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(i) If Ae(BP), then there exist two sequences 1= N, <N; <... and
0=K, <K, <... of integers such that

14; Npy Npill €277 (r=1,2, .0),

. 1 Kepq 2 12 B
@.5) sup{[(max | ¥ aue () dx} <2
¢ 0 1SnSNp k=K, +1
Setting g = r+1for N, < n < N,y and K, <k <K, (r =0, 1,..)itiseasy
to check that [|ud|| < co.
(i) Similarly, if A¢(BP), then there exist two sequences 1= N,
<N, <...and 0=K, <K, <... of integers such that

4; Nyy Nesll 227 (r=1,2,..)

and (4.5) is satisfied. Now we set p, =(r+1)""' for N,<n<N,.; and
K,<k<K,.; r=0,1,..) and conclude that ||uA|l = co.
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Analytic functions in non-locally convex spaces
and applications
by
N. J. KALTON * (Columbia, Mo,)

Abstract. The aim of this paper is to determine, for a general p-normable space X, what can in
general be said about X-valued analytic functions on the disc. The results obtained are used to solve a
problem raised by Turpin [17] on tensor products of quasi-Banach spaces,

1. Summary of main results. Suppose 2 is an open subset of the complex
plane C and X is a quasi-Banach space. A map f: @ — X is said to be analytic if
for every zo € Q2 there exists » > O such that fcan be expanded in a power series for
lz—zo] <1, ie.

-]
@) =3 x,(z—z0)"
n=0
for |z —zy| < r. This definition of analyticity is forced on us by simple examples
which demonstrate that complex differentiability of f does not suffice to produce
reasonable properties (cf. Aleksandrov [3], p. 39 or Turpin [16], Chapitre IX).

A key property of analytic functions is ([16], p. 195) that 1t f: £ — X is
analytic and Q, < Q is open and relatively compact in Q then there is a Banach
space B, an analytic function g: Q, — B and a bounded linear operator T B — X
so that f'(z) = T(g(2)), zeQ,. From this many of the standard properties of
analytic functions in a Banach space can be lifted to quasi-Banach spaces.

In this paper we will primarily be concerned with the case Q = 4, the open
unit disc. In this case one has, for example,

f@)= Zoxnz", |zl <1,

where lim sup|x,|[*" < 1,

It seems that the main obstacle to developing the theory of analytic functions
for non-locally convex spaces is the failure of the Maximum Modulus Principle.
It has been observed by several authors (Etter [7], Aleksandrov [3], Peetre [14],
Davis-Garling-Tomezak [5]) that some standard spaces, e.g. L, for 0 < p < 1,
have a plurisubharmonic quasi-norm and hence iff: 4 — L, is analytic on 4 and

* Research supported by NSF grant DMS-8301099.
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continuous on 4 then

If @I < deHi @,

for all ze 4. By contrast, however, Aleksandx ov notes that if we define J, , to be
the closed linear span in L, (T) of the Cauchy kernels ¢, (w) = (1— wz)” ! and let
Q: L,— L,/J,o be the quotient map then we can define

viz) =Q(u(z), ld<1
where u(z) = (1—wz)" L. Themapo: 4 — L,/J,qis analytic on 4, continuous on
A and vanishes on T. .

The precise conditions on X so that such a phenomenon can occur will be
investigated in a separate paper. Our aim in this paper is to determine, for a
general p-normable space X, with no additional assumptions such as
plurisubharmonicity of the quasi-norm, what can in general be said about X-
valued analytic functions on the disc. In particular, we define, for o > 0, V,(X) to
be the space of all analytic f: 4 — X so that, for some constant C,

Lf@N < C—lz).
- We show that (Theorem 4.6) v defined above belongs to V,(L,/J,)
where o = 1/p—1.

It turns out (Theorem 6.7) that if X is p-normable and ¢ > 1/p~1 then
V,(X) = {0}, so that v represents extremal behaviour. In Theorem 8.3 it is shown
further that if
lim(1 -t~ tp § [ IS (re®)|Pd0}'"" = 0

r—+1
then f = 0.

The key result, however, is that V,(X) is nontrivial if and only if there is a
nontrivial linear operator T. L,/H,— X (Theorem 7.3).

These results can be used to solve a problem raised by Turpin [177] on tensor
products of quasi-Banach spaces. Turpin showed that if X is a p-Banach space
and Yis a g-Banach space then there is an r-convex tensor quasi-norm on X ® Yif
1/r = 1/p+1/q—1, and asked whether this can be improved. The author showed
thatinthe case p = g wecannot always haver = p[97, by showing that there is no
nonzero bilinear B: L,/H, x L,/H, - Z where Z is p-normable. Here we show
Turpin's result is best possible by showing that if Z is s-normable, where 1/s < 1/p
+1/g—1, then there is no nonzero bilinear form B: L/H,x L/H, -~ Z
(Corollary 9.2).

The method employed is to establish a correspondence between certain
classes of analytic functions and linear operators. The first such result is Theorem
5.1 which identifies the space of linear operators 2 (H,, X} where X is p-
normable and 0 < g < p. This theorem is essentially a translation of a result of
Coifman and Rochberg [4]. In Theorem 7.1 we similarly identify ¥ (Ly, X)and
hence #(L,/H,, X). We use these results to give an “atomic dec.ompos1t10n” of
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L, in the spirit of Coifman-Rochberg [4] and to extend Aleksandrov’s theorem

([1] [2]) that L, = H,+H, for 0 < p < 1, by showing that if f L,(T) then we
can find gy, y,€ H, so that

g1 +g2(e7) = f (),
Tlgy Ol (E=Iwl?y=t di(w) < o
A

for j=1, 2 (where A is the planar measure on 4) (see Theorems 8.1, 8.2).

In Section 6 we also give some applications to the general theory of vector-
valued analytic functions. For example, we show Liouville’s theorem holds
(Theorem 6.2), in the form that if / €~ X is entire and bounded then f is
constant (see [16], [18] for a similar result when fis analytic on the Riemann
sphere €' oo }). We also show (Theorem 6.3) that the uniform limit of analytic
functions on 4 is again analytic.

2. Notation and plan of the paper. Throughout this paper all vector spaces are
assumed complex. By definition, a quasi-normed space is a vector space X with a
quasi-norm x - ||x|| satisfying:

(i) flxll > 0, x#0,
(1) Jloexx]] == lod 111, e C, xeX,
(iii) flx; +xall < Clllxall+xa0), Xy, x28 X,

for some C independent of x;, x,. In fact we will always assume that the quasi-
norm is p-subadditive for some p > 0, i.e.

leall”+ x|,

This assumption is justified by the Aoki-Rolewicz theorem [15] that every quasi-
norm is equivalent to a p-subadditive quasi-norm where C = 2!/r-1

If X is complete, we say it is a quasi-Banach space; if it has a p-subadditive
quasi-norm, we say it is a p-Banach space. For convenience of exposition, we shall
always assume that X is a p-Banach space without specifying the fact (while spaces
Y, Z, etc. need not be p-Banach spaces but must be g-Banach spaces for some g).

