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Thus |f,+1 (2)—fo (@) < K(n+1)"2 for all z¢ |J 4; and, by for example the
. k=1
Weierstrass M test, f, converges uniformly to f say.
To see that f(z) # 0 for |z| < 1, z¢ (J 4, note that if |z}.< 1—272"~!
k=1
then f,(z) # 0, and

o0

Y l-g@)l<

r=n+1

fj r+1)"* <o

r=n+1

so by a basic result on infinite products

f@ =1 11 a@#0. =

rent ]
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Some results on intersection properties
of balls in complex Banach spaces

by

A. LIMA (Aas) and A. K. ROY (Calcutta)

Abstract. Predual real I'-spaces are characterized by the 4.2. intersection property. The
structure of real spaces with the 3.2. intersection property and of real and complex spaces with
the 4.3. intersection property is fairly well understood. In this paper we study complex spaces
with the nk. intersection property when n > k > 4. We show that the 5.4. intersection property
characterizes complex I!-preduals, and that the (2n+1).2n. intersection property implies the
almost (2n+1).(2n—1). intersection property in the complex case.

1. Introduction. Let A be a Banach space over the complex scalars C.
B(a, r) denotes the closed ball in A with centre a and radius r. Let n,k be
integers with n > k > 2. We say that 4 has the almost nk.I.P. (to be read as
the almost n.k. intersection property) if for every family {B(a;, rj)}j=1 of n
balls in 4 such that for any k of them,

k

ﬂl B(“j,,,: rjm) * @,

m=

we have
N Ba;, r;+8)# @ for all £>0.
=1
(If we can take ¢ =0, we say that 4 has the nk.LP) Introducing the space

H™(A*) = {(x1, ..., x)e(4*)™ kzn:l X, = 0}

) ,
with the norm [|(x;, ..., X)ll = Y. lIxl, it was proved in [7] that A has the
k=1

almost n.k.LP. if and only if each extreme point (Xy, ..., X,) in the unit ball
of H"(A*) has at most k nonzero components. Thus examination of the
extreme point structure of the unit ball of H" (A*) furnishes a useful analytic
device for the study of the intersection properties of balls in Banach spaces,
and this has been effectively used in obtaining various characterizations of
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complex L-preduals (see for example [4], [7], [8], [9]). We pursue this
approach here by proving that if 4 has the (2n+1).2n.1.P. then it has the
almost 2n.(2n—1).LP. (n = 2), which yields, as a particular consequence, the
interesting fact that 4 has the 54.1.P. if and only if 4 is an I}-predual. We
also prove that if 4 has the 2n(2n—1).LP. and if (x4, x5, ..., X3,—;) is an
extreme point of the unit ball of H**~*(4*) with all its components non-
zero, then n—1 of the functionals x;, X,, ..., X4, are linearly independent
(over C) and the remaining ones are expressible as linear combinations of
these functionals. We conclude by describing the analogue in the context of
the higher intersection properties of balls considered here, of the weak
intersection property which has proved useful in characterizing I'-preduals
(41, [72).

It should be emphasized that for the validity of the results proved in this
paper it is necessary to work over the field of complex numbers.

2. Notations and main results. Let A* and H"(4*), denote the unit balls
of A* and H"(4*) respectively, and let 4%, 0, H"(A%); denote their
(respective) sets of extreme points.

If 4 has the (n+1).nLP. and (xy, ..., x,) € §,H"(4*), with all x 30, it is
known (see [8], Lemma 3.3 and the remark following it) that x/l1xdle d, A¥
for all k. We assert that all these functionals are distinct. To prove this,
suppose for instance that x; = cx, for some ¢ > 0. Writing

1 1 c c
(xl, Xy <oy xn) = (0, xz,mx3, ciey mx,,)-{»(cxz, O,mxs’ vy mxﬂ)

we get a contradiction with the fact that (x,,
H"(A4%),.

The following result was suggested by Lemma 3.3 and Theorem 3.6 in
[4] and [5]. ’

..., X,) is an extreme point in

ProrosiTioN 2.1. Suppose A is a Banach space with the (n+1).n.LP. and
let x=(xy, ..., x,)e0, H"(A*), with ||x|| = 1. The following statements are
equivalent : '

(1) xed,H"(A*), with all x, #0.

