

(i) If $A \in (BP)$, then there exist two sequences $1 = N_0 < N_1 < \dots$ and $0 = K_0 < K_1 < \dots$ of integers such that

$$||A; N_r, N_{r+1}|| \le 2^{-r} \quad (r = 1, 2, ...),$$

$$(4.5) \qquad \sup_{\varphi} \left\{ \int_{0}^{1} \left(\max_{1 \le n \le N_{r}} \left| \sum_{k=K_{r}+1}^{K_{r+1}} a_{nk} \varphi_{k}(x) \right| \right)^{2} dx \right\}^{1/2} \le 2^{-r}.$$

Setting $\mu_{nk} = r + 1$ for $N_r \le n < N_{r+1}$ and $K_r < k \le K_{r+1}$ (r = 0, 1, ...), it is easy to check that $||\mu A|| < \infty$.

(ii) Similarly, if $A \notin (BP)$, then there exist two sequences $1 = N_0 < N_1 < \dots$ and $0 = K_0 < K_1 < \dots$ of integers such that

$$||A; N_r, N_{r+1}|| \ge 2^r \quad (r = 1, 2, ...)$$

and (4.5) is satisfied. Now we set $\mu_{nk} = (r+1)^{-1}$ for $N_r \le n < N_{r+1}$ and $K_r < k \le K_{r+1}$ (r=0, 1, ...) and conclude that $||\mu A|| = \infty$.

References

- [1] J. D. Hill, The Borel property of summability methods, Pacific J. Math. 1 (1951), 393-409.
- [2] G. G. Lorentz, Borel and Banach properties of methods of summation, Duke Math. J. 22 (1955), 129-141.
- [3] F. Móricz, On the T-summation of orthogonal series, Acta Sci. Math. (Szeged) 30 (1969), 49-67.
- [4] K. Tandori, Über die Mittel von orthogonalen Funktionen, Acta Math. Acad. Sci. Hungar. 44 (1984), 141-156.
- [5] A. Zygmund, Trigonometric Series, University Press, Cambridge 1959.

BOLYAI INSTITUTE, UNIVERSITY OF SZEGED Aradi vértanúk tere 1, 6720 Szeged, Hungary

Received December 11, 1984 (2020) Revised version March 5, 1985

Analytic functions in non-locally convex spaces and applications

by
N. J. KALTON * (Columbia, Mo.)

Abstract. The aim of this paper is to determine, for a general p-normable space X, what can in general be said about X-valued analytic functions on the disc. The results obtained are used to solve a problem raised by Turpin [17] on tensor products of quasi-Banach spaces.

1. Summary of main results. Suppose Ω is an open subset of the complex plane C and X is a quasi-Banach space. A map $f: \Omega \to X$ is said to be analytic if for every $z_0 \in \Omega$ there exists r > 0 such that f can be expanded in a power series for $|z - z_0| < r$, i.e.

$$f(z) = \sum_{n=0}^{\infty} x_n (z - z_0)^n$$

for $|z-z_0| < r$. This definition of analyticity is forced on us by simple examples which demonstrate that complex differentiability of f does not suffice to produce reasonable properties (cf. Aleksandrov [3], p. 39 or Turpin [16], Chapitre IX).

A key property of analytic functions is ([16], p. 195) that it $f: \Omega \to X$ is analytic and $\Omega_0 \subset \Omega$ is open and relatively compact in Ω then there is a Banach space B, an analytic function $g: \Omega_0 \to B$ and a bounded linear operator $T: B \to X$ so that f(z) = T(g(z)), $z \in \Omega_0$. From this many of the standard properties of analytic functions in a Banach space can be lifted to quasi-Banach spaces.

In this paper we will primarily be concerned with the case $\Omega = \Delta$, the open unit disc. In this case one has, for example,

$$f(z) = \sum_{n=0}^{\infty} x_n z^n, \quad |z| < 1,$$

where $\limsup ||x_n||^{1/n} \leq 1$.

It seems that the main obstacle to developing the theory of analytic functions for non-locally convex spaces is the failure of the Maximum Modulus Principle. It has been observed by several authors (Etter [7], Aleksandrov [3], Peetre [14], Davis-Garling-Tomczak [5]) that some standard spaces, e.g. L_p for $0 , have a plurisubharmonic quasi-norm and hence if <math>f: \overline{A} \to L_p$ is analytic on A and

^{*} Research supported by NSF grant DMS-8301099.

continuous on $\overline{\Delta}$ then

$$||f(z)|| \leq \max_{|\zeta|=1} ||f(\zeta)||,$$

for all $z \in \Delta$. By contrast, however, Aleksandrov notes that if we define $J_{p,0}$ to be the closed linear span in $L_p(T)$ of the Cauchy kernels $\varphi_z(w) = (1 - wz)^{-1}$ and let $Q: L_p \to L_p/J_{p,0}$ be the quotient map then we can define

$$v(z) = Q(u(z)), \quad |z| \le 1,$$

where $u(z) = (1 - wz)^{-1}$. The map $v: \overline{\Delta} \to L_p/J_{p,0}$ is analytic on Δ , continuous on $\overline{\Delta}$ and vanishes on T.

The precise conditions on X so that such a phenomenon can occur will be investigated in a separate paper. Our aim in this paper is to determine, for a general p-normable space X, with no additional assumptions such as plurisubharmonicity of the quasi-norm, what can in general be said about X-valued analytic functions on the disc. In particular, we define, for $\sigma > 0$, $V_{\sigma}(X)$ to be the space of all analytic $f: \Delta \to X$ so that, for some constant C,

$$||f(z)|| \leq C (1-|z|)^{\sigma}.$$

We show that (Theorem 4.6) v defined above belongs to $V_{\sigma}(L_p/J_{p,0})$ where $\sigma=1/p-1$.

It turns out (Theorem 6.7) that if X is p-normable and $\sigma > 1/p-1$ then $V_{\sigma}(X) = \{0\}$, so that v represents extremal behaviour. In Theorem 8.3 it is shown further that if

$$\lim_{r \to 1} (1 - r^2)^{1 - 1/p} \left\{ \int_{0}^{2\pi} ||f(re^{i\theta})||^p d\theta \right\}^{1/p} = 0$$

then f = 0.

The key result, however, is that $V_{\sigma}(X)$ is nontrivial if and only if there is a nontrivial linear operator $T: L_{\sigma}/H_{\sigma} \to X$ (Theorem 7.3).

These results can be used to solve a problem raised by Turpin [17] on tensor products of quasi-Banach spaces. Turpin showed that if X is a p-Banach space and Y is a q-Banach space then there is an r-convex tensor quasi-norm on $X \otimes Y$ if 1/r = 1/p + 1/q - 1, and asked whether this can be improved. The author showed that in the case p = q we cannot always have r = p [9], by showing that there is no nonzero bilinear B: $L_p/H_p \times L_p/H_p \to Z$ where Z is p-normable. Here we show Turpin's result is best possible by showing that if Z is g-normable, where 1/g < 1/p + 1/q - 1, then there is no nonzero bilinear form g: $L_p/H_p \times L_q/H_q \to Z$ (Corollary 9.2).

The method employed is to establish a correspondence between certain classes of analytic functions and linear operators. The first such result is Theorem 5.1 which identifies the space of linear operators $\mathcal{L}'(H_q, X)$ where X is p-normable and 0 < q < p. This theorem is essentially a translation of a result of Coifman and Rochberg [4]. In Theorem 7.1 we similarly identify $\mathcal{L}'(L_p, X)$ and hence $\mathcal{L}(L_p/H_p, X)$. We use these results to give an "atomic decomposition" of

 L_p in the spirit of Coifman-Rochberg [4] and to extend Aleksandrov's theorem ([1], [2]) that $L_p = H_p + \bar{H}_p$ for $0 , by showing that if <math>f \in L_p(T)$ then we can find $g_1, g_2 \in H_p$ so that

$$g_1(e^{i\theta}) + g_2(e^{-i\theta}) = f(e^{i\theta}),$$

$$\int_1 |g_j'(w)| (1 - |w|^2)^{p-1} d\lambda(w) < \infty$$

for j=1, 2 (where λ is the planar measure on Δ) (see Theorems 8.1, 8.2). In Section 6 we also give some applications to the general theory of vector-valued analytic functions. For example, we show Liouville's theorem holds (Theorem 6.2), in the form that if $f: C \to X$ is entire and bounded then f is constant (see [16], [18] for a similar result when f is analytic on the Riemann sphere $C \cup \{\infty\}$). We also show (Theorem 6.3) that the uniform limit of analytic functions on Δ is again analytic.

2. Notation and plan of the paper. Throughout this paper all vector spaces are assumed complex. By definition, a *quasi-normed space* is a vector space X with a quasi-norm $x \to ||x||$ satisfying:

(i)
$$||x|| > 0$$
, $x \neq 0$,

(ii)
$$||\alpha x|| = |\alpha| ||x||$$
, $\alpha \in C, x \in X$,

(iii)
$$||x_1 + x_2|| \le C(||x_1|| + ||x_2||), \quad x_1, x_2 \in X,$$

for some C independent of x_1 , x_2 . In fact we will always assume that the quasinorm is *p-subadditive* for some p > 0, i.e.

(iv)
$$||x_1 + x_2||^p \le ||x_1||^p + ||x_2||^p$$
, $x_1, x_2 \in X$.

This assumption is justified by the Aoki-Rolewicz theorem [15] that every quasinorm is equivalent to a p-subadditive quasi-norm where $C = 2^{1/p-1}$.

If X is complete, we say it is a *quasi-Banach space*; if it has a p-subadditive quasi-norm, we say it is a p-Banach space. For convenience of exposition, we shall always assume that X is a p-Banach space without specifying the fact (while spaces Y, Z, etc. need not be p-Banach spaces but must be q-Banach spaces for some q).

If X and Y are quasi-Banach spaces then $\mathcal{L}(X, Y)$ denotes the space of all bounded linear operators $T: X \to Y$ with the usual quasi-norm $||T|| = \sup(||Tx||: ||x|| \le 1)$.

Suppose $0 . We let <math>L_p = L_p(T)$ be the space of all complex-valued Borel functions $f: T \to C$ satisfying

$$||f||_p^p = (2\pi)^{-1} \int_0^{2\pi} |f(e^{i\theta})|^p d\theta < \infty.$$

In general we shall use w as the independent variable when considering function spaces. Let H_p be the closed linear span in L_p of $(w^n: n = 0, 1, 2, ...)$. \bar{H}_p denotes the closed linear span of $(\bar{w}^n: n = 0, 1, 2, ...)$ and $\bar{H}_{p,0}$ denotes the closed linear span of $(\bar{w}^n: n = 1, 2, 3, ...)$ or $(w^n: n = -1, -2, -3, ...)$. The intersections

are denoted by $J_p=H_p\cap \bar{H}_p$ and $J_{p,0}=H_p\cap \bar{H}_{p,0}$. $J_{p,0}$ is the closed linear span of the Cauchy kernels

$$u(z) = (1 - wz)^{-1}$$

for $z \in T$ (see [1]). We shall also need the spaces $J_{m,0}^{(m)}$ spanned by the functions $u^{(m)}(z) = m! \ w^m (1 - wz)^{-(m+1)}$ provided m < 1/p - 1.

It is known that the quotient spaces L_p/H_p , L_p/\bar{H}_p , $L_p/\bar{H}_{p,0}$, L_p/J_p , H_p/J_p , H_p/J_p , H_p/J_p , are all isomorphic (cf. [3], [10]). The first three spaces in this list are isomorphic by constructing simple automorphisms of L_p which map H_p to \bar{H}_p or $\bar{H}_{p,0}$. For the other spaces one needs the theorem of Aleksandrov [1] that $H_p + \bar{H}_{p,0} = L_p$.