If X and Y are quasi-Banach spaces then (X, Y) denotes the space of
all bounded linear operators 7' X — Y with the usual quasi-norm ||T]|
= sup(||75]: IIxll < 1.

Suppose 0 « p <« 1. We let L, = L,(T) be the space of all complex-valued
Borel functions f:T» C satisfying

(iv) [lxy + x5 < Xis X2 X.

2n
L5 = 2m) " [ 1/1e)Pd0 < oo.
0

In general we shall use w as the independent variable when considering function
spaces. Let H ), be the closed linear spanin L,of (w" n=0,1, 2, ...). H,denotes
the closed linear span of (" n =0, 1, 2, ...) and H, ; denotes the closed linear
span of (W": n=1,2,3,..)0or (W n=~1, -2, —3,...). The intersections
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are denoted by J, = H,n A andJ, o = H, " H,0.J, o is the closed linear span
of the Cauchy kernels

u(z) = (1—wz)"!

for ze T(see [1]). We shall also need the spaces J47 spanned by the functions
u™ (z) = ml w" (1 —wz)~"*Y provided m < 1/p—1.

It is known that the quotient spaces L,/H,, Ly/H,, L,/H, o, L,/J,, H,/J,,
H,/J, o are all isomorphic (cf. [3], [10]). The first three spaces in this list are
1somorph1c by constructing simple automorphisms of L, which map H, to H,, or
H, . For the other spaces one needs the theorem of Aleksandrov [1] that H
+ H '0 = L

For p < g < 1, the g-Banach envelope of H,, has been identified in [3] and
[4].This is the Bergman space B,,, of all analytic functions f defined on the unit
disc 4 in the complex plane and satisfying

JIf Wit ~lw?7P=2 dA(w) = flIE, < o

where 4 is the planar Lebesgue measure.

If we identify H,, in the usual way as a space of analytic functions on 4, then
H, = B,, and the inclysion is continuous. Furthermore, if Yis any g-Banach
space and T: H,— Yis a bounded linear operator then T'can be extended to a
bounded linear operator T B,,— Y. Thus £(H,, Y) and ¥ (B,,, Y) are
naturally isomorphic.

‘We now discuss the plan of the paper. In Sections 3—4 we describe a theory of
integration in non-locally convex spaces originally developed by Turpin and
Waelbroeck ([16], [18], [19]); roughly speaking, a function can be integrated
successfully if it is sufficiently smooth. We introduce in Section 4 the class
Cq(T, X) of “o-differentiable” functions f: T— X where ¢ > 0. In particular, we
study the function u: T— L, given by

u(z) =(1—wz)~1.

In Section 5, we prove our main representation theorem for operators on H,, and
apply these results in Section 6 to give results on analytic functions taking their
values in an arbitrary quasi-Banach space X. In Section 7, these results and the
Turpin—-Waelbroeck integral are used to give a representation theorem for
operators on L, (7) and on L,/H,, ;. In Section 8, we give some applications to the
space L,, and in Section 9 we give applications to tensor products.

Convention. Throughout the paper we adopt the convention that C is a
constant which may vary from line to line and may depend on the parameters p, g,
o, v, etc, but is independent of f, x, K, etc.

3. The class C,. In this section we give a self-contained treatment of an
integration theory developed by Turpin and Waelbroeck ([16], [187, [19]). Our
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approach goes a little further than that of Turpin and Waelbroeck as we shall
need to cover the case when o, as specified below, is an integer.

Suppose X is a p-Banach space where 0 < p < 1. Let K be any fixed closed
bounded interval in R. Let f: K — X be any continuous function. Then for any
closed subinterval I of K we define

/1 = rrIH}XIIf(f)II-

Now suppose o > Oand N is aninteger with N > ¢~ 1;suppose further that
1> 0. We shall say that a continuous functionf: K — Xisin C4¥(K, X)ifthereis
a constant y > 0 with the property that for any closed subinterval I of K with
length |I| </ there is a polynomial &;: I~ X of degree at most N so that

(3.1 Lf= @iy < yl01°.
Notethatif o < land N = O then this simply implies that fis Lipschitz of order o.

Before proceeding we observe two crucial facts. The first is a lemma due to
Peck [13]: if F is any m-dimensional complex p-Banach space then there is a
norm ||| ||| on F satisfying

(Ml < IIxll < 2m)! /P~ lIxdll,  xeF.

Note here that the real dimension of F is 2m.

The second observation is that there is a constant C = C(p, N) so that for
any interval I and any polynomial ¢ of degree N we have

lo®llr < ClII7*]l@ll;

for any k < N. This is proved by standardizing to an interval of length one and
using Peck’s lemma.

In the next proposition we let v = [¢] be the largest integer in o.

Prorosition 3.1. (i) The spaces Ci¥(K, X) are independent of | > 0 and

20~1. Let C,(K, X) denote this class.

(i) If 0> 1 and feC,(K, X) then f is continuously differentiable and
feC - (K, X).

(i) If o¢ N then feC,(K, X) if and only if f is v times continuously
differentiable on K und, for some [i’ >0,

< Ble~

Sor s, te K.
(iv)IfoeN (ie. o = v)and f*~V s Lipschitz thenf e C,(K, X) if and only if,
Jor some B >0,

G oD e
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Proof: Suppose fe Ch¥(K, X). As in (3.1) we suppose that if I is a closed
subinterval of K we can find a polynomial ¢, of degree at most N so that || f
— gy < yH°. If I and J are intersecting intervals then

lor=@illins < CyQI"+1J1°),
and hence if k < N then
(3.2) ”(Pfrk) OPllr s <

Fix seInJ. Then for teluJ

Cyl nJI75 (1 +1917).

(k) k)
(3:3) ler(0— s 01l = z@iifJM s

S Cy(TO I NIV (I +1J17).

Now note that if L is an interval with <
L=1uJ where || <, |J] <[ and {InJ|

|L] €31 then we can write
=41 Thus for teL

llor =, < 3¥NCy(I1°
and so
If =@ (0lf < CylL)”

for te L. Thus Ci¥ = C3'2N and it follows quickly that C:¥ is independent of I.
Henceforward we take | = |K}
Now suppose te K and 0 < h < |K| = ¢ say. We can find a polynomial ¢,
= @, of degree N so that [|f(s)—@,(s)l] < Cyh? if |s—t| € h and seK.
Using (3.3) weseethatif 1 < o < 2and ah < dthen ||, (s) — @an (8)|| < Cyh7if
|[s—# < h and seK. It follows that if 0 < k < N then

(3.4) el (1)~ o) (DIl < Cyho ™~

Now if 27" < h <2-27"5 where ne N then we can obtain ¢{(/) a
(3.5) o () = o (1) - 2
where

Py=of . 1O—o® @) for j<n,
Py= % (00— ).

