

On the reflexivity of pairs of isometries and of tensor products of some operator algebras

by

MAREK PTAK (Kraków)

Abstract. In the present paper we prove the reflexivity of a WOT-closed algebra generated by a pair of doubly commuting isometries. Our next result is the reflexivity of the tensor product of the algebra of all analytic Toeplitz operators on H^2 with any reflexive algebra.

1. Introduction and preliminaries. L(K) denotes the algebra of all (linear bounded) operators in a complex separable Hilbert space K. I_K or I stands for the identity in K. By a subspace of K we always mean a closed subspace and by an algebra of operators on K we mean a subalgebra of L(K) with unit I_K . If $\mathscr S$ is subset of L(K), then $\mathfrak A(\mathscr S)$, Lat $\mathscr S$ stand for the WOT (= weak operator topology)-closed algebra generated by $\mathscr S$ and the lattice of all invariant subspaces for $\mathscr S$, respectively. If $T \in L(K)$ then the shorter notation $\mathfrak A(T)$, $\mathfrak A(T,\mathscr S)$, Lat T, Lat T, Lat T will be used instead of T algebra T and operators on T which leave invariant all subspaces from Lat T and algebra T is called reflexive if T and T algebra T is called reflexive if T and T algebra T is reflexive. An operator T is called reflexive if so is T and T is reflexive. An operator T is called reflexive if so is T is reflexive.

Sarason [11] proved that every commutative WOT-closed algebra of normal or Toeplitz operators is reflexive. The reflexivity of an isometry was proved by Deddens [2]. Another proof of this fact was given by Wogen [14]. He also proved that quasinormal operators are reflexive. Then Olin and Thomson [9] proved the reflexivity of subnormal operators.

In this paper we study the reflexivity of a pair (two-element family) of isometries. Deddens', Wogen's and Olin and Thomson's proofs needed a sort of canonical decomposition of an isometry, of a quasinormal and of a subnormal operator respectively. But a Wold-type decomposition which was necessary there need not exist for two commuting isometries [12, Example 1]. Slociński showed [12] that the Wold-type decomposition holds for any pair $\{V_1, V_2\}$ of doubly commuting isometries (i.e. V_1, V_2 commute and V_1, V_2^* commute). Our first main result is:

Theorem 1. Every pair $\{V_1, V_2\}$ of doubly commuting isometries is reflexive.

This problem is connected with the reflexivity of the tensor product of reflexive algebras. There are some partial result concerning this problem in [1], [4], [5], [7], [8]. In this paper we prove another result in this direction. Let \mathscr{A} , \mathscr{B} be WOT-closed algebras of operators on Hilbert spaces K, H, respectively. Then, following [8], $\mathscr{B} \otimes \mathscr{A}$ denotes the WOT-closure in $L(H \otimes K)$ of the algebraic tensor product $\mathscr{B} \otimes \mathscr{A}$ (for the definition of tensor product see [13, Chap. IV]). We denote by H^2 the classical Hardy space on the unit circle and \mathscr{H}^{∞} denotes the collection of all analytic Toeplitz operators on H^2 . Then we can prove

THEOREM 2. For any algebra \mathcal{A}_0 in L(K), $\mathcal{H}^{\infty} \bar{\otimes} \mathcal{A}_0$ is reflexive whenever so is \mathcal{A}_0 .