For $p < q \le 1$, the q-Banach envelope of H_p has been identified in [3] and [4]. This is the Bergman space $B_{p,q}$ of all analytic functions f defined on the unit disc Δ in the complex plane and satisfying

$$\int_{A} |f(w)|^{q} (1 - |w|^{2})^{q/p - 2} d\lambda(w) = ||f||_{p,q}^{q} < \infty$$

where λ is the planar Lebesgue measure.

If we identify H_p in the usual way as a space of analytic functions on Δ , then $H_p \subset B_{p,q}$ and the inclusion is continuous. Furthermore, if Y is any q-Banach space and T: $H_p \to Y$ is a bounded linear operator then T can be extended to a bounded linear operator \overline{T} : $B_{p,q} \to Y$. Thus $\mathscr{L}(H_p, Y)$ and $\mathscr{L}(B_{p,q}, Y)$ are naturally isomorphic.

We now discuss the plan of the paper. In Sections 3-4 we describe a theory of integration in non-locally convex spaces originally developed by Turpin and Waelbroeck ([16], [18], [19]); roughly speaking, a function can be integrated successfully if it is sufficiently smooth. We introduce in Section 4 the class $C_{\sigma}(T, X)$ of " σ -differentiable" functions $f \colon T \to X$ where $\sigma > 0$. In particular, we study the function $u \colon T \to L_p$ given by

$$u(z) = (1 - wz)^{-1}$$

In Section 5, we prove our main representation theorem for operators on H_q , and apply these results in Section 6 to give results on analytic functions taking their values in an arbitrary quasi-Banach space X. In Section 7, these results and the Turpin-Waelbroeck integral are used to give a representation theorem for operators on $L_p(T)$ and on $L_p/\overline{H}_{p,0}$. In Section 8, we give some applications to the space L_p , and in Section 9 we give applications to tensor products.

Convention. Throughout the paper we adopt the convention that C is a constant which may vary from line to line and may depend on the parameters p, q, σ, ν , etc., but is independent of f, x, K, etc.

3. The class C_{σ} . In this section we give a self-contained treatment of an integration theory developed by Turpin and Waelbroeck ([16], [18], [19]). Our

approach goes a little further than that of Turpin and Waelbroeck as we shall need to cover the case when σ , as specified below, is an integer.

Suppose X is a p-Banach space where $0 . Let K be any fixed closed bounded interval in R. Let <math>f: K \to X$ be any continuous function. Then for any closed subinterval I of K we define

$$||f||_I = \max_{t \in I} ||f(t)||.$$

Now suppose $\sigma>0$ and N is an integer with $N\geqslant \sigma-1$; suppose further that l>0. We shall say that a continuous function $f\colon K\to X$ is in $C^{l,N}_{\sigma}(K,X)$ if there is a constant $\gamma>0$ with the property that for any closed subinterval I of K with length $|I|\leqslant l$ there is a polynomial $\Phi_I\colon I\to X$ of degree at most N so that

$$(3.1) ||f - \Phi_I||_I \leqslant \gamma |I|^{\sigma}.$$

Note that if $\sigma < 1$ and N = 0 then this simply implies that f is Lipschitz of order σ .

Before proceeding we observe two crucial facts. The first is a lemma due to Peck [13]: if F is any m-dimensional complex p-Banach space then there is a norm $\| \| \ \| \|$ on F satisfying

$$|||x||| \le ||x|| \le (2m)^{1/p-1} |||x|||, \quad x \in F.$$

Note here that the real dimension of F is 2m.

The second observation is that there is a constant C = C(p, N) so that for any interval I and any polynomial φ of degree N we have

$$\|\varphi^{(k)}\|_{I} \leqslant C|I|^{-k}\|\varphi\|_{I}$$

for any $k \leq N$. This is proved by standardizing to an interval of length one and using Peck's lemma.

In the next proposition we let $v = [\sigma]$ be the largest integer in σ .

PROPOSITION 3.1. (i) The spaces $C_{\sigma}^{l,N}(K,X)$ are independent of l>0 and $N \ge \sigma-1$. Let $C_{\sigma}(K,X)$ denote this class.

- (ii) If $\sigma > 1$ and $f \in C_{\sigma}(K, X)$ then f is continuously differentiable and $f' \in C_{\sigma-1}(K, X)$.
- (iii) If $\sigma \notin N$ then $f \in C_{\sigma}(K, X)$ if and only if f is v times continuously differentiable on K and, for some $\beta > 0$,

$$\left\| f(t) - \sum_{k=0}^{\nu} \frac{f^{(k)}(s)}{k!} (t-s)^k \right\| \le \beta |t-s|^{\sigma}$$

for $s, t \in K$.

(iv) If $\sigma \in N$ (i.e. $\sigma = v$) and $f^{(v-1)}$ is Lipschitz then $f \in C_{\sigma}(K, X)$ if and only if, for some $\beta > 0$,

$$\left\| f(t) - \sum_{k=0}^{\nu-1} \frac{f^{(k)}(s)}{k!} (t-s)^k \right\| \le \beta |t-s|^{\sigma}.$$

Proof: Suppose $f \in C_{\sigma}^{l,N}(K, X)$. As in (3.1) we suppose that if I is a closed subinterval of K we can find a polynomial φ_I of degree at most N so that $||f - \varphi_I||_I \leq \gamma |I|^{\sigma}$. If I and J are intersecting intervals then

$$\|\varphi_I - \varphi_J\|_{I \cap I} \leq C\gamma(|I|^{\sigma} + |J|^{\sigma}),$$

and hence if $k \leq N$ then

(3.2)
$$\|\varphi_I^{(k)} - \varphi_J^{(k)}\|_{I \cap J} \leq C \gamma |I \cap J|^{-k} (|I|^{\sigma} + |J|^{\sigma}).$$

Fix $s \in I \cap J$. Then for $t \in I \cup J$

(3.3)
$$\|\varphi_I(t) - \varphi_J(t)\| = \left\| \sum_{k=0}^N \frac{\varphi_I^{(k)}(s) - \varphi_J^{(k)}(s)}{k!} (t-s)^k \right\|$$

$$\leq C_V(|I \cup J|/|I \cap J|)^N (|I|^\sigma + |J|^\sigma)$$

Now note that if L is an interval with $l \le |L| \le \frac{3}{2}l$ then we can write $L = I \cup J$ where $|I| \le l$, $|J| \le l$ and $|I \cap J| \ge \frac{1}{2}l$. Thus for $t \in L$

$$||\varphi_I(t) - \varphi_I(t)|| \leq 3^N C_V |I|^{\sigma}$$

and so

$$||f(t) - \varphi_I(t)|| \le C\gamma |L|^{\sigma}$$

for $t \in L$. Thus $C_{\sigma}^{l,N} = C_{\sigma}^{3l/2,N}$, and it follows quickly that $C_{\sigma}^{l,N}$ is independent of l. Henceforward we take l = |K|.

Now suppose $t \in K$ and $0 < h \le |K| = \delta$ say. We can find a polynomial $\varphi_h = \varphi_{t,h}$ of degree N so that $||f(s) - \varphi_h(s)|| \le C\gamma h^{\sigma}$ if $|s - t| \le h$ and $s \in K$.

Using (3.3) we see that if $1 \le \alpha \le 2$ and $\alpha h \le \delta$ then $||\varphi_h(s) - \varphi_{\alpha h}(s)|| \le C \gamma h^{\sigma}$ if $|s - t| \le h$ and $s \in K$. It follows that if $0 \le k \le N$ then

Now if $2^{-n}\delta \leq h < 2 \cdot 2^{-n}\delta$ where $n \in \mathbb{N}$ then we can obtain $\varphi_h^{(k)}(t)$ as

(3.5)
$$\varphi_h^{(k)}(t) = \varphi_{\delta}^{(k)}(t) - \sum_{j=1}^{n} P_j$$

where

$$\begin{split} P_{j} &= \varphi_{2\cdot 2^{-j}\delta}^{(k)}(t) - \varphi_{2^{-j}\delta}^{(k)}(t) &\quad \text{for } j < n, \\ P_{n} &= \varphi_{2\cdot 2^{-n}\delta}^{(k)}(t) - \varphi_{h}^{(k)}(t). \end{split}$$

We note that $||P_i|| \leq C\gamma (2^{-j}\delta)^{\sigma-k}$.

We consider first the case $k > \sigma$. In this case

$$\|\varphi_h^{(k)}(t) - \varphi_\delta^{(k)}(t)\| \leq C \gamma h^{\sigma-k}$$
.

However, $\|\varphi_{\delta}^{(k)}(t)\| \leq C\delta^{-k}\|\varphi\|_{K} \leq C\delta^{-k}(\|f\|_{K} + \gamma\delta^{\sigma})$. Hence

$$\|\varphi_h^{(k)}(t)\| \le C(\delta^{-k} \|f\|_K + \gamma h^{\sigma-k}).$$

Thus

$$\left\| \sum_{k=y+1}^{N} \varphi_{h}^{(k)}(t) (s-t)^{k} / k! \right\| \leq C (\|f\|_{K} + \gamma) h^{\sigma}$$

if $|s-t| \le h$, and so if $s \in K$ then

$$\|f(s) - \sum_{k=0}^{\nu} \varphi_h^{(k)}(t)(s-t)^k / k! \| \leq \gamma' h^{\sigma}$$

where γ' is independent of t and h. Thus (i) is established; we may take N = v in the definition. Henceforward we assume N = v so that deg $\varphi_h \leqslant v$ for all t, h.

Returning to (3.5) we see that if $k < \sigma$ then $x_k = \lim_{h \to 0} \varphi_h^{(k)}(t)$ exists, and

furthermore

$$(3.6) ||x_k - \varphi_h^{(k)}(t)|| \leqslant C\gamma h^{\sigma - k}.$$

If $\sigma \in N$ and $k = \sigma$ then (3.4) and (3.5) yield

$$\|\varphi_h^{(k)}(t) - \varphi_\delta^{(k)}(t)\| \le C\gamma (\log(\delta/h) + 1)^{1/p}$$

and hence

$$\|\varphi_h^{(k)}(t)\| \le C(1 + \log(\delta/h))^{1/p}(\|f\|_K + \gamma),$$

where $C = C(p, N, \delta)$. Let us write

$$g_t(s) = \sum_{k < \sigma} x_k (s - t)^k / k!$$

and define $\varrho_{t,h}$ by

$$\varrho_{t,h}(s) = 0 \qquad \text{if } \sigma \notin N,$$

$$\varrho_{t,h}(s) = \varrho_{t}^{(\nu)}(t)(s-t)^{\nu}/\nu! \qquad \text{if } \sigma = \nu.$$

Let $\psi_{t,h}(s)=g_t(s)+\varrho_{t,h}(s)$. Then $\|\phi_h(s)-\psi_{t,h}(s)\|\leqslant C\gamma h^\sigma$ if $|s-t|\leqslant h$ by (3.6). Thus

$$||f(s) - \psi_{t,h}(s)|| \le C \gamma h^{\alpha}$$

if $|s-t| \le h$ and $s \in K$.

Note first that $f(t) = \lim_{h \to 0} \psi_{t,h}(t) = g_t(t)$. Thus if $\sigma > 1$ then f'(t) exists and $f'(t) = g'_t(t) = x_1$.