22703
We note that ||P)|| < Cy(2778)""F,

We consider first the case k > o. In this case

llof ()= @ (0] < Cyho =+,
Co™*lgllx < C™*(Ifllx +767). Hence
ol @l < CO™ Il +vh").

However, || ()| <
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Thus

Il Z R O= 0K < U+ b
if [s—t] < h, and so if seK then

[/ (s)— Z PR =0k < ¥ I

where y'is independent of t and h. Thus (i) is established ; we may take N = vin the
definition. Henceforward we assume N =y so that deg ¢, < v for all ¢, h.
Returning to (3.5) we see that if k < ¢ then x, = lim ¢§ (1) exists, and

h-0

furthermore
(3.6) (136~ @fP (D] < Cyh™~k,

If 6N and k = ¢ then (3.4) and (3.5) yield
=P (Dl < Cy (log (3/h)+1)/7

|I<p(k)

and hence
i @)l < C(1+1og(3/m)"" (| fllx +7),
where C == C(p, N, 8). Let us write

g8 =3 xc(s—¥/k!

k<o

and define ¢, by

Cra(s) =0 if o¢N,
Cn(s) = o2 (s~ if o =v.
Let  hu(s) = g,(s)+ou(s).  Then [loy(s)— v, < Cyh® if |s—1/ < h

by (3.6). Thus
L7 ()= ()] < Cph?
if |s—t <h and seK.
Note first that f'(t) = m,, (1) = g,(1). Thus if ¢ > 1 then f’ (1) exists and
b0

S = gilt) = xy

Suppose s, t¢ K and 8 2 h z |s—~1], Then if [t ~1] €

e T)"'/’s.h )l < Cyh?

hand re K, we have

and hence

Wi () =g (DI < Cyh ™2,

In particular, if 7 = s then

(3.7 IWen(8)—f" (M < Cyho~ 1.
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Letting h=|s~t and s—t we see that f’ is continuous. Furthermore,
f'eC,., since (3.7) holds if seK and |s—¢| < h. Thus (ii) is established.

Now for (iii) we can repeat this argument v times to show f is v times
continuously differentiable and

r@ = 3 SO0 s—0kKL,
k=0

In case (iv), we repeat the argument v—1 times to deduce that f©~!
is in class Cy, and W&V (s)—fC~ P (s)l € Cyh if |s—1] < h. Now

Y () = Xym H R (O (5= 1) =D (O + 0} (1) (s —1).
Hence
@D ()=, O~V (1) — o () (s = 1l} < Cyh.
If £¢ 9 js Lipschitz we conclude, by taking s = t+h or t—h, that ||} (1)) < C
where C is independent of ¢ and h. Hence
lle, s < Cls—1

and (iv) follows. The proposition is proved.
From now we shall choose | = |K| and N = v in our definition of C,(K, X).
We let y,(f) be the infimum of all possible constants y in (3.1). Then we set

1 llko = LN+ v4(f) i
If feC,(K, X) we say that fis of rank m if f(K) is contdined in an m-
dimensional subspace.
LeMMa 3.2. There is a constant C = C(p, o) so that if fe C,(K, X) and m
> 2(v+1) then there exists g,cC,(K, X) with rank ¢, <m and

1= gmllx < Cm™ 711 fllk.0 [KI” lgmllx.e < CllS Ik,

Proof. We prove the statement of the lemma if m = (N+ 1)(v+1) where
NeN. The general statement then follows easily.

First suppose ¥: R— R is a C®-function so that supp ¢ <[—1, 1],
0y <1 Y(0)=1 and

Tyli-n=1,
neZ
Let K =[a,b] and let I; = [a+({—1)6/N, a+j5/N] for 0<j<
where 6 = b—a = |K|. Define ¥, ..., Y5: R— R by

l//j (N() 1([— —V).

and

teR.

N+1

Then

N
Z Yty=1, tek,
j=0
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and supp ¥; = L;ul;,,. For I<v+1,
MORS
- oneC, (K, X) of degree at most v so that
LS (s)= </71(9)l| 111k, (20/N)

CN's~1L,
Pick polynomials ¢, ..

forse(l;ul;y )N K. Letyg =g, = Z ¥, ¢;. Thenge C, (K, X)andifse I, then

[AORFICTES (78|
< C”./”K,a

(SO == 1 @)+, (1 () -y )
T4,
Furthermore,

g(8) =V 1 () 0= 1 () + () @y (5) = ;.- (S)+'/;j () (@5 ()~ -, ().

Thus
v 1

0
¢t (s) =2 T ((//j((p, 1))

Os
y (3.2), 10 ()~ @ () < ClIfllx,0(/N)y°"". Hence
g™ D < Cllf g0 (SN 171,

Let J be any closed subinterval of K. If |J| > N™*|K| then, since
If~gllx < Cllfllko N~78" there is a polynomial ¢y so that deg ¢; <v and
g =@l < Cllfll,o (N7767+11°) < C| fllg,e 117
Now suppose |[J| < N™'4. Let s be the midpoint of J and define

()= Y g2(s)(t— Y.

j=0
Then for reJ

lg)—p®ll € Clt—s+? maXHg‘”+ RG]

Here we use the fact that g|.J takes its values in a fixed 3 (v + 1)-dimensional space,

so that by Peck’s lemma the quasi-norm is uniformly equivalent to a norm. Thus
UEEAGIES C'H/Hm N 1T < Ol fllga 1

Now note that rank ¢, < (N-+1)(v+1).

Remark. Suppose, as we will later, that K = [~ 2, 2] and that /is 2n-

periodic. Then if N is even in the above argument, then g, is also 2n-periodic.

Now suppose uis a regular Borel measure on K. If g C, (K, X) and rank ¢

< oo then we may define the finite-dimensional integral J g du. By Peck’s lemma
K
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we clearly obtain
1§ geded| < @m)"== gl 11
K

if rank g =m. )
IffeC,(K, X) we can define g, for m = 2(v+1) with rank ¢,, < m and so
that

1/ =dullx < Cm™ 7 IKI7| /1|0
Then, for m < n < 2m, ||gm—dallc < Cm™7|K|"||/llx..» and hence

[ gmdn— [ gudpd] < Cm'r 27 |KP )| .o
K K

Now it is easy to show that lim [gz,,du exists. It follows that lim {g,, dyu exists
n-eg moven K

and is independent of the choice of the approximating sequence ¢, as long as ||/
—gnll < Cm™". Furthermore,

37 I1f du— [ gudid] < Cntt7™ =2 | £l o K1 1]

K K
However, |iguix < C(|fllk+IK|°n~7||fllk,o), and hence for all n > 2(v--1) we
have

(3.8) 1 dul] < €= Y| fllg+mte= 1 (KISl lad
K

Taking n to be fixed, say 2(v-+1), we obtain:
Lemma 3.3.

III{fduH < Cl S Ml A 1K1 1A ko) [l

where C = C(p, o) is independent of f, 1 and K.
We can now state the main properties of the Turpin-Waelbroeck integral.