Now, let us fix a separable Hilbert space K with the inner product (\cdot, \cdot) . If $\mathscr{L} \subset K$ then $[\mathscr{L}]$ denotes the smallest subspace of K containing \mathscr{L} . Let $T \in L(K)$ and let L belong to Lat T. Then $T|_L$ denotes the restriction of T to L. If n is a positive integer, then $K^{(n)}$ denotes the direct sum of n copies of K, $T^{(n)}$ denotes the direct sum of n copies of T acting on $K^{(n)}$. If $\mathscr{T} \subset L(K)$ then we denote $\mathscr{T}^{(n)} = \{T^{(n)}: T \in \mathscr{T}\}$. If $x \in K$ then $C(\mathscr{T}, x)$ denotes the smallest subspace of K containing K and invariant for K. Following [10, Chap. 3] we recall some definitions. A function K from the unit circle K is Lebesgue measurable if, for each $K \in K$, the function $K \in K$ is Lebesgue measurable. K denotes the collection of all measurable functions K from K to K such that K denotes the collection which are equal K-a.e. K denotes the set of functions K is the field of complex numbers K, then K is the field of complex numbers K.

We will also study operator-valued functions. Let $\mathscr{A} \subset L(K)$ be a WOT-closed algebra. A function F from C into \mathscr{A} is said to be *measurable* if, for every $x \in K$, the K-valued function $z \to F(z)x$ is measurable. For such an F, let $||F||_{\infty}$ denote the essential supremum of ||F(z)|| on C, i.e. $||F|||_{\infty} = \inf \{ \sup \{||F(z)|| : z \in \sigma\} : \sigma \text{ is a Borel subset of } C, m(C - \sigma) = 0 \}$. $L^{\infty}(\mathscr{A})$ denotes the collection of all measurable functions F from C to \mathscr{A} such that $||F||_{\infty}$ is finite (we identify functions equal m-a.e.).

We can treat elements of $L^{\infty}(\mathscr{A})$ as operators in $L(L^{2}(K))$ as follows. Let $F \in L^{\infty}(\mathscr{A})$ and $f \in L^{2}(K)$. Then Ff is the function in $L^{2}(K)$ such that (Ff)z = F(z) f(z). Since $||F||_{\infty}$ is finite, F is bounded as an operator on $L^{2}(K)$. $H^{\infty}(\mathscr{A})$ denotes the set of all elements $F \in L^{\infty}(\mathscr{A})$ such that $F(H^{2}(K)) \subset H^{2}(K)$; such F can be treated as operators on $H^{2}(K)$ and $H^{\infty}(\mathscr{A})$ is the collection of all such operators F on $H^{2}(K)$.

The unilateral shift (shortly, shift) in $H^2(K)$ will play the main role in

this paper. Let us recall that the *shift* in $H^2(K)$ is defined as (Sf)z = zf(z) for $f \in H^2(K)$. In what follows S will always denote such a shift.

2. Properties C and C_{∞} . A subset \mathscr{T}_0 of L(K) has property C if, for each positive integer n and each y in $K^{(n)}$, there is $x \in K$ and a unitary operator $U: C(\mathscr{F}_0^{(n)}, y) \to C(\mathscr{F}_0, x)$ such that

$$UT^{(n)}|_{C(\mathcal{F}_0^{(n)},y)}U^* = T|_{C(\mathcal{F}_0,x)}$$

for every T in \mathcal{F}_0 . Property C was introduced by Wogen [14]. He applied it to prove the reflexivity of an isometry. But we will also need another property. Let $\mathcal{F}_0 \subset L(K)$. If $T_0 \in \mathcal{F}_0$ then T denotes the element of $H^\infty(L(K))$ defined by $T(z) = T_0$ for z in C. Put $\mathcal{F} = \{T: T_0 \in \mathcal{F}_0\}$. We will say that \mathcal{F}_0 has property C_∞ if for each f in $H^2(K)$ there is x in K and a unitary operator $U: C(\mathcal{F}, f) \to C(\mathcal{F}_0, x)$ such that

$$UT|_{C(\mathcal{F},f)}U^* = T_0|_{C(\mathcal{F}_0,x)}$$

for every T_0 in \mathcal{F}_0 .

It is clear that property C_{∞} implies property C and that \mathcal{F}_0 contained in L(K) has property C (or C_{∞}) if and only if $\mathfrak{A}(\mathcal{F}_0)$ does. Now, we have Remark 3. (1) Each algebra of normal operators has property C_{∞} .