Suppose s, $t \in K$ and $\delta \ge h \ge |s-t|$. Then if $|\tau - t| \le h$ and $\tau \in K$, we have

$$\|\psi_{t,h}(\tau) - \psi_{s,h}(\tau)\| \leq C \gamma h^{\sigma}$$

and hence

$$||\psi'_{t,h}(\tau) - \psi'_{s,h}(\tau)|| \leq C\gamma h^{\sigma-1}.$$

In particular, if $\tau = s$ then

$$(3.7) ||\psi_{t,h}'(s) - f'(s)|| \leq C\gamma h^{\sigma - 1}.$$

Letting h = |s-t| and $s \to t$ we see that f' is continuous. Furthermore, $f' \in C_{\sigma-1}$ since (3.7) holds if $s \in K$ and $|s-t| \le h$. Thus (ii) is established.

Now for (iii) we can repeat this argument ν times to show f is ν times continuously differentiable and

$$\psi_{t,h}(s) = \sum_{k=0}^{\nu} f^{(k)}(t) (s-t)^k / k!.$$

In case (iv), we repeat the argument $\nu-1$ times to deduce that $f^{(\nu-1)}$ is in class C_1 , and $||\psi_{t,\nu}^{(\nu-1)}(s)-f^{(\nu-1)}(s)|| \leq C\gamma h$ if $|s-t| \leq h$. Now

$$\psi_{t,h}^{(\nu-1)}(s) = x_{\nu-1} + \varphi_h^{(\nu)}(t)(s-t) = f^{(\nu-1)}(t) + \varphi_h^{(\nu)}(t)(s-t).$$

Hence

$$||f^{(\nu-1)}(s)-f^{(\nu-1)}(t)-\varphi_h^{(\nu)}(t)(s-t)|| \leq C\gamma h.$$

If $f^{(v-1)}$ is Lipschitz we conclude, by taking s = t + h or t - h, that $\|\varphi_h^{(v)}(t)\| \le C$ where C is independent of t and h. Hence

$$||\varrho_{t,h}(s)|| \leqslant C|s-t|^{\nu}$$

and (iv) follows. The proposition is proved.

From now we shall choose l = |K| and N = v in our definition of $C_{\sigma}(K, X)$. We let $\gamma_{\sigma}(f)$ be the infimum of all possible constants γ in (3.1). Then we set

$$||f||_{\mathbf{K},\sigma} = ||f||_{\mathbf{K}} + \gamma_{\sigma}(f).$$

If $f \in C_{\sigma}(K, X)$ we say that f is of rank m if f(K) is contained in an m-dimensional subspace.

Lemma 3.2. There is a constant $C = C(p, \sigma)$ so that if $f \in C_{\sigma}(K, X)$ and $m \ge 2(v+1)$ then there exists $g_m \in C_{\sigma}(K, X)$ with rank $g_m \le m$ and

$$||f - g_m||_K \le Cm^{-\sigma} ||f||_{K,\sigma} |K|^{\sigma}$$
 and $||g_m||_{K,\sigma} \le C||f||_{K,\sigma}$

Proof. We prove the statement of the lemma if $m = (N+1)(\nu+1)$ where $N \in \mathbb{N}$. The general statement then follows easily.

First suppose $\psi \colon \mathbf{R} \to \mathbf{R}$ is a C^{∞} -function so that supp $\psi \subset [-1, 1]$, $0 \le \psi \le 1$, $\psi(0) = 1$ and

$$\sum_{n\in\mathbb{Z}}\psi(t-n)=1, \quad t\in\mathbb{R}.$$

Let K = [a, b] and let $I_j = [a+(j-1)\delta/N, a+j\delta/N]$ for $0 \le j \le N+1$ where $\delta = b-a = |K|$. Define ψ_0, \ldots, ψ_N : $R \to R$ by

$$\psi_j(t) = \psi(N\delta^{-1}(t-a)-j).$$

Then

$$\sum_{j=0}^N \psi_j(t) = 1, \quad t \in K,$$

and supp $\psi_j \subset I_j \cup I_{j+1}$. For $l \leq \nu + 1$,

$$|\psi_i^{(l)}(t)| \leqslant CN^l \delta^{-1}.$$

Pick polynomials $\varphi_0, ..., \varphi_N \in C_{\sigma}(K, X)$ of degree at most ν so that

$$||f(s) - \varphi_j(s)|| \le ||f||_{K,\sigma} (2\delta/N)^{\sigma}$$

for $s \in (I_j \cup I_{j+1}) \cap K$. Let $g = g_m = \sum_{j=0}^N \psi_j \varphi_j$. Then $g \in C_\sigma(K, X)$ and if $s \in I_j$ then

$$||f(s) - g(s)|| = ||\psi_{j-1}(s)(f(s) - \varphi_{j-1}(s)) + \psi_{j}(s)(f(s) - \varphi_{j}(s))||$$

$$\leq C ||f||_{K,\sigma} N^{-\sigma} \delta^{\sigma}.$$

Furthermore,

$$g(s) = \psi_{j-1}(s) \varphi_{j-1}(s) + \psi_{j}(s) \varphi_{j}(s) = \varphi_{j-1}(s) + \psi_{j}(s) (\varphi_{j}(s) - \varphi_{j-1}(s)).$$

Thus

$$g^{(\nu+1)}(s) = \frac{\partial^{\nu+1}}{\partial s^{\nu+1}} (\psi_j(\varphi_j - \varphi_{j-1})).$$

By (3.2), $\|\varphi_j^{(l)}(s) - \varphi_{j-1}^{(l)}(s)\| \le C \|f\|_{K,\sigma} (\delta/N)^{\sigma-l}$. Hence $\|g^{(\nu+1)}(s)\| \le C \|f\|_{K,\sigma} (\delta N^{-1})^{\sigma-\nu-1}$.

Let J be any closed subinterval of K. If $|J|\geqslant N^{-1}|K|$ then, since $\|f-g\|_K\leqslant C\,\|f\|_{K,\sigma}\,N^{-\sigma}\,\delta^\sigma$, there is a polynomial φ_J so that deg $\varphi_J\leqslant \nu$ and

$$||g - \varphi_J|| \leq C ||f||_{K,\sigma} (N^{-\sigma} \delta^{\sigma} + |J|^{\sigma}) \leq C ||f||_{K,\sigma} |J|^{\sigma}.$$

Now suppose $|J| \leq N^{-1} \delta$. Let s be the midpoint of J and define

$$\varphi(t) = \sum_{j=0}^{\nu} g^{(j)}(s)(t-s)^{j}/j!.$$

Then for $t \in J$

$$||g(t) - \varphi(t)|| \le C|t - s|^{\nu + 1} \max_{t \in I} ||g^{(\nu + 1)}(t)||.$$

Here we use the fact that g|J takes its values in a fixed $3(\nu+1)$ -dimensional space, so that by Peck's lemma the quasi-norm is uniformly equivalent to a norm. Thus

$$||g(t) - \varphi(t)|| \le C ||f||_{K,\sigma} (\delta N^{-1})^{\sigma - \nu - 1} |J|^{\nu + 1} \le C ||f||_{K,\sigma} |J|^{\sigma}.$$

Now note that rank $g_m \leq (N+1)(\nu+1)$.

Remark. Suppose, as we will later, that $K = [-2\pi, 2\pi]$ and that f is 2π -periodic. Then if N is even in the above argument, then g_m is also 2π -periodic.

Now suppose μ is a regular Borel measure on K. If $g \in C_{\sigma}(K, X)$ and rank $g < \infty$ then we may define the finite-dimensional integral $\int_{\mathbb{R}} g \, d\mu$. By Peck's lemma

we clearly obtain

$$\left\| \int_{K} g d\mu \right\| \le (2m)^{1/p-1} \|g\|_{K} \|\mu\|$$

if rank g = m.

If $f \in C_{\sigma}(K, X)$ we can define g_m for $m \ge 2(\nu + 1)$ with rank $g_m \le m$ and so that

$$||f-g_m||_K \leq Cm^{-\sigma}|K|^{\sigma}||f||_{K,\sigma}$$

Then, for $m \le n \le 2m$, $||g_m - g_n||_K \le Cm^{-\sigma}|K|^{\sigma}||f||_{K,\sigma}$, and hence

$$\left\| \int_{K} g_{m} d\mu - \int_{K} g_{n} d\mu \right\| \leq C m^{1/p-1-\sigma} |K|^{\sigma} ||f||_{K,\sigma}.$$

Now it is easy to show that $\lim_{n\to\infty} \int g_{2n} d\mu$ exists. It follows that $\lim_{m\to\infty} \int_K g_m d\mu$ exists and is independent of the choice of the approximating sequence g_m as long as $||f - g_m|| \le Cm^{-\sigma}$. Furthermore,

(3.7)
$$\left\| \iint_{K} d\mu - \int_{K} g_{n} d\mu \right\| \leq C n^{1/p - 1 - \sigma} \|f\|_{K, \sigma} |K|^{\sigma} \|\mu\|.$$

However, $||g_n||_K \le C(||f||_K + |K|^{\sigma}n^{-\sigma}||f||_{K,\sigma})$, and hence for all $n \ge 2(\nu+1)$ we have

(3.8)
$$\left\| \int_{\nu} f \, d\mu \right\| \leq C \left(n^{1/p-1} \| f \|_{K} + n^{1/p-1-\sigma} |K|^{\sigma} \| f \|_{K,\sigma} \right) \| \mu \|.$$

Taking n to be fixed, say $2(\nu+1)$, we obtain:

LEMMA 3.3.

$$\left\| \iint_{\mathbb{R}} f \, d\mu \right\| \leqslant C(\|f\|_{\mathbb{K}} + |K|^{\sigma} \|f\|_{\mathbb{K}, \sigma}) \|\mu\|,$$

where $C = C(p, \sigma)$ is independent of f, μ and K.

We can now state the main properties of the Turpin-Waelbroeck integral.

Theorem 3.4. (i) Suppose $f_n \in C_\sigma(K, X)$ where $\sigma > 1/p-1$. Suppose $||f_n - f||_K \to 0$ and $\sup ||f_n||_{K,\sigma} < \infty$. Then

$$\lim_{n\to\infty}\int\limits_K f_n d\mu = \int\limits_K f d\mu.$$

(ii) Suppose $\mu_n \in M(K)$ and $\mu_n \to \mu$ weak *. Then if $f \in C_{\sigma}(K, X)$ where $\sigma > 1/p-1$ then

$$\lim_{n\to\infty} \int_{K} f \, d\mu_n = \int_{K} f \, d\mu.$$

Proof. (i) We omit the simple proof that $f \in C_{\sigma}(K, X)$. By 3.8 we note that if

 $m, n \in \mathbb{N}$ then

$$\left\| \int_{K} (f - f_m) \, d\mu \right\| \leqslant C(n^{1/p - 1} \| f - f_m \|_{K} + n^{1/p - 1 - \sigma} \| f - f_m \|_{K, \sigma}).$$

However, it is easily seen from the definition that $\sup_{m} ||f - f_m||_{K,\sigma} < \infty$. Letting $m \to \infty$ we obtain

$$\lim \sup_{m \to \infty} \left\| \int_{K} (f - f_m) \, d\mu \right\| \leqslant C n^{1/p - 1 - \sigma}$$

for all $n \in N$ and the result follows.

(ii) Here we use (3.7). Note that $\sup_{n} ||\mu_n|| < \infty$. Then for any m, n

$$\left\| \int f \, d\mu_m - \int g_n \, d\mu_m \right\| \leqslant C n^{1/p - 1 - \sigma} \|f\|_{K, \sigma}$$

Now $\lim_{m\to\infty} \int g_n d\mu_m = 0$ for each n. Hence

$$\limsup_{m \to \infty} \left\| \left\| f d\mu_m \right\| \le C n^{1/p - 1 - \sigma} \|f\|_{K, \sigma}$$

for all $n \in \mathbb{N}$, and the result follows.