THEOREM 3.4. (i) Suppose f,& C, (K, X) where o > 1/p-- 1. Suppose || f,—/lx
— 0 and sup||fyllg, < oo. Then

lim [fdp={fdu.
nesin K K

(i) Suppose p,eM(K) and p,—pu weak *.

Then if feC (K, X)
where ¢ > 1/p—1 then

lim [ fdp, = [7dp.
n-oo K K

Proof. (i) We omit the simple proof that f e C,, (K, X). By 3.8 we note that if
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m, ne N then
Hjl\:(f-f.'n)d#“ S CEPH f=Lullg A0 f=follk o)

However, it is easily seen from the definition that sup [|f=Sullk,s < 0. Letting m
m

- 00 we obtain
tim sup|{ (/~fy)dul| < Cntir=1=
meron K

for all ne N and the result follows.
(i) Here we use (3.7). Note that sup|lu,|| < co. Then for any m, n
n

1S b= fgndptal| < Cntir= 1= flg, .
Now lim [g,du, =0 for each n. Hence

mer o

lim sup||[f duy|] < CnMP=1=2| £l ,

for all neN, and the result follows.

4. The class C,(T, X). Suppose feC(T, X). We say feC,(T, X) if
FeC,(K, X)for any closed bounded subinterval K of R where F0) =1 (9. We
set

1/l = 17 llko
where K = [~2r, 2n]. This interval has length greater than 2r to ensure
smoothness at the end points.

Our first lemma translates the definition of C, into a statement about
trigonometric polynomial approximation.

Limma 4.1, Suppose [ e C(T, X) and suppose there exist NeN, o >0, 1> 0
and y > 0 so that for any subinterval I of [—2m, 2r] with |1} <! there is a
trigonometric polynomial

N
()= Y x e with || =l <yl0I°.
k- N

Then feCy (T, X).
Proof. First we note the existence of a constant € = C(p, N) so that for «
satisfying 0 < < 1 and all x,, ..., x;ye X we have

AN ot 1 \k
Y % ("MJ> ,

k=0

max |lx]| € Cmax
0%k 2N |t %1

This is a simple consequence of the fact that (2N + 1)-dimensional subspaces of X

6 - Studin Mathenwticn t, K3 2. 3


GUEST


286 ~ N.J. Kalton lm

are uniformly normable and lim (¢ — 1)/u = it. Thus

a0

2N
max a*||x)l < Cmax|| Y x(e"~ 1.
O<k<2N | €a k=0

In the remainder of the argument we take ¢ = y+|| f|| for convenience. Let 1
be any interval of length at most /. Then Jet 5 be the midpoint of I. For 0 < o < I/2
there is a trigonometric polynomial g, of degree at most N so that

17 (s +1)—~go (I < Cou”
for |t} < a. Let

2N . )
G ([) = Z xk,rxe-‘M(e”_‘ l)k'
k=0

For k < 2N, ||x;, ]l € Co. Now arguing as in Proposition 3.1 we obtain
llga (&) —gp ()l < Coa®, |t < B,
provided Lo < B < o. Hence
%= Xi,0ll € Coa” %,

We conclude that if k > ¢ then ||x, .|| < Coa® ¥ while if k < o then ||x || < Co
If seN and k = ¢ then arguing as in Proposition 3.1 we get

lI%e.0ll < Cllog (o) +1)!7 0.
Thus

2N
Iz x,“,,e'm'(e"—l)"H < Coa®.
k=v+1

Select polynomials A, of degree v so that
]e—im (eit___ l)k—"ik(l‘)l < cmv+ 1
for |t| <2n. Then

I ioxk,u e N (gt )k i Xia 4 (1) < Cou
k= -

if |t <o Here if o is an integer we nced to observe that o’*!(log(l/a)
+1)"7 < Co® = Ca®. Thus

|7 s+~ Zxku}‘k(’)” Coo”

provided |t] < o. Taking a = $|I] we obtain the lemma.

We will now turn to consideration of a specific example. We shall need the
following general lemma.
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LemMa 4.2. There is a constant C depending only on n, ay, ..., a, so that if’
zied, 1 <j<n, and 0<aJ<1 but a;+ ... +a, > 1 then

"1!

where ¢ = mm]zj——zkl
i

H Il Z e,o' Jd0<C 1~(ay+..+ap)
Jj=

Proof. Lct A; be the arc in T described by |1 —z;¢" <4$o. Then

H [1—z;e" " d0 < (o) "’Jj|1~z ¢ do

A, j=1

4

where f§; = Z a;. Now using the estimate
k#j

[1—re"t < C((1—=r2+0%) "2 < Clo~!

we see that

[ll=z ™90 < CY | 107 do < Co' ™.

4j

Thus

clo] = 1sq2

> ﬁ [1=z;¢d0 < Co' ™1™+ an,
T dgi=1

Let B be the complement of 4, u...u A, in T. Then on B

H -z, % g

Let « = a;+ ... +a,> 1. Then

< (min |1 ~z;¢/9) 1w
J

< (Z ]1 —z eit)]-‘ 1)“1“'-""”“".
J

( H 1=z, el) " d0V e < Y {j]l—v e do)”

I J=

and the lemma follows.

Now we let

<

<

<

u(z)

([ L=z =ap)
It ~:jem]:>Q/2

([ min(|1—z;¢'"|~2 (3o)~%)d0}"*

'~M Mi\’i

C {{ min(0~*, (k@)"“)d()}"“ < Cp'let

= (1 =~ wz)~!
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so that u: 4 — L,(T) is an analytic function. We note that
u™(z) = mlw" (1 —wz)” "1,

If 0<m < 1/p—1 then u™ extends continuously to 4. ~
We now compare u™ with its Taylor series. For z,z+{e 4 let

L
Az, O) = u" (z+)— 3 w2 Yt
=0

Lemma 4.3. Suppose 1/péN. Let ¢ =1/p—m—1 and v = [a]]. Then
led™ (2, O)ll, < CIEI”
where C is independent of z, (.
Proof. By direct calculation
o0z O = O W (L= we) D (1w )
and o™ = (8"/6z") ¢{®. Every term in ¢ is thus of the type
Cv+lwm+u+1(1_Wz)—(v+j+1)(1_W(Z+C))‘(m+l~j)
for 0<j< m and is thus 0(|{|°) by Lemma 4.4.

If 1/peN the situation is more complicated. For 0 < ¢ <n we write
h(¢, z) for the polynomial

v—1
Y (A=wz) O e w (L —w2) TP (1 —wze™ )" L (1 — wzel®) ™ 1,
=0

LemMma 44. If 1/peN then there is
1sinfo < | <sindo we have

4™ (z+0) ~(8" b az") ({, 2| < Co".
Proof. For convenience we write f,, ., for the function

(1—wz)~(1 —w(z+C))—b(1 —wze?) "¢ (1 —wze~ i)™ 4,

a constant C so that if

Now
u(z+0)—hl, 2) = 0w, 11,1 ((1—cos p)wz+wl —w?{z).
Thus
u(z+)—h(C, 2) = ((1—cos @) wafy, 1,11 +W fymrg,1,0 )0 W
Since 1 —cos (p =0(¢? and |{| = O(p) we can use Lemma 4.2 to deduce
™ (z+) — 8" b/ oz"™|| < Cop®

provided } sin ¢ < || < sin $¢. This follows on checking each term in the
derivative and noting that since v+m < 1/p each term of the formf, y.,q satisfies
[ fapcdl < Cott/Pmambme=d,

icm
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THEOREM 4.5. Let ¢ = 1/p—m~1. Then u™e C, (T, X).