(2) Each shift of arbitrary multiplicity has property C_{∞} .

The proof that any algebra of normal operators has property C is essentially contained in the proof of the reflexivity of such an algebra [10, Theorem 9.21]. Taking $H^2(K)$ instead of $K^{(n)}$ and following the idea of the above-mentioned proof, we get property C_{∞} for an algebra of normal operators. (2) is easy to see because a shift of arbitrary multiplicity restricted to its cyclic invariant subspace is unitarily equivalent to the shift of multiplicity 1 [10, Theorem 3.33].

The following proposition will be needed:

PROPOSITION 4. Let S be the shift on $H^2(K)$ and $T_0 \in L(K)$. T denotes the element of $H^{\infty}(L(K))$ defined by $T(z) = T_0$ for z in C. If T_0 has property C_{∞} then $\{T, S\}$ has property C.

Wogen [14, proof of Lemma 2] proved Proposition 4 when T_0 was a normal operator. If T_0 has only property C_∞ Wogen's proof also applies with small modifications (we first apply property C_∞ and next property C which results from property C_∞). Theorem 1 in [14] can be generalized to

THEOREM 5. Let $\mathcal{T}=\{T_i\}$ $(i\in I)$ be a set of operators in a separable Hilbert space K_1 and let $\mathcal{R}=\{R_i\}$ $(i\in I)$ be a set of operators in a separable Hilbert space K_2 . $\mathcal{T}\oplus\mathcal{R}$ denotes the collection of all operators $T_i\oplus R_i$ on $K_1\oplus K_2$ for $i\in I$. If the algebras $\mathfrak{U}(\mathcal{T})$, $\mathfrak{U}(\mathcal{R})$ are reflexive and have property C then $\mathfrak{U}(\mathcal{T}\oplus\mathcal{R})$ is reflexive and has property C.

The proof can be done in the same way as the proof of Theorem 1 in [14].

3. Reflexivity of $\mathscr{H}^{\infty} \bar{\otimes} \mathscr{A}_0$. The unitary isomorphism between $H^2 \otimes K$ and $H^2(K)$ is well known. Hence, operators on $H^2 \otimes K$ correspond unitarily to operators on $H^2(K)$. In particular, if $\varphi \in \mathscr{H}^{\infty}$ and $A \in L(K)$ then $\varphi \otimes A$ corresponds to the operator-valued function $\varphi(\cdot)A$ acting as an operator on $H^2(K)$ as follows: $(\varphi(\cdot)Af)(z) = \varphi(z)Af(z)$ for each $f \in H^2(K)$. For the sake of convenience, we will study operator-valued functions instead of tensor products.

Let us fix for this section a WOT-closed algebra \mathscr{A}_0 in L(K). Then \mathscr{A} denotes the collection of all $A \in H^{\infty}(L(K))$ such that there is $A_0 \in \mathscr{A}_0$ with $A(z) = A_0$ for almost all z. It easy to see that $\mathscr{H}^{\infty} \bar{\otimes} \mathscr{A}_0$ regarded as an algebra of operators on $H^2 \otimes K$ corresponds unitarily to $\mathfrak{A}(S, \mathscr{A})$ as an algebra on $H^2(K)$. Thus Theorem 2 becomes

THEOREM 2'. If \mathscr{A}_0 is reflexive then $\mathfrak{A}(S, \mathscr{A})$ is reflexive.