4. The class $C_{\sigma}(T, X)$. Suppose $f \in C(T, X)$. We say $f \in C_{\sigma}(T, X)$ if $\tilde{f} \in C_{\sigma}(K, X)$ for any closed bounded subinterval K of R where $\tilde{f}(\theta) = f(e^{i\theta})$. We set

$$||f||_{T,\sigma} = ||\tilde{f}||_{K,\sigma}$$

where $K = [-2\pi, 2\pi]$. This interval has length greater than 2π to ensure smoothness at the end points.

Our first lemma translates the definition of C_{σ} into a statement about trigonometric polynomial approximation.

Lemma 4.1. Suppose $f \in C(T, X)$ and suppose there exist $N \in N$, $\sigma > 0$, l > 0 and $\gamma > 0$ so that for any subinterval I of $[-2\pi, 2\pi]$ with |I| < l there is a trigonometric polynomial

$$\varphi_I(\theta) = \sum_{k=-N}^{N} x_k e^{ik\theta} \quad \text{with} \quad ||\tilde{f} - \varphi_I||_I \leq \gamma |I|^{\sigma}.$$

Then $f \in C_{\sigma}(T, X)$.

Proof. First we note the existence of a constant C = C(p, N) so that for α satisfying $0 < \alpha \le 1$ and all $x_0, \ldots, x_{2N} \in X$ we have

$$\max_{0 \leqslant k \leqslant 2N} ||x_k|| \leqslant C \max_{|t| \leqslant 1} \left\| \sum_{k=0}^{2N} x_k \left(\frac{e^{i\alpha t} - 1}{\alpha} \right)^k \right\|.$$

This is a simple consequence of the fact that (2N + 1)-dimensional subspaces of X

are uniformly normable and $\lim_{\alpha \to 0} (e^{i\alpha t} - 1)/\alpha = it$. Thus

$$\max_{0 \leqslant k \leqslant 2N} \alpha^k ||x_k|| \leqslant C \max_{|t| \leqslant \alpha} \Big\| \sum_{k=0}^{2N} x_k (e^{it} - 1)^k \Big\|.$$

In the remainder of the argument we take $\varrho = \gamma + ||f||$ for convenience. Let I be any interval of length at most l. Then let s be the midpoint of I. For $0 < \alpha \le l/2$ there is a trigonometric polynomial g_{α} of degree at most N so that

$$||f(s+t)-g_{\alpha}(t)|| \leq C\varrho\alpha^{\sigma}$$

for $|t| \leq \alpha$. Let

$$g_{\alpha}(t) = \sum_{k=0}^{2N} x_{k,\alpha} e^{-iNt} (e^{it} - 1)^k.$$

For $k \le 2N$, $||x_{k,l/2}|| \le C\varrho$. Now arguing as in Proposition 3.1 we obtain

$$||g_{\alpha}(t)-g_{\beta}(t)|| \leq C\varrho\alpha^{\sigma}, \quad |t| \leq \beta,$$

provided $\frac{1}{2}\alpha \leq \beta \leq \alpha$. Hence

$$||x_{k,\alpha}-x_{k,\beta}|| \leq C\varrho\alpha^{\sigma-k}$$
.

We conclude that if $k > \sigma$ then $||x_{k,\alpha}|| \le C\varrho x^{\sigma^{-k}}$, while if $k < \sigma$ then $||x_{k,\alpha}|| \le C\varrho$. If $\sigma \in N$ and $k = \sigma$ then arguing as in Proposition 3.1 we get

$$||x_{k,\alpha}|| \leq C(\log(l/\alpha)+1)^{1/p} \rho$$
.

Thus

$$\left\|\sum_{k=\nu+1}^{2N} x_{k,\alpha} e^{-iNt} (e^{it} - 1)^k \right\| \leqslant C \varrho \alpha^{\sigma}.$$

Select polynomials λ_{ν} of degree ν so that

$$|e^{-iNt}(e^{it}-1)^k-\lambda_k(t)| \leq C|t|^{\nu+1}$$

for $|t| \leq 2\pi$. Then

$$\left\| \sum_{k=0}^{\nu} x_{k,\alpha} e^{-iNt} (e^{it} - 1)^k - \sum_{k=0}^{\nu} x_{k,\alpha} \lambda_k(t) \right\| \leqslant C \varrho \alpha^{\sigma}$$

if $|t| \le \alpha$. Here if σ is an integer we need to observe that $\alpha^{\nu+1} (\log(1/\alpha) + 1)^{1/p} \le C\alpha^{\nu} = C\alpha^{\sigma}$. Thus

$$\|\tilde{f}(s+t) - \sum_{k=0}^{\nu} x_{k,\alpha} \lambda_k(t)\| \le C \varrho \alpha^{\sigma}$$

provided $|t| \le \alpha$. Taking $\alpha = \frac{1}{2}|I|$ we obtain the lemma.

We will now turn to consideration of a specific example. We shall need the following general lemma.

LEMMA 4.2. There is a constant C depending only on n, a_1, \ldots, a_n so that if $z_j \in \overline{A}, \ 1 \le j \le n$, and $0 < a_j < 1$ but $a_1 + \ldots + a_n > 1$ then

$$\int_{-\pi}^{\pi} \prod_{j=1}^{n} \left| 1 - z_j e^{i\theta} \right|^{-a_j} d\theta \leqslant C \varrho^{1 - (a_1 + \dots + a_n)}$$

where $\varrho = \min_{j \neq k} |z_j - z_k|$.

Proof. Let A_j be the arc in T described by $|1-z_je^{i\theta}| < \frac{1}{2}\varrho$. Then

$$\int_{A_j} \prod_{j=1}^n |1 - z_j e^{i\theta}|^{-a_j} d\theta \le (\frac{1}{2}\varrho)^{-\beta_j} \int_{A_j} |1 - z_j e^{i\theta}|^{-a_j} d\theta$$

where $\beta_j = \sum_{k \neq i} a_j$. Now using the estimate

$$|1-re^{i\theta}|^{-1} \le C((1-r)^2+\theta^2)^{-1/2} \le C|\theta|^{-1}$$

we see that

$$\smallint_{A_j} |1-z_j e^{i\theta}|^{-a_j} d\theta \leqslant C^{a_j} \smallint_{C[\theta]^{-1} > \varrho/2} |\theta|^{-a_j} d\theta \leqslant C\varrho^{1-a_j}.$$

Thus

$$\sum_{j} \int_{A_{j}} \prod_{j=1}^{n} |1 - z_{j} e^{i\theta}| d\theta \leqslant C \varrho^{1 - (a_{1} + \dots + a_{n})}.$$

Let B be the complement of $A_1 \cup ... \cup A_n$ in T. Then on B

$$\begin{split} \prod_{j=1}^{n} |1-z_{j}e^{i\theta}|^{-a_{j}} & \leq \left(\min_{j} |1-z_{j}e^{i\theta}|\right)^{-(a_{1}+\ldots+a_{n})} \\ & \leq \left(\sum_{i} |1-z_{j}e^{i\theta}|^{-1}\right)^{a_{1}+\ldots+a_{n}}. \end{split}$$

Let $\alpha = a_1 + \ldots + a_n > 1$. Then

$$\begin{cases} \int_{B} \prod_{j=1}^{n} |1 - z_{j} e^{i\theta}|^{-\alpha_{j}} d\theta \}^{1/\alpha} &\leq \sum_{j} \left\{ \int_{B} |1 - z_{j} e^{i\theta}|^{-\alpha} d\theta \right\}^{1/\alpha} \\ &\leq \sum_{j} \left\{ \int_{|1 - z_{j} e^{i\theta}| > \varrho/2} |1 - z_{j} e^{i\theta}|^{-\alpha} d\theta \right\}^{1/\alpha} \\ &\leq \sum_{j} \left\{ \int_{B} \min(|1 - z_{j} e^{i\theta}|^{-\alpha}, (\frac{1}{2}\varrho)^{-\alpha}) d\theta \right\}^{1/\alpha} \\ &\leq C \left\{ \int_{B} \min(\theta^{-\alpha}, (\frac{1}{2}\varrho)^{-\alpha}) d\theta \right\}^{1/\alpha} \leq C\varrho^{1/\alpha - 1} \end{cases}$$

and the lemma follows.

Now we let

$$u(z) = (1 - wz)^{-1}$$

so that $u: \Delta \to L_p(T)$ is an analytic function. We note that

$$u^{(m)}(z) = m! w^m (1 - wz)^{-(m+1)}$$
.

If $0 \le m < 1/p - 1$ then $u^{(m)}$ extends continuously to $\bar{\Delta}$.

We now compare $u^{(m)}$ with its Taylor series. For $z, z+\zeta \in \overline{\Delta}$ let

$$\varrho_{l}^{(m)}(z,\zeta) = u^{(m)}(z+\zeta) - \sum_{i=0}^{l} u^{(m+j)}(z)\zeta^{i}/j!.$$

LEMMA 4.3. Suppose $1/p \notin N$. Let $\sigma = 1/p - m - 1$ and $v = [\sigma]$. Then

$$\|\varrho_{\nu}^{(m)}(z,\zeta)\|_{p} \leqslant C|\zeta|^{\sigma}$$

where C is independent of z, ζ .

Proof. By direct calculation

$$\varrho_l^{(0)}(z,\,\zeta) = \zeta^{l+1} \, w^{l+1} \, (1-wz)^{-(l+1)} \big(1-w(z+\zeta)\big)^{-1}$$

and $\varrho_{\nu}^{(m)} = (\partial^m/\partial z^m) \varrho_{\nu}^{(0)}$. Every term in $\varrho_{\nu}^{(m)}$ is thus of the type

$$\zeta^{\nu+1} w^{m+\nu+1} (1-wz)^{-(\nu+j+1)} (1-w(z+\zeta))^{-(m+1-j)}$$

for $0 \le j \le m$ and is thus $O(|\zeta|^{\sigma})$ by Lemma 4.4.

If $1/p \in N$ the situation is more complicated. For $0 < \varphi < \pi$ we write $h(\zeta, z)$ for the polynomial

$$\sum_{j=0}^{\nu-1} (1-wz)^{-(j+1)} w^j \zeta^j + w^{\nu} \zeta^{\nu} (1-wz)^{1-\nu} (1-wze^{-i\varphi})^{-1} (1-wze^{i\varphi})^{-1}.$$

LEMMA 4.4. If $1/p \in N$ then there is a constant C so that if $\frac{1}{2}\sin\frac{1}{2}\varphi \leqslant |\zeta| \leqslant \sin\frac{1}{2}\varphi$ we have

$$||u^{(m)}(z+\zeta)-(\partial^m h/\partial z^m)(\zeta,z)|| \leq C\omega^{\sigma}$$

Proof. For convenience we write $f_{a,b,c,d}$ for the function

$$(1-wz)^{-a}(1-w(z+\zeta))^{-b}(1-wze^{i\varphi})^{-c}(1-wze^{-i\varphi})^{-d}$$

Now

$$u(z+\zeta)-h(\zeta, z) = \zeta^{\nu} w^{\nu} f_{\nu,1,1,1} ((1-\cos\varphi) wz + w\zeta - w^2 \zeta z).$$

Thus

$$u(z+\zeta)-h(\zeta, z) = ((1-\cos\varphi) wzf_{\nu,1,1,1} + w \zeta f_{\nu-1,1,1,1}) \zeta^{\nu} w^{\nu}.$$

Since $1-\cos\varphi=O(\varphi^2)$ and $|\zeta|=O(\varphi)$ we can use Lemma 4.2 to deduce

$$||u^{(m)}(z+\zeta)-\partial^m h/\partial z^m|| \leq C\varphi^{\sigma}$$

provided $\frac{1}{2}\sin\frac{1}{2}\varphi \leqslant |\zeta| \leqslant \sin\frac{1}{2}\varphi$. This follows on checking each term in the derivative and noting that since v+m<1/p each term of the form $f_{a,b,c,d}$ satisfies $||f_{a,b,c,d}|| \leqslant C\varphi^{(1/p)-a-b-c-d}$.