Proof. For 1/p¢ N, this is immediate from Lemma 4.1 and Lemma 4.3.

If 1/pe N, we use instead Lemma 4.4, which shows that by appropriate
choice of z we can approximate 4™ (¢) on any interval I with || <ibya
trigonometric polynomial ¢(0) of degree at most v so that

™~ oll; < C 1)1

Now let J4' be the closed linear span of the functions u™ (z) for |z] = 1.
We note that if m < f < n < 1/p—~1 then w/(1 —wz)~®*+D s in JU". In fact this
can be proved simply by induction. If v(z) = w# (1 —wz)~®* D is in JU and n+1
< I/p—1thenv'(z)e Jid, ie.w!* 1 (1 —wz)~"* D gt But then this also implies
wh (1= wz) WD Wl g (1 —yz) 02 =l (] gyt e,

Now if

N
hiz, w) = 121 ay(l—o;wz) RYARY

where Jouf =1, 0<k; <1/p—m—1 and a;eC, then Mhzme . In
particular, if /1 is the function defined before Lemma 4.4 then o™ h/@z" is in J (m) for
all z. To see this simply write the last term in partial fractions.

Now by Lemmas 4.3 and 4.4 we immediately obtain:

Turorem 4.6, Suppose 0 <p < 1 and 0< m < 1/p—1. Let ¢ = 1/p—1—m.
Then for 0 <y < |

d(u®™ (re®), JM) < C(1—r)
uniformly in 0.

5. Analytic functions and linear operators. As usual X will denote a p-Banach
space where 0 < p < 1. We denote by 4, (X) the space of continuous functions
fi 4= X which are analytic in the open unit disc 4. Ao (X) is quasi-normed by

/1o = l{rllg?lillf(Z)H.

For o =0 and a¢ N, let v =[c]. We let A,(X) denote the space of analytic
functions on 4 such that

sup 179 D @ (=122 7 <
|zl -1

On A,(X) we impose the quasi-norm

(5.1 1, = sup IO D@I =123 7 3% Oy
2= k

= ()

Ifis aninteger we let v = ¢ and define A, (X)to be the space of analytic functions
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f defined on 4 so that
sup (1—z) I/ P (@) < o0,

lz] <1
The quasi-norm on A4,(X) is again defined by (5.1), with v = ¢ of course.

Note that we have not asserted that the spaces A4,(X), ¢ = 0, are complete.
This fact will, however, be established later.

Now suppose E is any quasi-Banach space of scalar-valued analytic
functions on 4 containing the disc algebra A(4) and so that the inclusion 4 (4)
— E is bounded and has dense range. If Te % (E, X) we define the unalytic
transform fr to be the function fy: 4 — X given by

fr(2) = T(u(z)

where u(z) = (1—wz)~ L. It is clear that f; is analytic on X and has the power
series expansion

fr@) = ¥ %zt

where T(W") = X,,.
The analytic transform induces a one-one correspondence between
ZL(E, X) and a certain space of X-valued analytic functions on 4.
THEOREM 5.1. Suppose 0 < g < p < 1. Then the map T — fr induces a lincar
isomorphism between the spaces & (H,, X) and A,(X) where ¢ = 1/g—1.
Proof. If Te & (H,, X) then fy(z) = T(u(z)) where u(z) = (1—wz)"*. It
follows *that fP*V(z) = T(u"*V(z)) and the fact that fred,(X) with
I frlle < C||T)| follows easily from the fact that ue A, (H,).
Conversely, let us suppose f & 4,(X). Then f has a Maclaurin expansion

f@=73 x| <1.
n=0

For r <1 let Te ¥ (H,, X) be defined by
o0
To= Zoanrnxn

o

where o (w) = Y. a,w"e H,.Since |a,| < C(n+1)"4~ it is clear that T, ¢ is well
n=0

defined and 7, is bounded.

0

If o(w)=} a,w" in H, define y (w)eH, by

n=0

Yw) = i aw" T,

n=vt1
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Then [lyll, < Clill, where C=C(v, ). Now yeB,, and [y, . <
. q). _ Clol..
Hence by a theorem of Coifman and Rochberg [4] we can W’;,ilt,e\in lll?:PHq
q.p

Xy

Yw) = Y o (l—|z2)* -1 —wz,)" 2
k=1

where z,e 4 and (o) are so that

(1wl < Cllgll
Now T, is bounded also on B

: d apSince By ,is the containing p-Banach space of
H,. Thus if we write

WY = (41 S a1l a0ty
k=1

then

BOv* ) = (4011 T ay (L=t 0 g,
k=1

Thus [|7(w** g )| < Cllf1L I oll,. Now

IMQHMW<mmwwq
and hence

1T ell < ClLf Mo llepll,-
Thus || 1) < C|lf1l,. As lim T,(w") exists for all n20, we can define
a bounded linear operatorr 1] so that T(W") =x, and ||| < C|fll,.
Clearly fy = f.
CoRrROLLARY 5.2. If a > 1/p~1, then A (X) is complete.

We now use the identification of Theorem 5.1 to derive some important facts
about the class A,(X) with no restriction on o.

Trorim 5.3, Suppose o > 0 and fe A (X). Then
) f mis an integer and O < m < o then f"g Ag(X), Le, f™ extends
continuously to A, The map f - f" is continnous Jrom A, (X) into Ag(X).

(i) If mis an integer and m = e, then Jor some consiant B = B(f) and
exponent o (),

/™ 0 < B+ (log (1 -|20) 1),
(iii) For Osr< 1, the Junctions f, given by

L) = 1 (rel?)

are in Co(T, X) and  sup  { fillpo < 0.
azrsi
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(iv) If o> 1 then
(d/do) f () = ie°f" ().

(v) Each of the spaces A (X) is complete.

Proof. First select ne N so thatAa+n> 1/p—1. L?,t,«})/q:rH'n-H'
Integrate f n times to produce Fe Agyn With F(0) = ... = F (0) = ()F.‘Then
[[Fllg+n = || f]ls and so thereis a bounded linear operator T: H, ~ X with T(u(2))
= F(z) for lz] <1, and ||T| € C|f]lo- Let @yt H,— H, be the map

0, o(w) = @{rw)
for 0 <r <1 Then TQ,(u(z)= F(rz) and hence
TQ, (u‘"’(:)) = r'f(rz).