Proof. Suppose that $B \in L(H^2(K))$ and $Lat(S, \mathscr{A}) \subset Lat B$. Let \mathscr{A}^* denote the set $\{A_0^* \colon A_0 \in \mathscr{A}_0\}$ and let \mathscr{A}^* denote the set $\{A^* \colon A \in \mathscr{A}\}$. Then $Lat(S^*, \mathscr{A}^*) \subset Lat B^*$. For a complex number a of modulus less than 1, we define the function h_a on C as follows: $h_a(z) = (1-az)^{-1}$ for $z \in C$. The function h_a is an eigenvector of the adjoint of the shift of multiplicity 1 on H^2 corresponding to the eigenvalue a. Let $L \in Lat \mathscr{A}^*$ and let $x \in L$. Thus the function $z \to h_a(z)x$, shortly denoted by $h_a x$, is an eigenvector of S^* with the same eigenvalue a. Thus $h_a L$ is invariant for S^* . Let $A^* \in \mathscr{A}^*$. Then

$$(A^*(h_a x))(z) = A_0^* h_a(z) x = h_a(z) A_0^* x = (h_a y)(z)$$

where $y \in L$, because $L \in \text{Lat } \mathcal{A}_0^*$. Thus $h_a L$ is invariant for each element of \mathcal{A}_0^* . Hence, $h_a L$ is invariant for B^* . Let $x \in K$ and let a be as above. Then there is $y \in K$ such that $B^*(h_a x) = h_a y$. Thus

$$B^* S^*(h_a x) = B^*(ah_a x) = aB^*(h_a x) = ah_a y = S^*(h_a y) = S^* B^*(h_a x)$$

The set $\{h_a x \colon x \in K, |a| < 1\}$ is linear dense in $H^2(K)$ because $\{h_a \colon |a| < 1\}$ is linear dense in H^2 . Thus B^* commutes with S^* , i. e. B commutes with S. Hence, $B \in H^{\infty}(L(K))$ [10, Corollary 3.20].

Now, we prove that $B \in H^{\infty}(\mathcal{A}_0)$. Let $L \in \text{Lat } \mathcal{A}_0$. Then $H^2(L) \in \text{Lat } (S, \mathcal{A}) \subset \text{Lat } B$. Let $x \in L$ and let \tilde{x} denote the function in $H^2(L)$ defined by $\tilde{x}(z) = x$ for all $z \in C$. Thus $B\tilde{x} \in H^2(L)$, so $L \ni (B\tilde{x})(z) = B(z)\tilde{x}(z) = B(z)x$ for almost all $z \in C$. Hence, Lat $\mathcal{A}_0 \subset \text{Lat } B(z)$ for almost all $z \in C$. Since \mathcal{A}_0 is reflexive, $B(z) \in \mathcal{A}_0$ for almost all $z \in C$. Hence, B is an element of $H^{\infty}(\mathcal{A}_0)$. The following crucial lemma will finish the proof of Theorem 2'. It is separated from the whole proof, because it may be of independent interest.

LEMMA 6. If \mathscr{A}_0 is reflexive then $\mathfrak{A}(S, \mathscr{A}) = H^{\infty}(\mathscr{A}_0)$.

Proof. Since $\{S\} \cup \mathscr{A}$ is contained in $H^{\infty}(\mathscr{A}_0)$, to prove the inclusion

 \subset it is enough to show that $H^{\infty}(\mathscr{A}_0)$ is WOT-closed. Let A be a WOT-limit of a sequence of elements of $H^{\infty}(\mathscr{A}_0)$. It is obvious that A is a measurable operator-valued function. $A \in L^{\infty}(L(K))$ because ||A|| as norm of an operator is equal to $||A||_{\infty}$ [3, Chap. II, § 2, Proposition 2]. It is easy to see that $A \in H^{\infty}(L(K))$. Now $A \in H^{\infty}(\mathscr{A}_0)$ because \mathscr{A}_0 is WOT-closed.