THEOREM 4.5. Let $\sigma = 1/p - m - 1$. Then $u^{(m)} \in C_{\sigma}(T, X)$.

Proof. For $1/p \notin N$, this is immediate from Lemma 4.1 and Lemma 4.3. If $1/p \in N$, we use instead Lemma 4.4, which shows that by appropriate choice of z we can approximate $u^{(m)}(e^{i\theta})$ on any interval I with $|I| \leqslant \frac{1}{2}$ by a trigonometric polynomial $\varphi(\theta)$ of degree at most v so that

$$||u^{(m)} - \varphi||_I \leqslant C|I|^{\sigma}.$$

Now let $J_{p,0}^{(m)}$ be the closed linear span of the functions $u^{(m)}(z)$ for |z|=1. We note that if $m \le \beta \le n < 1/p-1$ then $w^{\beta}(1-wz)^{-(n+1)}$ is in $J_{p,0}^{(m)}$. In fact this can be proved simply by induction. If $v(z) = w^{\beta}(1-wz)^{-(n+1)}$ is in $J_{p,0}^{(m)}$ and n+1 < 1/p-1 then $v'(z) \in J_{p,0}^{(m)}$, i.e. $w^{\beta+1}(1-wz)^{-(n+2)} \in J_{p,0}^{(m)}$. But then this also implies $w^{\beta}(1-wz)^{-(n+1)} + w^{\beta+1}z(1-wz)^{-(n+2)} = w^{\beta}(1-wz)^{-(n+2)} \in J_{p,0}^{(m)}$.

Now if

$$h(z, w) = \sum_{j=1}^{N} a_j (1 - \alpha_j wz)^{-(k_j + 1)}$$

where $|\alpha_j|=1$, $0 \le k_j < 1/p-m-1$ and $a_j \in C$, then $\partial^m h/\partial z^m \in J_{p,0}^{(m)}$. In particular, if h is the function defined before Lemma 4.4 then $\partial^m h/\partial z^m \in J_{p,0}^{(m)}$ for all z. To see this simply write the last term in partial fractions.

Now by Lemmas 4.3 and 4.4 we immediately obtain:

Theorem 4.6. Suppose $0 and <math>0 \le m < 1/p-1$. Let $\sigma = 1/p-1-m$. Then for 0 < r < 1

$$d(u^{(m)}(re^{i\theta}), J_{n,0}^{(m)}) \leq C(1-r)^{\sigma}$$

uniformly in θ .

5. Analytic functions and linear operators. As usual X will denote a p-Banach space where $0 . We denote by <math>A_0(X)$ the space of continuous functions $f: \overline{A} \to X$ which are analytic in the open unit disc A. $A_0(X)$ is quasi-normed by

$$||f||_0 = \max_{|z| \le 1} ||f(z)||.$$

For $\sigma > 0$ and $\sigma \notin N$, let $\nu = [\sigma]$. We let $A_{\sigma}(X)$ denote the space of analytic functions on Λ such that

$$\sup_{|z|>1} ||f'^{(\nu+1)}(z)|| (1-|z|^2)^{\nu+1-\sigma} < \infty.$$

On $A_{\sigma}(X)$ we impose the quasi-norm

(5.1)
$$||f||_{\sigma} = \sup_{|z| < 1} ||f^{(v+1)}(z)|| (1-|z|^2)^{v+1-\sigma} + \sum_{k=0}^{v} ||f^{(k)}(0)||.$$

If σ is an integer we let $v = \sigma$ and define $A_{\sigma}(X)$ to be the space of analytic functions

f defined on Δ so that

$$\sup_{|z|<1} (1-|z|^2) ||f^{(\nu+1)}(z)|| < \infty.$$

The quasi-norm on $A_{\sigma}(X)$ is again defined by (5.1), with $\nu = \sigma$ of course.

Note that we have not asserted that the spaces $A_{\sigma}(X)$, $\sigma \geqslant 0$, are complete. This fact will, however, be established later.

Now suppose E is any quasi-Banach space of scalar-valued analytic functions on Δ containing the disc algebra $A(\Delta)$ and so that the inclusion $A(\Delta) \to E$ is bounded and has dense range. If $T \in \mathcal{L}(E, X)$ we define the *analytic transform* f_T to be the function $f_T \colon \Delta \to X$ given by

$$f_T(z) = T(u(z))$$

where $u(z) = (1 - wz)^{-1}$. It is clear that f_T is analytic on X and has the power series expansion

$$f_T(z) = \sum_{n=0}^{\infty} x_n z^n$$

where $T(w^n) = x_n$.

The analytic transform induces a one-one correspondence between $\mathcal{L}(E, X)$ and a certain space of X-valued analytic functions on Δ .

THEOREM 5.1. Suppose $0 < q < p \le 1$. Then the map $T \to f_T$ induces a linear isomorphism between the spaces $\mathcal{L}(H_q, X)$ and $A_{\sigma}(X)$ where $\sigma = 1/q - 1$.

Proof. If $T \in \mathcal{L}(H_q, X)$ then $f_T(z) = T(u(z))$ where $u(z) = (1 - wz)^{-1}$. It follows that $f_T^{(v+1)}(z) = T(u^{(v+1)}(z))$ and the fact that $f_T \in A_\sigma(X)$ with $||f_T||_\sigma \leqslant C \, ||T||$ follows easily from the fact that $u \in A_\sigma(H_q)$.

Conversely, let us suppose $f \in A_{\sigma}(X)$. Then f has a Maclaurin expansion

$$f(z) = \sum_{n=0}^{\infty} x_n z^n, \quad |z| < 1.$$

For r < 1 let $T_r \in \mathcal{L}(H_q, X)$ be defined by

$$T_r \varphi = \sum_{n=0}^{\infty} a_n r^n x_n$$

where $\varphi(w) = \sum_{n=0}^{\infty} a_n w^n \in H_q$. Since $|a_n| \le C(n+1)^{1/q-1}$ it is clear that $T_r \varphi$ is well defined and T_r is bounded.

If
$$\varphi(w) = \sum_{n=0}^{\infty} a_n w^n$$
 in H_q define $\psi(w) \in H_q$ by

$$\psi(w) = \sum_{n=\nu+1}^{\infty} a_n w^{n-\nu-1}.$$

Then $\|\psi\|_q\leqslant C\,\|\phi\|_q$ where $C=C(\nu,q)$. Now $\psi\in B_{q,p}$ and $\|\psi\|_{q,p}\leqslant C\,\|\phi\|_q$. Hence by a theorem of Coifman and Rochberg [4] we can write in $B_{q,p}$

$$\psi(w) = \sum_{k=1}^{\infty} \alpha_k (1 - |z_k|^2)^{\nu + 1 - \sigma} (1 - wz_k)^{-(\nu + 2)}$$

where $z_k \in \Delta$ and (α_k) are so that

$$\left(\sum |\alpha_k|^p\right)^{1/p} \leqslant C \|\varphi\|_q.$$

Now T_r is bounded also on $B_{q,p}$ since $B_{q,p}$ is the containing p-Banach space of H_q . Thus if we write

$$w^{\nu+1} \psi(w) = ((\nu+1)!)^{-1} \sum_{k=1}^{\infty} \alpha_k (1-|z_k|^2)^{\nu+1-\sigma} u^{(\nu+1)}(z_k)$$

then

$$T_r(w^{\nu+1}\psi(w)) = ((\nu+1)!)^{-1} \sum_{k=1}^{\infty} \alpha_k (1-|z_k|^2)^{\nu+1-\sigma} f^{(\nu+1)}(rz_k).$$

Thus $||T_r(w^{v+1}\psi(w))|| \le C||f||_{\sigma}||\varphi||_{q}$. Now

$$\left\|T_r\left(\sum_{k=0}^{\nu} a_k w^k\right)\right\| \leqslant C \|f\|_{\sigma} \|\varphi\|_q$$

and hence

$$||T_r \varphi|| \leq C ||f||_{\sigma} ||\varphi||_{a}$$

Thus $||T_r|| \le C ||f||_{\sigma}$. As $\lim_{r \to 1} T_r(w^n)$ exists for all $n \ge 0$, we can define a bounded linear operator T so that $T(w^n) = x_n$ and $||T|| \le C ||f||_{\sigma}$. Clearly $f_T = f$.

Corollary 5.2. If $\sigma > 1/p-1$, then $A_{\sigma}(X)$ is complete.

We now use the identification of Theorem 5.1 to derive some important facts about the class $A_{\sigma}(X)$ with no restriction on σ .

THEOREM 5.3. Suppose $\sigma > 0$ and $f \in A_{\sigma}(X)$. Then

- (i) If m is an integer and $0 \le m < \sigma$ then $f^{(m)} \in A_0(X)$, i.e., $f^{(m)}$ extends continuously to A. The map $f \to f^{(m)}$ is continuous from $A_{\sigma}(X)$ into $A_0(X)$.
- (ii) If m is an integer and $m = \sigma$, then for some constant B = B(f) and exponent $\alpha > 0$,

$$||f^{(m)}(z)|| \leq B(1+(\log(1-|z|)^{-1})^{\alpha}).$$

(iii) For $0 \le r \le 1$, the functions f_r given by

are in
$$C_{\sigma}(T, X)$$
 and $\sup_{1/2 \le r \le 1} \|f_r(e^{i\theta}) = f(re^{i\theta})\|$

(iv) If $\sigma > 1$ then

$$(d/d\theta) f(e^{i\theta}) = ie^{i\theta} f'(e^{i\theta}).$$

(v) Each of the spaces $A_{\sigma}(X)$ is complete.

Proof. First select $n \in N$ so that $\sigma + n > 1/p - 1$. Let $1/q = \sigma + n + 1$. Integrate f n times to produce $F \in A_{\sigma + n}$ with $F(0) = \ldots = F^{(n-1)}(0) = 0$. Then $||F||_{\sigma + n} = ||f||_{\sigma}$ and so there is a bounded linear operator T: $H_q \to X$ with T(u(z)) = F(z) for |z| < 1, and $||T|| \le C ||f||_{\sigma}$. Let Q_r : $H_q \to H_q$ be the map

$$Q_r \varphi(w) = \varphi(rw)$$

for $0 \le r \le 1$. Then $TQ_r(u(z)) = F(rz)$ and hence

$$TQ_r(u^{(n)}(z)) = r^n f(rz).$$

For (i) we observe, taking r=1, that $u^{(m+n)}(z) \in A_0(H_q)$ and hence $T(u^{(m+n)}(z)) = f^{(m)}(z) \in A_0(X)$, and of course

$$\max ||f^{(m)}(z)|| \le C ||T|| \le C ||f||_{\sigma}.$$

For (ii), note that m+n=1/q-1. Then in H_q

$$||u^{(m+n)}(z)|| \le C\left(1 + \left(\log\frac{1}{1-|z|}\right)^{1/q}\right)$$

and the result follows.