For (i) we observe, taking r =1, that u™m M (z)e Ay (H,) and hence

T (z)) =" (z)e Ao (X), and of course
max || f* )| < CNT] < Cllf o

For (ii), note that m+n=1/g—1. Then in H,

g 1 g
" @) < € (1 + (log “f”fl';i) )

and the result follows. _
To prove (iii) note that u™(e®)e C,(T, H,) and hence, since ||TQ,l| < I T]l,
f (re®ye C,(T, X) and
sup " f (reNiz.s < ClLS o
osr=1
- (iii) now follows.
To prove (iv) note that
d o _ (jl_ (@0 | = o T D (610) = je 1" ().
/€ =Tl (€) ) =i T( (') .
For (v) suppose f; is a Cauchy sequence in A, (X). Let F; be the correspondiqg
n-fold integrals in A, ,(X), Then F, is a Cauchy sequence and converges in

A,+,(X) toalimit F by Corollary 5.2. Now F{" — F" in 4,(X) and (v) is proved.

LeMMA 5.4, Suppose o > 0. Thenf e A, (X) if and only if y& A, (X) where g (z)
= zf (z).
Proof. For neN

g (2) = 2" () 4+ nf D (2).
Suppose fe A,(X). Pick n =v+1. Then

lg" " V@l < C(1=[z?)"
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by applying Theorem 5.3 (i) or (ii) depending on whether oc¢N or o N.
Conversely, suppose ge A, (X). Then, by induction, ™ is bounded if 0 < m
<o Il o¢N, f™ is bounded, and hence, since

FUNE) = gD @) =y 4 1) o),
we see that fe A, (X).
If ceN, then f©~Y is bounded and in this case

‘(w +(log- 1Y
I s € (v (iogy 1Y)

11" @l < C(1—2)) 1

and hence again

so that fe A, (X)

We are now ready to prove a limiting case of Theorem 5.3 when ¢ = 1/p—1.
For this we define C, to be the space of functions f analytic on the open unit disc
so that

IA1F= L7 N+ {17 w)l (1= w27~ * d2 ()} 7P < oo
El
(where 4 denotes the planar measure dx dy). Then feC, il and only if
S'€B, , where 1/r = 1/p-1. The natural integration operator J maps B.,
isomorphically onto the subspace Cp,0 of functions vanishing at 0. It is well
known (Duren [6], p. 88) that J maps B, , into H,. Thus C, = H,. However, C,
=B, ,@C =1, (cf. [12], [20]) and hence C, +# H,
THEOREM 5.5. Suppose 0 < p < 1. Then the mapping T — fr defines a linear
isomorphism between the spaces & (Cpy X) and A,(X) where o = 1/p—1.
Proof. Il Te #(C,, X) then Ve ¥ (H,, X). Let g be the analytic
transform of TJ so that ge A,., (X) and |jg|l, 4, < C|IT||. Now if ' = f; is the
analytic transform of T then

" o d ”
f@) =2z, (z9(2)

and hence [ A,(X) by Lemma 54. By an application of the Uniform
Boundedness Principle it may be seen that
sup sup(l—[z/})"" o D ()] < oo
AT
and for k< v
sup L/ (O] < oo
s 1
50 that | fll, < C|T1).
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Conversely, suppose feA,(X). Then z'(f(2)=/(0)eA,(X) and
hence if

S [0

96 =, D+ )1°

n=0

n

then ge A, (X). Thus there is an operator §: B, , ~ X so that S(u(z) = g(2).
Now define T: C,— X by Tp = S¢'+f(0)¢(0). (Note ¢ = d¢p/dw.) Then

T (u(z)) = S (z/1 —wz)?)+f (0)
= z8 (1/(1 = wz))+22 S (W1 —wz)?)+/ (0)
=zg(z)+ 22 ¢ (2)+S(0)

o 1)
=Yy T ©) (_L -|-~»~’j~—->:”“—F-f(o)

"=0715141)! n+l ntl

© f(n+1)(0) . ) )
= ) et 0) =f(z).

2 TmE D) +f{0)=1{2)

This shows that the map T fr is a surjection and by the Open Mapping
Theorem it is also an isomorphism.

6. Remarks on analytic functions. We now give some applications of the
results of Section 5 to the general theory of analytic functions in a quasi-Banach
space.

TueoreM 6.1. Suppose ne N and n > 1/p. Then for any fe Ay(X) we have

ILF ()] < C(m+mifIl

where C is independent of m and f.
Proof. Pick ¢ so that n+1> 1/g > n. Let

Fg)= Y =i z

Then F®™e Ao(X) and so FeA,(X) where ¢ = 1/g—1. Define Te Z(H,, X)
to be the operator with analytic transform F. Note that ||F||, <||/|l. Then

f(m) (0)

(m~+m!

’ =[[TW ™I < IT < CIAIl-

TueoreM 6.2 (Liouville). Let 2 C — X be a hounded entire function. Then
[ is constant (compare [16], [21]).

Proof. Simply apply Theorem 6.1 to f, where f,(z) = f (rz) for 0 <r < cv.
One concludes that f'(0) =f"(0) =...=0.

THEOREM 6.3. Ao (X) is complete (i.e. it is a closed subspace of C(4, X)).

icm®
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Proof. Observe that the linear mapsf — £ (0)(me Nyextend to the closure
of Ay (X) and that, for fixed ze 4, the series 2. £ (0) 2"/m! converges to f(@

uniformly on the set {fe 4,(X): ||fll < 1}. Hence if ge Ay(X) then

o
gi&)= 3 x,2" |z <1,
m=0

for some x,¢& X.
Turorem 64, Suppose ¢ > 1/p~1 and fe A, (X). Then Jor m=0

| 2n .
./'(m)(()) - g;: J‘f‘((,iﬂ) o im0 d()H

0
while for m < 0

2n
= [[(e%e "0 g,
0

Here the integral is the Turpin--Waelbroeck integral as described in Section 3, off
with respect to du = ¢ ™0 ().

Proof. For r <1, let
‘II
gn(@) = 3. [®(0)rk ™K1,
k=0
Then rank ¢, < n+1 and if f(e") = f(re") then

o

lga=lle < {3 ISP *r/kly}iir
1

k= pd

o

SCL Y (s+k)kernte

k=n+1

where s¢ N and s > 1/p, by Theorem 6.1. Hence

o=tz =0 1,1.")") =00

50 Lhat
ml A
271« ' / (’.c,ll)) ¢ imt ![0 s rmf(m) (0)1 m ? 01
b}
ml A .
o J/ (re®ye "m0 = 0, m < 0.
4]

Now we use Theorem 3.4 (i) and Theorem 5.3 (i) and (iii) to let r - 1, and
obtain the result.

Now recall that for ae R, V,(X) consists of analytic f: 4 — X so that for
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some C

zed.

If @I < C=l2l)

Lemma 6.5. If feV,(X) then f'e V,_; (X).
Proof. If zoe 4, let a = $(1 —|zl). Define g (z) = f (2o +az) for |z} < 1. Then
geAy(X) and so

IO}l < € sup lg(all. i Il < Ca”
2|1

Hence || /" (zoll < C(1—|zo)" .