(@ {x/llxll}=y are affinely independent points of A* over R with each
xfllxil| € &, AT

(3)  The points {|ixdl, X }2=1 = Rx A* are linearly independent over R and
each xf||xjle d, A¥. )

Remark. (2) and (3) are equivalent if we delete the requirement that
xifllxill € 8, AT

icm

Intersection properties of balls 39

n
Proof. (2) < (3). 3 c(lxll, x) =0 for some c,eR is equivalent to
k=1
Y el = Y ¢x, =0 for some c.eR.
=1

Writing t, = ¢ ||x;/l, we see that this in turn is equivalent to

Y ti——=0 for some t,eR with ) £, =0.
=1l k=1

(1) = (2). As remarked above, it follows from (1) that x/||x| € 8, A} for

Xk

all k and that they are distinct. Let p= Y |[x,|& where ¢, is the measure

k=1
with unit mass at x/||x,J|. Clearly peZ, where Z, denotes the set of
probability measures on A¥ representing 0. By Proposition 16.10 in [1], (2)
follows when we have proved that p is an extreme point in Z,.
Thus suppose , 4yeZo and 2u = py + p,. It is obvious that 'a’.‘nd Ha

have their support in {x,/||x4||, ..., X,/lIx,/[}- Thus we can write y; = Zl o £
k=

and g, = Y P& where o, B 20, a+ B = 2|xl| for all k and
k=1

Z o X flladl = Z B xi/llxill = 0.
k=1 k=1
Writing
2X1, +ves Xp) = (g Xa/l1%lls -5 XX+ By Xi /11Xl -5 Bn Xl Xall)
and using the fact that xe 8, H"(4¥);, we see that o, = B = ||x,/| for all k.
Thus we get u; =y, = u and it follows that ued, Z,. )
The proof of (2) = (1) easily follows from Proposition 1.6.10 in [1] by
an argument similar to that of (1) = (2) above.

ProposITION 2.2. Let (x4, ..., X, € 0, H"(4*), with all x, # 0. Then we .
have spang{x,, ..., X,} = R""! where = means linear isomorphism.

Proof. Let E =spang{xy, ..., X,}. Since Y x =0, we have dimpyE

k=1
< n~1. Assume for contradiction that dimgE < n—2. By a theorem of Helly
every family of n convex sets in E* such that any n—1 intersect has a
nonempty intersection. Thus E* has the n{n—1).LP. But then every extreme
point in H"(E), has at most n—1 nonzero coordinates (see Theo_rem 210 in
[7]). Thus (x,, ..., x,)} cannot be an extreme point in H"(E); or in H"(4*),.

Remark. In this paper our main interest is in complex Banach spaces.
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Propositions 2.1 and 2.2 are, however, valid for real spaces as well.
In the following we shall need a lemma on complex matrices.

Lemma 2.3. Let M = B+il where B is a real pxp matrix and I
is the identity matrix. If N(M) denotes the null space of M, we have
dime N(M) < p/2.

Proof. Let xe C”. We have xe N (M) if and only if Bx = —ix, which in
turn is equivalent to BX = iX where X is the complex conjugate of x. Since
Bx = —ix and Bx =ix if and only if x =0, we get N(B+il)nN(B—il)
= {0}. Thus dim¢ N(B+il) < p/2.

LemMMa 2.4, -Assume A is a complex Banach space with the almost
(n+1).nI.P. and assume (xq, ..., x,)€ 8. H"(A*); with all x, # 0. Then there
exist numbers a,;, 1 <k, j < n—1, with a ;e R for k + j and ay.e C\R for all k,
such that for k=1,...,n—1

n—1
Y ayx;=0.
i=1

Proof. Let E =spang{x,, ..., X,}. By Proposition 2.2 we have dimE
=n—1. As noted in [8] (see Lemma 3.3 and the remark following it),
x/llxd| e 8, A¥ for all k. Let 6 = 1+i. Then 8+8 = 2. By Theorem 3.1 in [8],
we can write in H""!(4%)

( 0x,, Ox,, 2x5, 2X3, v 2x,)
=( 0, bpafx;,  bi3xy,  buaxs, ..., by nt1%y)
+( by Oxy, 0, ba3xy, byaXs, ..., bynt1Xn) |
+( b3y 0x;, by Oxq, 0, byuxs, ... b3 n+1 %)
I S PO W
+( but1,1 0%, bpi12 Oxyy bury,3 X2, byrraXs, oy 0)

where all b; = 0 and

0 +by + by et by =1
b12 + 0 + b32 + ...+ b,,.',l'g =1,
b13 -+ b23 + 0 +...+ bn+1,3 =2,
bint1+ bapert  bagyrt+...+ 0 =2

If by, # 0, then

bia(1=i)x;+byyxa+ ... +bypy1 %, =0.
We have -

bynt1 Xy +bgprs Xa+ oo +by gy %, =0,

icm
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Subtracting, we get

(bra(L=0)=by pu1) X1 +(bra—byas )Xo+ oo +(b1a— by pr1) Xy = 0.
Let

ay =bi(1=)=by i1, @2=bi3—bipe1, -0y Gru- =byn—b1ns1
n—1
and we get . a;;x; =0 with a;; e C\R and a,;eR for j# 1.
j=1