The important part of the proof is the proof of the inclusion \supset . For the sake of convenience, we will study vector-valued or operator-valued functions defined on the interval $[-\pi, \pi]$ instead of C. Let B be an element of $H^{\infty}(\mathscr{A}_0)$ and let k be an integer. If $x, y \in K$ then

$$\left| (2\pi)^{-1} \int_{-\pi}^{\pi} \left(B(t) x, y \right) e^{-ikt} dt \right| \le ||B||_{\infty} ||x|| \, ||y||.$$

Hence, the function $(x, y) \to (2\pi)^{-1} \int_{-\pi}^{\pi} (B(t)x, y) e^{-ikt} dt$ is a bounded sesquilinear form on K. By [13, Chap. II, Theorem 1.3], there is a bounded operator B_k on K such that

$$(B_k x, y) = (2\pi)^{-1} \int_{-\pi}^{\pi} (B(t) x, y) e^{-ikt} dt.$$

 $H^2(K)$ is invariant for B, so it is easy to see that $B_k = 0$ for k = -1, -2, ...Now, we prove that $B_k \in \mathscr{A}_0$ for all integers k. Let $L \in \text{Lat } \mathscr{A}_0$ and $x \in L$, $y \in L^{\perp}$ (the orthogonal complement of L in K). Then (B(t)x, y) = 0 for almost all t, thus $(B_k x, y) = 0$. This means that $B_k x \in L$. Hence L is invariant for B_k . Since \mathscr{A}_0 is reflexive, $B_k \in \mathscr{A}_0$.

Let us denote

$$\widetilde{\sigma}_n = \sum_{k=0}^n B_k S^k = \sum_{k=-n}^n B_k S^k, \quad n = 1, 2, ...,$$

$$\sigma_n = n^{-1} (\widetilde{\sigma}_0 + ... + \widetilde{\sigma}_{n-1}).$$

If k_n denotes the *n*th Fejér's kernel [6, Chap. II] then as in [6, Chap. II] we can prove that

(*)
$$(\sigma_n(s) x, y) = (2\pi)^{-1} \int_{-\pi}^{\pi} (B(t) x, y) k_n(s-t) dt$$
$$= (2\pi)^{-1} \int_{-\pi}^{\pi} (B(s-t) x, y) k_n(t) dt$$

for all $x, y \in K$, $s \in [-\pi, \pi]$ and n = 1, 2, ... In the second integral **B** is periodically extended to the function on the real line.

To finish our proof, it is enough to show that σ_n converges to B in WOT. Let $f, g \in H^2(K)$. We can periodically extend f, g to the whole real line and define for real t the functions $f_t, g_t \in H^2(K)$ as follows:

 $f_t(s) = f(s+t)$, $g_t(s) = g(s+t)$ for $s \in [-\pi, \pi]$. We also define the functions $B_t \in H^{\infty}(\mathscr{A}_0)$ for real t by $B_t(s) = B(s-t)$ for $s \in [-\pi, \pi]$. Our first step is to show that $(B_t, f, g) \to (Bf, g)$ as $t \to 0$. It is easy to prove that $(B_t, f, g) = (Bf_t, g_t)$. Hence, we have

$$\begin{aligned} |(B_t f, g) - (Bf, g)| &= |(Bf_t, g_t) - (Bf, g)| \\ &\leq |(Bf_t, g_t) - (Bf_t, g)| + |(Bf_t, g) - (Bf, g)| \\ &\leq |(Bf_t, g_t - g)| + |(B(f_t - f), g)| \\ &\leq ||B||_{\infty} ||f_t|| ||g_t - g|| + ||B||_{\infty} ||f_t - f|| ||g||. \end{aligned}$$

Because ||f|| = ||f|| and $f_t o f$, $g_t o g$ as t o 0 the desired result is proved. The equality (*) is satisfied for all $x, y \in K$, in particular for the vectors f(s), g(s). Now, using the inner product in K we can carry out the estimation in the same way as in [6, Chap. II, p. 19]. For all $\delta > 0$ we get the inequality

$$\begin{aligned} |(\sigma_{n} f, g) - (Bf, g)| &\leq \sup_{|t| < \delta} |(2\pi)^{-1} \int_{-\pi}^{\pi} ((B(s-t) - B(s)) f(s), g(s)) ds| \\ &+ \sup_{|t| \ge \delta} k_{n}(t) \cdot 2 ||B||_{\infty} ||f|| ||g|| \\ &= \sup_{|t| < \delta} |((B_{t} - B) f, g)| + 2 ||B||_{\infty} ||f|| ||g|| \sup_{|t| \ge \delta} k_{n}(t). \end{aligned}$$