To prove (iii) note that $u^{(n)}(e^{i\theta}) \in C_{\sigma}(T, H_q)$ and hence, since $||TQ_r|| \leq ||T||$, $r^n f(re^{i\theta}) \in C_{\sigma}(T, X)$ and

$$\sup_{0 \le r \le 1} ||r^n f(re^{i\theta})||_{T,\sigma} \le C ||f||_{\sigma}.$$

(iii) now follows.

To prove (iv) note that

$$\frac{d}{d\theta}f(e^{i\theta}) = T\left(\frac{d}{d\theta}u^{(n)}(e^{i\theta})\right) = ie^{i\theta}T(u^{(n+1)}(e^{i\theta})) = ie^{i\theta}f'(e^{i\theta}).$$

For (v) suppose f_l is a Cauchy sequence in $A_{\sigma}(X)$. Let F_l be the corresponding n-fold integrals in $A_{\sigma+n}(X)$. Then F_l is a Cauchy sequence and converges in $A_{\sigma+n}(X)$ to a limit F by Corollary 5.2. Now $F_l^{(n)} \to F^{(n)}$ in $A_{\sigma}(X)$ and (v) is proved.

Lemma 5.4. Suppose $\sigma > 0$. Then $f \in A_{\sigma}(X)$ if and only if $g \in A_{\sigma}(X)$ where g(z) = zf(z).

Proof. For $n \in N$

$$g^{(n)}(z) = zf^{(n)}(z) + nf^{(n-1)}(z).$$

Suppose $f \in A_{\sigma}(X)$. Pick n = v + 1. Then

$$||g^{(\nu+1)}(z)|| \le C(1-|z|^2)^{\sigma-\nu-1}$$

by applying Theorem 5.3 (i) or (ii) depending on whether $\sigma \notin N$ or $\sigma \in N$. Conversely, suppose $g \in A_{\sigma}(X)$. Then, by induction, $f^{(m)}$ is bounded if $0 \le m$.

$$zf^{(v+1)}(z) = g^{(v+1)}(z) - (v+1)f^{(v)}(z),$$

we see that $f \in A_{\sigma}(X)$.

If $\sigma \in N$, then $f^{(v-1)}$ is bounded and in this case

$$||f^{(v)}(z)|| \leqslant C\left(1 + \left(\log\frac{1}{1 - |z|}\right)^{\alpha}\right)$$

and hence again

$$||f^{(v+1)}(z)|| \le C(1-|z|)^{-1}$$

so that $f \in A_{\sigma}(X)$.

We are now ready to prove a limiting case of Theorem 5.3 when $\sigma=1/p-1$. For this we define C_p to be the space of functions f analytic on the open unit disc so that

$$||f|| = |f(0)| + \left\{ \iint_A |f'(w)|^p (1 - |w|^2)^{p-1} \, d\lambda(w) \right\}^{1/p} < \infty$$

(where λ denotes the planar measure $dx \, dy$). Then $f \in C_p$ if and only if $f' \in B_{r,p}$ where 1/r = 1/p + 1. The natural integration operator J maps $B_{r,p}$ isomorphically onto the subspace $C_{p,0}$ of functions vanishing at 0. It is well known (Duren [6], p. 88) that J maps $B_{r,p}$ into H_p . Thus $C_p \subset H_p$. However, $C_p \cong B_{r,p} \oplus C \cong I_p$ (cf. [12], [20]) and hence $C_p \neq H_p$.

Theorem 5.5. Suppose $0 . Then the mapping <math>T \to f_T$ defines a linear isomorphism between the spaces $\mathcal{L}'(C_p, X)$ and $A_{\sigma}(X)$ where $\sigma = 1/p - 1$.

Proof. If $T \in \mathcal{L}(C_p, X)$ then $T \in \mathcal{L}(H_r, X)$. Let g be the analytic transform of T J so that $g \in A_{\sigma+1}(X)$ and $||g||_{\sigma+1} \leq C ||T||$. Now if $f = f_T$ is the analytic transform of T then

$$f(z) = z \frac{d}{dz} (zg(z))$$

and hence $f \in A_n(X)$ by Lemma 5.4. By an application of the Uniform Boundedness Principle it may be seen that

$$\sup_{\|T\| \le 1} \sup_{z \in A} (1 - |z|^2)^{\nu + 1 - \sigma} \|f_T^{(\nu + 1)}(z)\| < \infty$$

and for $k \le v$

$$\sup_{\|T\| \leq 1} \|f_T^{(k)}(0)\| < \infty$$

so that $||f_T||_{\sigma} \leq C ||T||$.

Conversely, suppose $f \in A_{\sigma}(X)$. Then $z^{-1}(f(z)-f(0)) \in A_{\sigma}(X)$ and hence if

$$g(z) = \sum_{n=0}^{\infty} \frac{f^{(n+1)}(0)}{(n+1)(n+1)!} z^n$$

then $g \in A_{\sigma+1}(X)$. Thus there is an operator $S: B_{r,p} \to X$ so that S(u(z)) = g(z). Now define $T: C_p \to X$ by $T\varphi = S\varphi' + f(0)\varphi(0)$. (Note $\varphi' = d\varphi/dw$.) Then

$$T(u(z)) = S(z/(1 - wz)^2) + f(0)$$

$$= zS(1/(1 - wz)) + z^2 S(w/(1 - wz)^2) + f(0)$$

$$= zg(z) + z^2 g'(z) + f(0)$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n+1)}(0)}{(n+1)!} \left(\frac{1}{n+1} + \frac{n}{n+1}\right) z^{n+1} + f(0)$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n+1)}(0)}{(n+1)!} z^{n+1} + f(0) = f(z).$$

This shows that the map $T \rightarrow f_T$ is a surjection and by the Open Mapping Theorem it is also an isomorphism.

6. Remarks on analytic functions. We now give some applications of the results of Section 5 to the general theory of analytic functions in a quasi-Banach space.

THEOREM 6.1. Suppose $n \in \mathbb{N}$ and n > 1/p. Then for any $f \in A_0(X)$ we have

$$||f^{(m)}(0)|| \le C(m+n)! ||f||$$

where C is independent of m and f.

Proof. Pick q so that n+1 > 1/q > n. Let

$$F(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{(n+k)!} z^{n+k}.$$

Then $F^{(n)} \in A_0(X)$ and so $F \in A_\sigma(X)$ where $\sigma = 1/q - 1$. Define $T \in \mathcal{L}(H_q, X)$ to be the operator with analytic transform F. Note that $||F||_\sigma \leqslant ||f||$. Then

$$\left\| \frac{f^{(m)}(0)}{(m+n)!} \right\| = ||T(w^{(k+m)})|| \le ||T|| \le C ||f||.$$

THEOREM 6.2 (Liouville). Let $f: C \to X$ be a bounded entire function. Then f is constant (compare $\lceil 16 \rceil$, $\lceil 21 \rceil$).

Proof. Simply apply Theorem 6.1 to f_r where $f_r(z) = f(rz)$ for $0 < r < \infty$. One concludes that $f'(0) = f''(0) = \dots = 0$.

THEOREM 6.3. $A_0(X)$ is complete (i.e. it is a closed subspace of $C(\overline{\Delta}, X)$).

Proof. Observe that the linear maps $f \to f^{(m)}(0)$ ($m \in N$) extend to the closure of $A_0(X)$ and that, for fixed $z \in A$, the series $\sum f^{(m)}(0) \ z^m/m!$ converges to f(z) uniformly on the set $\{f \in A_0(X): \|f\| \le 1\}$. Hence if $g \in \overline{A_0(X)}$ then

$$g(z) = \sum_{m=0}^{\infty} x_m z^m, \quad |z| < 1,$$

for some $x_m \in X$.

THEOREM 6.4. Suppose $\sigma > 1/p-1$ and $f \in A_{\sigma}(X)$. Then for $m \ge 0$

$$f^{(m)}(0) = \frac{m!}{2\pi} \int_{0}^{2\pi} f(e^{i\theta}) e^{-im\theta} d\theta,$$

while for m < 0

$$0 = \int_{0}^{2\pi} f(e^{i\theta}) e^{-im\theta} d\theta.$$

Here the integral is the Turpin–Waelbroeck integral as described in Section 3, of f with respect to $d\mu=e^{-im\theta}d\theta$.

Proof. For r < 1, let

$$g_n(e^{i\theta}) = \sum_{k=0}^n f^{(k)}(0) r^k e^{ik\theta}/k!$$

Then rank $g_n \le n+1$ and if $f_r(e^{i\theta}) = f(re^{i\theta})$ then

$$||g_n - f_r||_T \le \left\{ \sum_{k=n+1}^{\infty} ||f^{(k)}(0)||^p r^{kp} / (k!)^p \right\}^{1/p}$$

$$\le C \left\{ \sum_{k=n+1}^{\infty} ((s+k)!/k!)^p r^{kp} \right\}^{1/p}$$

where $s \in N$ and s > 1/p, by Theorem 6.1. Hence

$$||g_n - f_r||_T = O\left(\left(\frac{1+r}{2}\right)^n\right) = O\left(n^{-\sigma}\right)$$

so that

$$\frac{m!}{2\pi} \int_{0}^{2\pi} f(re^{i\theta}) e^{-im\theta} d\theta = r^{m} f^{(m)}(0), \quad m \ge 0,$$

$$\frac{m!}{2\pi} \int_{0}^{2\pi} f(re^{i\theta}) e^{-im\theta} d\theta = 0, \quad m < 0.$$

Now we use Theorem 3.4 (i) and Theorem 5.3 (i) and (iii) to let $r \rightarrow 1$, and obtain the result.

Now recall that for $\sigma \in \mathbb{R}$, $V_{\sigma}(X)$ consists of analytic $f: \Delta \to X$ so that for

some C

$$||f(z)|| \leq C(1-|z|)^{\sigma}, \quad z \in \Delta.$$

LEMMA 6.5. If $f \in V_{\sigma}(X)$ then $f' \in V_{\sigma-1}(X)$.

Proof. If $z_0 \in A$, let $\alpha = \frac{1}{2}(1-|z_0|)$. Define $g(z) = f(z_0 + \alpha z)$ for $|z| \le 1$. Then $g \in A_0(X)$ and so

$$||g'(0)|| \leqslant C \sup_{|z| \leqslant 1} ||g(z)||, \quad \text{i.e.} \quad ||\alpha f'(z_0)|| \leqslant C\alpha^{\sigma}.$$

Hence $||f'(z_0)|| \le C(1-|z_0|)^{\sigma-1}$.

Theorem 6.6. For $\sigma>0,$ $f\in V_{\sigma}(X)$ if and only if $f\in A_{\sigma}(X)$ and f(z)=0 for $z\in T$

Proof. Let $v = [\sigma]$. Then repeated application of Lemma 6.5 shows that if $f \in V_{\sigma}(X)$, then $f \in A_{\sigma}(X)$.

For the other direction, select n so that $\sigma + n > 1/p - 1$. Pick q so that $1/q = \sigma + n + 1$. Integrate f n times to produce $F: \Delta \to X$ with $F(0) = \ldots = F^{(n-1)}(0) = 0$ and $||F||_{\sigma + n} = ||f||_{\sigma}$. Then there is a bounded linear operator $T: H_q \to X$ with T(u(z)) = F(z).

Note $T(u^{(n)}(z)) = f(z)$. If f = 0 on T then $T(J_{q,0}^{(n)}) = 0$ and so we can apply Theorem 4.6 to deduce $||f(z)|| \le C(1-|z|)^{\sigma}$.

THEOREM 6.7. If $\sigma > 1/p-1$ then $V_{\sigma}(X) = \{0\}$.

Proof. By Theorem 6.4 if $f \in V_{\sigma}(X)$ then $f^{(m)}(0) = 0$ for all m.