If by, =0, then E,,Z #0 for some k>3, say by, # 0. Thus we have
(b3s (1+0)+b32 (1 —D))x1 +b3a X3+ ... +b3 41 % =0,
If by, = b3,, then we have
(b31 +b32) X1 +bgaxs+ ... +b3 pe1 X, =0

and this gives x;espangiXs, ..., X,}. But this contradicts dimE =n—1.
Hence we must have by, # bs,. We can thus proceed as in the case with
b,, # 0 to achieve

n—1

Y a;;x;=0 with a;;e C\R and a,;eR for j# 1.
i=1

Applying the same reasoning to X, X, ..., X,—; gives the claimed set of
equations. The proof is complete.

ExaMPLE. Let 4 = C3 with [;-norm. If

R -

then x = (X, X3, X3, X4)€ &, H*(4%),. In this case, it is not possible to write
Ay X+ Xp+a33x3 =0

with a,;€ C\R and a,,, a;3e R. Thus A4 does not have the 541P.

THEOREM 2.5. Assume A is a complex Banach space with the almost
(2n+1).(2n).1.P. Then A has the almost (2n)(2n—1).I.P.

Proof. Suppose (Xi, ..., Xz)ed H™"(4*);. It suffices to show that
some x, = 0. Assume for contradiction that all x, 0. By Lemma 2.4 there
exist numbers a,;, 1 <k, j < 2n—1, with a;eR for k #j and g, eC\R for
all k, such that for all k=1,2,...,2n~1

2n—-1
(%) Y, ayx;=0.
Jj=1

Clearly we may assume Imay, =1 for all k. Let p=2n—1and M = (a;)- By
Lemma 23 we get dimcN(M)<n—3%, so that dimeN{M)<n—1. By a
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standard result in linear algebra (see [3], p. 12), the complex dimension of
the solution space of (x») is <n—1. Hence spang{x,, ..., X2}
=span¢{x;, ..., X;,-,} has complex dimension at most n—1, and therefore
dimgspang {x;, ..., X;,} <2n—2. This contradicts Proposition 2.2 which
says that spang{x;, ..., x,,} = R*"" 1, This completes the proof. .

The above argument gives some additional information when A4 has the
(2n).(2n—1).1.P. as well.

THEOREM 2.6. Assume A is a complex Banach space with the almost
(@n)(2n—1).I.P. and assume (xy, ..., Xz )€ 8, H*""1 (A%, with all X # 0,
Then there exist n—1 (complex) linearly independent functionals among
{4, %2, .0, X3n-1) and the remaining n functionals x, are complex linear
combinations of these n—1 functionals.

Proof. As in the proof of Theorem 2.5 we get

2n—-2
2 g% =0
i=t

but now with 1<k, j<2n—2. We also get, with M = (ay), dim¢N (M)
< n—L. By using Proposition 2.2, it follows that dim¢ N(M) = n—1 and that
spane {x,, x,, vy Xgpoyg} 2 CT,

CorovLLary 2.7. If a complex Banach space A has the almost 5.4.1.P. then
A* is isometric to an L' (y)-space.

Proof. Let n=2 in Theorem 2.5, Then we deduce that 4 has the
almost 43.LP. By Theorem 4.1 in [8], it follows that 4* is isometric to an
L (u)-space. ,

CoroLLARY 2.8. If @ complex Banach space has the almost 54.1.P., then it
has the almost n3.1.P. for all n.

Proof. It is known (see e. g. [8]) that predual I (1)-spaces have the
almost n3.LP. for all n.

If dim¢A =k, it follows from Helly’s theorem that 4 has the

(2k+2)-(2k +1).LP.- Hustad [5] has proved that I (C) does not bhave the (2k
+1).(2k).LP.

3. Examples. We shall give some examples of spaces with the
(2n)(2n—1).1P. Let L(X, Y) denote the Banach space of bounded linear
operators from the Banach space X to the Banach space Y. Since L(I7, A4)
§(A®.,.®A),; and also L(lj, A) = L(A4*, I") by the map T— T* we
conclude that if dim¢A4 =k, then 4, L(I7, A) and L(A*, It) have the (2k
+2)(2k+1).LP. by Helly’s theorem.

PRroposITION 3.1. Assume dim¢A =k < 0. If X = ! (u) for some measure
# then L(X, A) has the almost (2k+ 2(2k+1).1.P,

The proof is similar to the proof of the next result.

iom®

Intersection properties of balls 43

ProposimionN 3.2, Assume dimgd =k <oo. If X* =D} (u) for some
measure p, then L(A, X) has the almost (2k+2)(2k+ 1).L.P.