THEOREM 6.6. For 0 > 0, fe V,(X) if and only if fe A,(X) and f(z) = 0 for
zeT

Proof. Let v = [¢]. Then repeated application of Lemma 6.5 shows that if
feV,(X), then fe A, (X).

Forthe other direction, select nso thate +n > 1/p—1. Pick gso that 1/4 = ¢
+n+ 1. Integrate f n times to produce F: 4 — X with F(0) = ... = F""Y(0) = 0
and ||F|l,+, = ||fll,- Then there is a bounded linear operator T: H, — X with
T(u(z)) = F(2).

Note T(u(z)) =f(z). If /=0 on T then T(J{%) =0 and so we can apply
Theorem 4.6 to deduce ||f(z)|| < C(1—}z])°.

Tueorem 6.7. If ¢ > 1/p—1 then V,(X)={0}.

Proof. By Theorem 6.4 if feV,(X) then f™(0) = 0 for all m.

Remark. We have seen that if ¢ = 1/p—1 then V,(X) can be nontrivial.

7.Operators on L,. We now introduce the space E, (X). This will consist of all
functions f: C — X with the properties:

(a) fcontinuously extends to the Riemann sphere C* = C U {oo} if we set
S (o0) = 0.

(b) f is analytic on C*\T

() feA,(X) on the disc 4.

d) f(1/z)e A,(X) on the disc 4.

E,(X) is quasi-normed by

1/ 1la,p = max (|| fll,, L/ (1/2)ll,)-

We shall consider only the case ¢ = 1/p—1. In this instance we have seen
that 4, (X)is complete and the injection 4, (X) < A, (X)is bounded. From these
observations we see that E,(X) is complete. ’

If Te #(L,, X)where 0 < p < 1 then its analytic transform fy is defined by

fr@)=T{1-wz)"!), :zeC.

TueEOREM 7.1. Suppose 0 < p < 1. Then the analytic transform T— fr induces
a linear isomorphism between £ (L,, X) and E,(X) where ¢ = 1/p—1.

icm
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Remark. As usual X is a p-normable space.

Proof. One direction is very easy. If Te & (Lp, X)thenitis immediate that
freE (X)and || fll,,z < C||T]|. We now show that the map T — fris a surjection.
Since it is trivially an injection the conclusion follows from the Open Mapping
Theorem.

Let us suppose f'€ E,(X). Then f has a Taylor series expansion around the
origin,

f(2)= Z x, 2" |zl <1,

ne= Q)

and a Laurent series expansion around oo,

J@ =3 yoz" |z > 1.
n=1
It is readily seen that f =/, if and only if T(w")=x, for n>0 and
T(w™") = —y, for n>0. We therefore need to show the existence of such
an operator T

Let us first suppose x, =f(0) = 0. Then we define two analytic functions
on 4 by

L o
Xy

2, Fyz) =Y I on

Fi(z) = z
w1 N n=1 N

Then Fi(z) = z"'f(z) and hence, by Lemma 5.4, FieA,and so FieA,,,.
Similarly F% (z) =2z 'fz"Yandso Fae A,y In particular, F, and F, extend
continuously to 4 (Theorem 5.3). Since ¢+1 = 1/p > 1/p—1 we can utilize
Theorem 6.4:

2n
xy/n=(2m)"' [ Fi(€9)e™"d0, nx1,
0

n

Yl = (2m) " [ Fy (% e 4o,

0

nzl.

Also
lrc n
' Fl (em) c,Mo dO == j‘ Fz (elﬂ) Mo do = 0.
(1] (4]
Next we note, by Theorem 5.3 again, that
(d/dOVF (1) = —fe U F (e710) = —if (e719),
(d/dOYF 5 (1) = jel" F'y (') = if (e777).

Now define GeC,uy (T, X) by G(¢%) =—F, (&)~ F,(¢"Y). Then
(d/d0) G (¢ = 0. Now we use Proposition 3.1 (iii) or (iv), depending on
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whether a¢ N or oeN, to deduce that
G (")~ G ()l < Clo—0]"".

Now it follows that there is an operator T* L,— X with
Tx(,, o =(2ni)"1 (G(e*)—G (€M)

where Y0 (€") =1 if 0 <t < ¢ and zero elsewhere (when 0< 0 < ¢ < 2n).
We now compute T(w") To do this we introduce simple functions hy (N
=1,2,..). Let 4
I’IN (e“) - e"'o",

where ), = 2kni/N, for k=0,1, ...

Oy <t <0,
, N. Then Thy - Tw". However,

N
Thy = (2ni)~ ‘Z el'm"( ew") G (e )

PR )

_ (27_”,),.1 Z G (ewk) ((ii”ok _
k=1

where 0y.; = 6;. Hence
Thy = (2ni)~" [ G(¢") dun(0)

where uy is the measure on [0, 2] given by

N
iy = Z (elnok_
k=1

¢ 1) 5(0,).

In the weak*-topology py — uwhere du = ~ine™ df. At this stage we appeal to
Theorem 3.4 (il) to deduce that

___n2n . in0
Tw'=— [ G(")e™do
2t

2rn
= —21-% [ (Fl (e‘lo)+F2(ei())) eiu() do.

If n = 0then Tw" = x,, whlle forn > 0, Tw™" = —y, as required. This settles the
special case when f(0) =

If f(0) = x4 # 0, let Xo be the one-dimensional space spanned by x, and let
Q: X — X/X, be the quotient map. Then Qf (0) = 0 and so there is a bounded
linear operator §: L,(T)— X/X, with S(w") = Qx, for n> 0 and S(w™") =
—Qy, for n > 0. By results in [11], S has a unique lift T: L, — X with QT = §.
Let

T(1—wz)"Y) =g(2).

Then f—g has range in X, ie. f(z)—g(z) = h(z) xo where he E,(C) = {0} by
Liouville’s Theorem. Hence T has analytic transform f.

Analytic functions in non-locally convex spaces 299

The isomorphism between .%(L,, X) and E,(X) follows from the Open
Mapping Theorem.

Anoperator Ton L, vanishes on H , , if its analytic transform fy vanishes for
|z 2 1. Then we must 1‘1<1VC Jre V,(X) on the disc. Conversely, if feV,(X)then f
can be continued over € to be zero outside the disc and hence there is an operator
Ton L, so that [(II,, o) = 0 and fp =f in the open unit disc. Summarizing:

TutoreM 7.2. There is a natural linear isomorphism between < (L ,/H
(or L (H /] po. X)) and Vo (X) rmplcmented by

(‘1“ ) Jr(z
where q: Ly Ly/H o is the quotient map.

Turorem 7.3, Inorder that V, (X) st {0} it is necessary and sufficient that there
exists a nonzero linear operator T: L /H,— X.

p0s )

lz] <1,

8. Applications to L, We first apply our main theorem to extend
a theorem due to Aleksandrov [1] that L,=H,+H, Our extension
uses the space C, introduced in Section 5. As noted there C, is strictly
contained in H,.

