20 2

Y o Y=-3p() Y-4"

where ¢(i) is the number of components of %,, and p(j) is the number of
components of %7, ‘
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Nilpotent groups with 7, primitive ideal spaces
by
A. L. CAREY (Canberra) and WILLIAM MORAN (Adelaide)

Abstract. We prove that second countable locally compact nilpotent groups containing a
compactly generated normal open subgroup have T, primitive ideal spaces.

§ 1. Introduction. We say that a locally compact group G has T, primitive
ideal space if the group C*-algebra, C*(G), has the property that every
primitive ideal (i.e. kernel of an irreducible representation) is closed in the
hull-kernel topology on the space of primitive ideals of C*(G), denoted
Prim G. Long ago Dixmier proved [5] that every connected nilpotent Lie
group has T, primitive ideal space (in fact, such groups, being type I, are
therefore CCR). More recently Poguntke showed [11] that discrete nilpotent
groups have T; primitive ideal space. This then suggests the obvious
conjecture that all locally compact nilpotent groups have T; primitive ideal
space.

This note proves the following result in that direction,

THEOREM. If G is a second countable locally compact nilpotent group with
a compactly generated open normal subgroup then G has T, primitive ideal
space.

The notation of this paper is the same as that of [2], to which we also
refer the reader for a more leisurely account of some of the techniques and
ideas used here.
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§ 2. Preliminary arguments. We note firstly the following structure
theorem for compactly generated nilpotent locally compact groups ([8], p.
104). Namely if G’ is such a group then there exists a maximal compact
normal subgroup K consisting of all elements whose powers form a relatively
compact set such that the quotient G' = G'/K is a Lie group. By this last
statement we mean that the connected component of the identity G, of G’ is
a (connected) Lie group and G'/G, is discrete (possibly infinite). If G is as in
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