Proof. Let T, ..., Ty4,eL(4, X) and let 7y, ..., Py > 0. Assume
2k+2

that any 2k+1 of {B(T,, r,)}2k%? intersect. Let ¢ > 0. Since Y = ). T,(4) is
n=1

a finite-dimensional subspace of X, there is a subspace Z of X such that Z -
= I'5(C) for some m and d(x, Z) <¢l|x|| for all xe Y (see [6]). There is a
norm-one projection Q in X with Q(X) = Z. We get ||7,—QT,|| < ¢ for all n.
Since QT,e L(A, Z) = L(A, I7), it easily follows from the remark preceding

Proposition 3.1 that
2k+2

N B(T,, r,+e) # Q.
n=1

The third example shows that some spaces of continuous functions have
the (2k+2)(2k+1).L.P.

ProPOSITION 3.3. Assume that dim¢A =k < oo and that S is a compact
Hausdorff space. Then C(S, A) has the almost (2k+2)(2k+1).1.P. N

Proof. It is well known that we can identify C(S, A4) with the injectn_fe
tensor product C(S)®A (see [2]). Let & > 0 and let {B(f;, r;)}ZA1? be balls in
C(S, A) such that any 2k+1 intersect. Arguing as in [2, p. 225]3 we find an
open covering {U;}}-; of S, a partition of unity {g;}}-, subordinate to this
covering and points w;eU;, 1<j<n such that if we put h(w)

= i g;(w) fi(w), then [fi(w)—h(w)| <& for each weS and each i It

=1 .
follows that any 2k+1 of the balls {B(h;, r,+£)}2%? intersect.

Let x; = f;(0; € A. We shall identify k; with Y, g;®x; in C(S) ® A. Let

i=1 A

E =span{g,, ..., g,} < C(S). Since E is generated by a partition of unity in

C(S), it follows that E is isometric to I%,. Thus E is the range of a norm-one

projection P in C(S). E®A is a closed subspace of C(§)®A by'Proposmqn

7, p. 225 in [2], and it is the range of the norm-one projection P®I in

C(S)®A. Thus it suffices to show that I, ®A has the (2k+2).(2k+1).1.P. We
have the identifications :

I" @A =K, 4 =L, A) “
and it follows from Proposition 3.1 that I"®A has the (2k+2).(2k+1).1P.

4. The n.k. intersection property. It is known that the n.2.LP. with n > 4
(n.31P. in the complex case) characterizes L -predual spaces. The
requirement that any two balls (any three balls in the complex case) intersect .
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is equivalent to the nonempty intersection of their images under any norm-
one functional. As shown in Theorem 4.2 below, this can be generalized to be
correct also for the n.k.I.P.

THEOREM 4.1. Let {B(a;, 1)}f., be balls in A. The following statements
are equivalent:

(1) f\lB(ai, 1+e) % @ for all ¢>0.
(2) llf E is a real Banach space with dimE < k—1 and T. A— E is a real-
linear operator with ||T|| < 1, then (’i\ B(Ta;, 1) # Q.
Proof. (1) = (2) i.E trivial.. . o
(2) = (1). Assume () B(a;, 1+8) = @ for some ¢ > 0. Then there exists
[7] (x4, ..., X) €D, H"(/‘;‘)II with

k
1< Y x(a).

i=1
Let Ag denote the real restriction of A. Then we have (4g)* = (A4*)g. Let E*
= spang {Rex,, ..., Rex;} in (4p* Then dimE*<k~1. Let T*: E*
— (Ag)* be the identity map. Then we may consider T! Ag— E as a quotient
map. Define z;e E* by T*z = Rex;. Then (z;, ..., z)e H*(E*) ince ||Rex|]|
= ||x}| for all i. Moreover, since for any ae Agq and all i, Rex;(u) = T*z;(«)
= z;(Ta) we get

k

1< i Rex;(a) = ¥, z,(Ta).

i=1 i=1
k
Thus ( B(Ta, 1) =@ in E.
i=1
THEOREM. 4.2. Let n> k = 2. The following statements are equivalent:

(3) A has the almost nkI.P.

(4) Let {B(a;, 1)}i=, be n balls in A. If for every real Banach space E with
dimE < k—1 and every real-linear operator T: A — E with ||T|| <1 we

have (\ B(Ta;, 1) # @, then () B(a, 1+¢)# @ for all &> 0.
) i=1 i=1 ) .
Proof. (3) = (4) follows from (2) = (1) above.

(4) = (3). Assume (3) is false. By the proof of Theorem 4.3 in [10], it
follows that there exist n balls {B(4;, 1)}/ in 4 such that any k intersect,

but _DIB(ai, 1+¢&) = @ for some & > 0. Now use (1)=>(2) above to see that
(4) is false.
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