THEOREM 8.1 There is a constant C so that if [ L,(T) then there exist
g1 492& Cp with llglle, < CUf Y. llalle, < CUAL, and

S (@) = g1 () +ga (™)
ae. on T
Proof. We define a linear operator W: C,@C,— L,(T) by

W(h]v hz) =

(Note that each h;e H, and so has boundary values ae. on T).
Let N = W !(0),andlet Q: C,®C,~ Y= C,@®C,/N be the quotient map.
Define f@ C-» Y by

_jo(u), 0), Il
1@ = {Q(O L—u(l/z), |

Then fis continuous on Cw {w) and it is readily verified to be in E,(Y). Hence
there is an operator S: L,(T)- Y with

S(1~wz) 1) =f(2),

It is easily seen that SW= Q and hence Y is isomorphic to L,(T) and Wis a
surjection as reguired,

An immediate corollary of Theorem 8.1 is an atomic decomposition for
L,(T) in the spirit of [4] which may also be regarded as a strengthening of
Aleksandrov's theorem.

hi (@) 4 hy (e,

zeC.
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THeoREM 8.2. Suppose 0 <p <1 and f > 1/p. Then there exists nq
= 10(p, B) so that if n < no and ({,)e%, is an y-lattice in A for the Bergman metric
and ¢, # O then there is a constant C so that if fe L,(T) then

@

o0
FO) = 3 a1=Lw) P A=IGI2P 0 3 by (1L, ) (L=
n=1 n=1
where Z|a,,|”+2|bn|p < ClIfIl5.

Proof. First we note that if C , o is the set of g e C, s0 that g (0) = 0 then the
decomposition in Theorem 8.1 can be achieved with g,, ¢, € C,, . Indeed, if not,
there is a linear functional T # 0 on L, so that t(W(hy, hy)) = 0for hy, h,&eCp,q.
Hence

1o W (hy, hy) = ahy (0)+bh,(0)
where a, be C. By the openness of

contradiction.
Now we can write

W, 7 is continuous on L, and we have a

S (W) =g, (W)+g, (W)
where g, g,€Cp o and |lgll < Clifll, (i=1, 2). Then ¢}, g3 B, where 1/r
= 1/p+1. Hence by Theorem 2 of [4],

20

giw =3

n=1

C,,(]. —'Eu W)—(p+“(1 - |Cn|2)lj* l/p’

ga{w) = Z dy(1=T,w)~ B0 (1 |z, |2~ o,

where )’ |c,/?+ 1d,J? < C||fI|2. Thus

g1(w) = Z BT (=W (L~ 2, |2,
ga(w) = Z d,p~! (1—Enw)“f)(l_lgnllyl—l/p.

Now let a, =c¢,{;* B2, b,=d,{;*f~'. Then
2lan?+31by)? < (min|g,) 7P BN (e )P+ |d,J7) <

The result now follows easily.
TueoreM 8.3. Suppose f: 4 — X is analytic and

ClLAe.

2n
lim (1—r) =12 { || £ (re)|? dB}” = 0
r-1 0

Then f=0.

icm°
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Proof. Define g: 4— L,(T, X) by

9@ w) =f (wz).
Then g is analytic and ge V,(L,(T, X)) where ¢ = 1/p—1. In fact, there is a
monotone decreasing function g: [0, 1]— R so that limo(*) = 0 and
r-+1

lg (2l < ezl (1 —z[%)P= 1.
By Theorem 6.1 we conclude that if lz| =% then
llg' () < Co(2z] = 1) (L —|2|%)*/P~2,
and differentiating v+1 times where v = [¢],
lg®t 22l < Co(2" g 2
=27t

Ile):l/p v~ 2
for |z| 2
Now by Theorem 8.2 pick a suitable g-lattice ({,) and define a bounded linear
operator W: [, - L, so that
Wegyoy = (1={,w)"0+2(1
Weay = (1 =L, ) 0D (1 =g, 2+ 2 10,
where (¢,) are the basic vectors of [,. Then W maps I, onto L,. Define W':
L= Ly, by W(a) = (v-+ 1)l w*! W(a) then W' is ulso onto.
By Theorem 7.1 there is an operator T L,,——> L,(T, X) so that
Tu)=g(), o<
T(u(z)) =0, =l =

=|GFyrr e,

Now
TW ! (€20-1) = g+ D(E,) (1= [¢, 27+ 2~ 10r
and so lim ||[TW'(e3,~ )| = 0. Also

Heven
TW,((‘Zn) = (\' e 1)! T(W\wl- 1 (1 — Z‘” W)u-(v-l- 7.))(1 — Ié'"IZ)v 4 2= 1/'1'
However,

b o (kD
- vt 2y . k
(1=, ) k},u Mo G

in L, and hence

k+1
TW (3,) = (1=, |3 27 1P Z (V+,\, Na
k= ()

"(e2)]] = 0 since v+2>1/p and [{,| — 1.

T(w\—il k)

Thus lim || TW
Hory
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It follows that TW' is compact on [, and hence that T is compact on L,
Now this means T =0 (cf. [8]). Thus g =f =0.

9. Applications to temsor products. Turpin [17] has shown that if X
is p-normable and Y is g-normable then there is an r-convex quasi-norm
on X®Y so that

Ixe@yll = lIx|I-liyll,  xeX,yeY,

where 1/r =1/p+1/g—1. We now show this is best possible.

THeOREM 9.1. Suppose 0 < p, g < 1 and suppose 1/r = 1/p+1/g—1. Let Z be
an r-Banach space and suppose B: L,/H,x L,/H - Z is a nonzero bounded
bilinear form. Then there is a nonzero linear operator T0 LJH, -+ Z.

Proof. We identify L,/H, with L,/H ;. Letv,: 4~ L,/H, , be defined by
vy(2) = Q(u(2)
where Q is the quotient map. Then
llop (2 < C (1|27t
in L/H,, and similarly
llog (=)l < C (1= [z a1,
Thus if |{| =1 then
B @) < =l
Now by Theorem 7.3 if there is no nontrivial operator in % (L,/H,, Z) then
B(v,(2), v,({2)) =0

forzed and |{| = 1. If || < 1 the function ¢ - B(v,(2), v,({2)) is analytic for ||
< |z|™! and is zero for |{| = 1. Since zeros of nontrivial analytic functions are
isolated we have B(v,(z), v,({z)) = 0 for |{| <|z|~! and hence B(v,(z), v,(25))
=0 for zy, ze 4. This implies B = 0, contrary to assumption.

CoroLLarY 9.2. If Z is s-normable where 1/s < 1/p+1/q—1 then there is no
nonzero bilineur form B: L/H,x L/H,~ Z.

n
CoroLrary 9.3. Let B be a nontrivial n-linear form on [ Ly /H,, where
J=

< p;§ 1, whose range is contained in an r-normable space Z. Then
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