Remark. We have seen that if $\sigma = 1/p-1$ then $V_{\sigma}(X)$ can be nontrivial.

- 7. Operators on L_p . We now introduce the space $E_{\sigma}(X)$. This will consist of all functions $f: C \to X$ with the properties:
- (a) f continuously extends to the Riemann sphere $C^* = C \cup \{\infty\}$ if we set $f(\infty) = 0$.
 - (b) f is analytic on $C^* \setminus T$.
 - (c) $f \in A_{\sigma}(X)$ on the disc Δ .
 - (d) $f(1/z) \in A_{\sigma}(X)$ on the disc Δ .

 $E_{\sigma}(X)$ is quasi-normed by

$$||f||_{\sigma,E} = \max(||f||_{\sigma}, ||f(1/z)||_{\sigma}).$$

We shall consider only the case $\sigma = 1/p - 1$. In this instance we have seen that $A_{\sigma}(X)$ is complete and the injection $A_{\sigma}(X) \hookrightarrow A_{\sigma}(X)$ is bounded. From these observations we see that $E_{\sigma}(X)$ is complete.

If $T \in \mathcal{L}(L_p, X)$ where $0 then its analytic transform <math>f_T$ is defined by

$$f_T(z) = T((1-wz)^{-1}), z \in C.$$

THEOREM 7.1. Suppose $0 . Then the analytic transform <math>T \rightarrow f_T$ induces a linear isomorphism between $\mathcal{L}(L_p, X)$ and $E_{\sigma}(X)$ where $\sigma = 1/p - 1$.

Remark. As usual X is a p-normable space.

Proof. One direction is very easy. If $T \in \mathcal{L}(L_p, X)$ then it is immediate that $f_T \in E_\sigma(X)$ and $||f_T||_{\sigma,E} \leq C \, ||T||$. We now show that the map $T \to f_T$ is a surjection. Since it is trivially an injection the conclusion follows from the Open Mapping Theorem.

Let us suppose $f \in E_{\sigma}(X)$. Then f has a Taylor series expansion around the origin,

$$f(z) = \sum_{n=0}^{\infty} x_n z^n, \quad |z| < 1,$$

and a Laurent series expansion around ∞ ,

$$f(z) = \sum_{n=1}^{\infty} y_n z^{-n}, \quad |z| > 1.$$

It is readily seen that $f = f_T$ if and only if $T(w^n) = x_n$ for $n \ge 0$ and $T(w^{-n}) = -y_n$ for n > 0. We therefore need to show the existence of such an operator T.

Let us first suppose $x_0 = f(0) = 0$. Then we define two analytic functions on Δ by

$$F_1(z) = \sum_{n=1}^{\infty} \frac{x_n}{n} z^n, \quad F_2(z) = \sum_{n=1}^{\infty} \frac{y_n}{n} z^n.$$

Then $F_1'(z)=z^{-1}f(z)$ and hence, by Lemma 5.4, $F_1'\in A_{\sigma}$ and so $F_1\in A_{\sigma+1}$. Similarly $F_2'(z)=z^{-1}f(z^{-1})$ and so $F_2\in A_{\sigma+1}$. In particular, F_1 and F_2 extend continuously to \vec{A} (Theorem 5.3). Since $\sigma+1=1/p>1/p-1$ we can utilize Theorem 6.4:

$$x_{n}/n = (2\pi)^{-1} \int_{0}^{2\pi} F_{1}(e^{i\theta}) e^{-in\theta} d\theta, \quad n \ge 1,$$

$$y_{n}/n = (2\pi)^{-1} \int_{0}^{2\pi} F_{2}(e^{i\theta}) e^{-in\theta} d\theta, \quad n \ge 1.$$

Also

$$\int_{0}^{2\pi} F_{1}(e^{i\theta}) e^{in\theta} d\theta = \int_{0}^{2\pi} F_{2}(e^{i\theta}) e^{in\theta} d\theta = 0.$$

Next we note, by Theorem 5.3 again, that

$$(d/d\theta) F_1(e^{-i\theta}) = -ie^{-i\theta} F'_1(e^{-i\theta}) = -if(e^{-i\theta}),$$

$$(d/d\theta) F_2(e^{i\theta}) = ie^{i\theta} F'_2(e^{i\theta}) = if(e^{-i\theta}).$$

Now define $G \in C_{\sigma+1}(T, X)$ by $G(e^{i\theta}) = -F_1(e^{i\theta}) - F_2(e^{i\theta})$. Then $(d/d\theta) G(e^{i\theta}) = 0$. Now we use Proposition 3.1 (iii) or (iv), depending on

whether $\sigma \notin N$ or $\sigma \in N$, to deduce that

$$||G(e^{i\varphi}) - G(e^{i\theta})|| \leq C|\varphi - \theta|^{1/p}.$$

Now it follows that there is an operator $T: L_p \to X$ with

$$T\chi_{(\theta,\varphi)} = (2\pi i)^{-1} \left(G(e^{i\varphi}) - G(e^{i\theta}) \right)$$

where $\chi_{(\theta,\phi)}(e^{it})=1$ if $\theta\leqslant t\leqslant \phi$ and zero elsewhere (when $0\leqslant \theta<\phi\leqslant 2\pi$). We now compute $T(w^n)$. To do this we introduce simple functions h_N ($N=1,2,\ldots$). Let

$$h_N(e^{it}) = e^{in\theta_k}, \quad \theta_{k-1} < t \le \theta_k,$$

where $\theta_k = 2k\pi i/N$, for k = 0, 1, ..., N. Then $Th_N \to Tw^n$. However,

$$Th_{N} = (2\pi i)^{-1} \sum_{k=1}^{N} e^{in\theta_{k}} \left(G(e^{i\theta_{k}}) - G(e^{i\theta_{k-1}}) \right)$$
$$= (2\pi i)^{-1} \sum_{k=1}^{N} G(e^{i\theta_{k}}) \left(e^{in\theta_{k}} - e^{in\theta_{k+1}} \right)$$

where $\theta_{N+1} = \theta_1$. Hence

$$Th_N = (2\pi i)^{-1} \int G(e^{i\theta}) d\mu_N(\theta)$$

where μ_N is the measure on $[0, 2\pi]$ given by

$$\mu_N = \sum_{k=1}^{N} \left(e^{in\theta_k} - e^{in\theta_{k+1}} \right) \delta(\theta_k).$$

In the weak*-topology $\mu_N \to \mu$ where $d\mu = -ine^{in\theta}d\theta$. At this stage we appeal to Theorem 3.4 (ii) to deduce that

$$Tw^{n} = \frac{-n}{2\pi} \int_{0}^{2\pi} G(e^{i\theta}) e^{in\theta} d\theta$$
$$= \frac{n}{2\pi} \int_{0}^{2\pi} (F_{1}(e^{-i\theta}) + F_{2}(e^{i\theta})) e^{in\theta} d\theta.$$

If $n \ge 0$ then $Tw^n = x_n$, while for n > 0, $Tw^{-n} = -y_n$ as required. This settles the special case when f(0) = 0.

If $f(0) = x_0 \neq 0$, let X_0 be the one-dimensional space spanned by x_0 and let $Q: X \to X/X_0$ be the quotient map. Then Qf(0) = 0 and so there is a bounded linear operator $S: L_p(T) \to X/X_0$ with $S(w^n) = Qx_n$ for n > 0 and $S(w^{-n}) = -Qy_n$ for n > 0. By results in [11], S has a unique lift $T: L_p \to X$ with QT = S. Let

$$T((1-wz)^{-1})=g(z).$$

Then f-g has range in X_0 , i.e. $f(z)-g(z)=h(z)x_0$ where $h\in E_{\sigma}(C)=\{0\}$ by Liouville's Theorem. Hence T has analytic transform f.

The isomorphism between $\mathscr{L}(L_p,X)$ and $E_{\sigma}(X)$ follows from the Open Mapping Theorem.

An operator T on L_p vanishes on $\bar{H}_{p,0}$ if its analytic transform f_T vanishes for $|z| \ge 1$. Then we must have $f_T \in V_\sigma(X)$ on the disc. Conversely, if $f \in V_\sigma(X)$ then f can be continued over C to be zero outside the disc and hence there is an operator T on L_p so that $T(\bar{H}_{p,0}) = 0$ and $f_T = f$ in the open unit disc. Summarizing:

Theorem 7.2. There is a natural linear isomorphism between $\mathcal{L}(L_p/\bar{H}_{p,0}, X)$ (or $\mathcal{L}(H_p/J_{p,0}, X)$) and $V_{\sigma}(X)$ implemented by

$$T(qu(z)) = f_T(z), \quad |z| < 1,$$

where $q: L_p \to L_p/\tilde{H}_{p,0}$ is the quotient map.

THEOREM 7.3. In order that $V_{\sigma}(X) \neq \{0\}$ it is necessary and sufficient that there exists a nonzero linear operator T: $L_{\rho}/H_{\rho} \rightarrow X$.

8. Applications to L_p . We first apply our main theorem to extend a theorem due to Aleksandrov [1] that $L_p = H_p + \bar{H}_p$. Our extension uses the space C_p introduced in Section 5. As noted there, C_p is strictly contained in H_p .

THEOREM 8.1 There is a constant C so that if $f \in L_p(T)$ then there exist $g_1, g_2 \in C_p$ with $||g_1||_{C_p} \leq C ||f||_p$, $||g_2||_{C_p} \leq C ||f||_p$ and

$$f(e^{i\theta}) = g_1(e^{i\theta}) + g_2(e^{-i\theta})$$

a.e. on T.

Proof. We define a linear operator W: $C_n \oplus C_n \to L_n(T)$ by

$$W(h_1, h_2) = h_1(e^{i\theta}) + h_2(e^{-i\theta}).$$

(Note that each $h_i \in H_p$ and so has boundary values a.e. on T).

Let $N = W^{-1}(0)$, and let $Q: C_p \oplus C_p \to Y = C_p \oplus C_p/N$ be the quotient map. Define $f: C \to Y$ by

$$f(z) = \begin{cases} Q(u(z), 0), & |z| \le 1, \\ Q(0, 1 - u(1/z)), & |z| \ge 1. \end{cases}$$

Then f is continuous on $C \cup \{\infty\}$ and it is readily verified to be in $E_{\sigma}(Y)$. Hence there is an operator $S: L_{p}(T) \to Y$ with

$$S((1-wz)^{-1}) = f(z), \quad z \in C.$$

It is easily seen that SW = Q and hence Y is isomorphic to $L_p(T)$ and W is a surjection as required.

An immediate corollary of Theorem 8.1 is an atomic decomposition for $L_p(T)$ in the spirit of [4] which may also be regarded as a strengthening of Aleksandrov's theorem.

THEOREM 8.2. Suppose $0 and <math>\beta > 1/p$. Then there exists $\eta_0 = \eta_0(p, \beta)$ so that if $\eta < \eta_0$ and $(\zeta_n)_{n=1}^{\infty}$ is an η -lattice in Δ for the Bergman metric and $\zeta_n \neq 0$ then there is a constant C so that if $f \in L_p(T)$ then

$$f(w) = \sum_{n=1}^{\infty} a_n (1 - \zeta_n w)^{-\beta} (1 - |\zeta_n|^2)^{\beta - 1/p} + \sum_{n=1}^{\infty} b_n (1 - \overline{\zeta}_n \overline{w})^{-\beta} (1 - |\zeta_n|^2)^{\beta - 1/p}$$

where $\sum |a_n|^p + \sum |b_n|^p \leqslant C ||f||_p^p$

Proof. First we note that if $C_{p,0}$ is the set of $g \in C_p$ so that g(0) = 0 then the decomposition in Theorem 8.1 can be achieved with $g_1, g_2 \in C_{p,0}$. Indeed, if not, there is a linear functional $\tau \neq 0$ on L_p so that $\tau(W(h_1, h_2)) = 0$ for $h_1, h_2 \in C_{p,0}$. Hence

$$\tau \circ W(h_1, h_2) = ah_1(0) + bh_2(0)$$

where $a, b \in C$. By the openness of W, τ is continuous on L_p and we have a contradiction.

Now we can write

$$f(w) = g_1(w) + g_2(\overline{w})$$

where g_1 , $g_2 \in C_{p,0}$ and $||g_i|| \le C ||f||_p$ (i = 1, 2). Then g_1' , $g_2' \in B_{p,r}$ where 1/r = 1/p + 1. Hence by Theorem 2 of [4],

$$g_1'(w) = \sum_{n=1}^{\infty} c_n (1 - \zeta_n w)^{-(\beta+1)} (1 - |\zeta_n|^2)^{\beta-1/p},$$

$$g_2'(w) = \sum_{n=1}^{\infty} d_n (1 - \overline{\zeta}_n w)^{-(\beta+1)} (1 - |\zeta_n|^2)^{\beta-1/p},$$

where $\sum |c_n|^p + \sum |d_n|^p \leqslant C ||f||_n^p$. Thus

$$g_1(w) = \sum_{n=1}^{\infty} c_n \beta^{-1} \zeta_n^{-1} (1 - \zeta_n w)^{-\beta} (1 - |\zeta_n|^2)^{\beta - 1/p},$$

$$g_2(w) = \sum_{n=1}^{\infty} d_n \beta^{-1} \zeta_n^{-1} (1 - \zeta_n w)^{-\beta} (1 - |\zeta_n|^2)^{\beta - 1/p}.$$

Now let $a_n = c_n \zeta_n^{-1} \beta^{-1}$, $b_n = d_n \zeta_n^{-1} \beta^{-1}$. Then

$$\sum |a_n|^p + \sum |b_n|^p \le (\min |\zeta_n|)^{-p} \beta^{-p} \sum (|c_n|^p + |d_n|^p) \le C ||f||^p.$$

The result now follows easily.

THEOREM 8.3. Suppose $f: \Delta \to X$ is analytic and

$$\lim_{r \to 1} (1 - r^2)^{1 - 1/p} \left\{ \int_{0}^{2\pi} ||f(re^{i\theta})||^p d\theta \right\}^{1/p} = 0$$

Then f = 0.

Proof. Define $g: \Delta \to L_n(T, X)$ by

$$g(z)(w) = f(wz).$$

Then g is analytic and $g \in V_{\sigma}(L_p(T, X))$ where $\sigma = 1/p-1$. In fact, there is a monotone decreasing function $\varrho \colon [0, 1] \to \mathbf{R}$ so that $\lim_{r \to 1} \varrho(r) = 0$ and

$$||g(z)|| \le \varrho(|z|)(1-|z|^2)^{1/p-1}.$$

By Theorem 6.1 we conclude that if $|z| \ge \frac{1}{2}$ then

$$||g'(z)|| \le C\varrho(2|z|-1)(1-|z|^2)^{1/p-2},$$

and differentiating v+1 times where $v = [\sigma]$,

$$||g^{(v+1)}(z)|| \le C\varrho(2^{v+1}|z|-2^{v+1}+1)(1-|z|^2)^{1/p-v-2}$$

for $|z| \ge 1 - 2^{-\nu + 1}$.

Now by Theorem 8.2 pick a suitable η -lattice (ζ_n) and define a bounded linear operator $W: I_p \to L_p$ so that

$$We_{2n-1} = (1 - \zeta_n w)^{-(\nu+2)} (1 - |\zeta_n|^2)^{\nu+2-1/p},$$

$$We_{2n} = (1 - \overline{\zeta}_n \overline{w})^{-(\nu+2)} (1 - |\zeta_n|^2)^{\nu+2-1/p},$$

where (e_n) are the basic vectors of l_p . Then W maps l_p onto L_p . Define W': $l_p \to L_p$ by $W'(a) = (v+1)! \ w^{v+1} \ W(a)$; then W' is also onto.

By Theorem 7.1 there is an operator $T: L_p \to L_p(T, X)$ so that

$$T(u(z)) = g(z), |z| < 1,$$

 $T(u(z)) = 0, |z| \ge 1.$

Now

$$TW'(e_{2n-1}) = g^{(\nu+1)}(\zeta_n)(1-|\zeta_n|^2)^{\nu+2-1/p}$$

and so $\lim_{n \to \infty} ||TW'(e_{2n-1})|| = 0$. Also

$$TW'(e_{2n}) = (\nu+1)! T(w^{\nu+1}(1-\overline{\zeta}_n\overline{w})^{-(\nu+2)})(1-|\zeta_n|^2)^{\nu+2-1/p}$$

However,

$$(1 - \zeta_n \overline{w})^{-(\nu+2)} = \sum_{k=0}^{\infty} \frac{(\nu+k+1)!}{k!(\nu+1)!} \overline{\zeta}_n^k w^{-k}$$

in L_p and hence

$$TW'(v_{2n}) = (1 - |\zeta_n|^2)^{\nu + 2 - 1/p} \sum_{k=0}^{\nu+1} \frac{(\nu + k + 1)!}{k!} \overline{\zeta_n^k} T(w^{\nu+1-k}).$$

Thus $\lim_{n \to \infty} ||TW'(e_{2n})|| = 0$ since $\nu + 2 > 1/p$ and $|\zeta_n| \to 1$.

302

It follows that TW' is compact on l_p and hence that T is compact on L_p . Now this means T=0 (cf. [8]). Thus q=f=0.

9. Applications to tensor products. Turpin [17] has shown that if X is p-normable and Y is q-normable then there is an r-convex quasi-norm on $X \otimes Y$ so that

$$||x \otimes y|| = ||x|| \cdot ||y||, \quad x \in X, y \in Y,$$

where 1/r = 1/p + 1/q - 1. We now show this is best possible.

Theorem 9.1. Suppose $0 < p, q \le 1$ and suppose 1/r = 1/p + 1/q - 1. Let Z be an r-Banach space and suppose B: $L_p/H_p \times L_q/H_q \to Z$ is a nonzero bounded bilinear form. Then there is a nonzero linear operator T: $L_r/H_r \to Z$.

Proof. We identify L_p/H_p with $L_p/\bar{H}_{p,0}$. Let $v_p: \Delta \to L_p/\bar{H}_{p,0}$ be defined by

$$v_p(z) = Q(u(z))$$

where Q is the quotient map. Then

$$||v_p(z)|| \le C (1-|z|^2)^{1/p-1}$$

in $L_p/\bar{H}_{p,0}$ and similarly

$$||v_{\alpha}(z)|| \leq C (1-|z|^2)^{1/q-1}$$

Thus if $|\zeta| = 1$ then

$$||B(v_p(z), v_q(\zeta z))|| \le C(1-|z|^2)^{1/r-1}.$$

Now by Theorem 7.3 if there is no nontrivial operator in $\mathcal{L}(L_r/H_r, Z)$ then

$$B(v_p(z), v_q(\zeta z)) = 0$$

for $z\in \Delta$ and $|\zeta|=1$. If |z|<1 the function $\zeta\to B\left(v_p(z),\,v_q(\zeta z)\right)$ is analytic for $|\zeta|<|z|^{-1}$ and is zero for $|\zeta|=1$. Since zeros of nontrivial analytic functions are isolated we have $B\left(v_p(z),\,v_q(\zeta z)\right)=0$ for $|\zeta|<|z|^{-1}$ and hence $B\left(v_p(z),\,v_q(z_2)\right)=0$ for $z_1,\,z_2\in \Delta$. This implies B=0, contrary to assumption.

COROLLARY 9.2. If Z is s-normable where 1/s < 1/p + 1/q - 1 then there is no nonzero bilinear form B: $L_p/H_a \times L_q/H_a \rightarrow Z$.

COROLLARY 9.3. Let B be a nontrivial n-linear form on $\prod_{j=1}^{n} L_{p_j}/H_{p_j}$, where $0 < p_j \le 1$, whose range is contained in an r-normable space Z. Then

$$\frac{1}{r} \geqslant \sum_{j=1}^{n} \frac{1}{p_j} - n.$$

Acknowledgement. The author wishes to thank Stephen Dilworth for many valuable comments during the preparation of this paper.

References

- A. B. A leks and rov, Approximation by rational functions and an analogue of M. Riesz's theorem on conjugate functions for the space L^p with p∈(0, 1) (in Russian), Mat. Sb. (N. S.) 107 (149) (1978), no. 1, 3-19, 159.
- [2] -, Invariant subspaces of the backward shift operator in the space H^p, p∈(0, 1) (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 92(1979), 7-29, 318.
- [3] -, Essays on non-locally convex Hardy classes, in: Complex Analysis and Spectral Theory, ed. V. P. Havin and N. K. Nikol'skii, Lecture Notes in Math. 864, Springer, Berlin-Heidelberg-New York 1981, 1-89.
- [4] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L_p, Astérisque 77 (1980), 11-66.
- [5] W. J. Davis, D. J. H. Garling and N. Tomczak-Jaegermann, The complex convexity of quasi-normed spaces, J. Funct. Anal. 55 (1984), 110-150.
- [6] P. L. Duren, Theory of H_p-spaces, Academic Press, New York 1970.
- [7] D. O. Etter, Vector-valued analytic functions, Trans. Amer. Math. Soc. 119 (1965), 352-366.
- [8] N.J. Kalton, Compact operators on symmetric function spaces, Bull. Acad. Polon. Sci. 36 (1978), 815–816.
- [9] -, An example in the theory of bilinear maps, Canad. Math. Bull. 25 (1982), 377-379.
- [10] –, Locally complemented subspaces and \mathcal{L}_p -spaces for 0 , Math. Nachr. 115 (1984), 71–97.
- [11] N. J. Kalton and N. T. Peck, Quotients of $L_p(0, 1), 0 \le p < 1$, Studia Math. 64 (1979), 65-75.
- [12] N. J. Kalton and D. A. Trautman, Remarks on subspaces of H_p when 0 , Michigan Math. J. 29 (1982), 163-170.
- [13] N. T. Peck, Banach—Mazur distances and projections on p-convex spaces, Math. Z. 177 (1981), 131-142.
- [14] J. Peetre, Locally analytically pseudo-convex topological vector spaces, Studia Math. 73 (1982), 253–262.
- [15] S. Rolewicz, Metric Linear Spaces, PWN, Warsaw 1972.
- [16] P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. (Rozprawy Mat.) 131, Warsaw 1976.
- [17] -, Représentation fonctionnelle des espaces vectoriels topologiques, Studia Math. 73 (1982), 1-10.
- [18] P. Turpin and L. Waelbroeck, Intégration et fonctions holomorphes dans les espaces localement pseudo-convexes, C. R. Acad. Sci. Paris 267 (1968), 160-162.
- [19] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, Berlin-Heidelberg-New York 1971.
- [20] P. Wojtaszczyk, H_n -spaces, $p \le 1$, and spline systems, Studia Math. 77 (1984), 289–320.
- [21] B. Gramsch, Integration und holomorphe Funktionen in lokalbeschr\u00fcnkten R\u00e4umen, Math. Ann. 162 (1965), 190-210.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MISSOURI-COLUMBIA Columbia, Mo. 65211, U.S.A.

Received March 18, 1985

(2038)