 $(B_t f, g)$ converges to (Bf, g) as $t \to 0$ and $\sup_{|t| \ge \delta} k_n(t)$ converges to 0 as $n \to \infty$ as the Fejér's kernel. Hence $\sigma_n \to B$ as $n \to \infty$ in WOT.

Hadwin and Nordgren [5] called an operator algebra super-reflexive if every its WOT-closed subalgebra is reflexive. From the previous results we get immediately:

Proposition 7. If $\mathcal{A}_0 \subset L(K)$ is reflexive and has property C_∞ then $\mathscr{H}^\infty \bar{\otimes} \mathcal{A}_0$ is super-reflexive.

Proof. The algebra $\mathscr{H}^{\infty} \bar{\otimes} \mathscr{A}_0$ is reflexive by Theorem 2 and has property C by Proposition 4. Thus, by Proposition 2.5 in [5], $\mathscr{H}^{\infty} \bar{\otimes} \mathscr{A}_0$ is super-reflexive.

Proposition 7 and Remark 3 imply immediately the following

COROLLARY 8. (1) The algebra $\mathcal{H}^{\infty} \bar{\otimes} \mathcal{H}^{\infty}$ is super-reflexive.

- (2) If \mathcal{A}_0 is an algebra of normal operators, then $\mathcal{H}^\infty \bar{\otimes} \mathcal{A}_0$ is super-reflexive.
- (3) If $\mathscr{A} \subset L(K)$ is an algebra of normal operators then the algebra $\mathscr{H}^{\infty} \otimes L^{\infty}(\mathscr{A})$ is super-reflexive as an algebra of operators on $H^2 \otimes L^2(K)$.
 - (3) was also proved in [5].
- 4. Reflexivity of a pair of isometries. Before we present the proof of Theorem 1, we show the following proposition concerning "acting in orthogonal directions" which will be useful.

PROPOSITION 9. Let U be a normal operator in $L(H^2(K))$ which commutes with the shift S on $H^2(K)$. Then $U \in H^\infty(L(K))$ and there is a normal operator $U_0 \in L(K)$ such that $U(z) = U_0$ for almost all z in C.

Proof. By Corollary 3.20 in [10], $U \in H^{\infty}(L(K))$ and U(z) is normal for almost every z by Theorem 3.17 from [10]. For each $x \in K$ we define the function $\tilde{x} \in H^2(K)$ putting $\tilde{x}(z) = x$ for all z in C. Now, we prove that

(**) for each x in K, there is yo in K such that

$$U\tilde{x}=\tilde{y}_0.$$

Let $x \in K$. Then there is $y_0 \in K$ and $f \in H^2(K)$ such that $U\widetilde{x} = \widetilde{y}_0 + Sf$. Thus $U\widetilde{x} - \widetilde{y}_0 = Sf$. Hence

$$S^*(U\tilde{x} - \tilde{y}_0) = S^*Sf = f.$$

By Putnam's theorem [10, Corollary 1.19]

$$f = US^* \tilde{x} - S^* \tilde{y}_0 = 0.$$

Thus (**) is fulfilled.

For $x, y \in K$ and nonnegative integers n, m we denote by \widetilde{x}_n , \widetilde{y}_m the functions defined as follows: $\widetilde{x}_n(z) = z^n x$ and $\widetilde{y}_m(z) = z^m y$. Since (**) is fulfilled, if $m \neq n$ we have

$$(U\widetilde{x}_n, \widetilde{y}_m) = (US^n \widetilde{x}, S^m \widetilde{y}) = (S^n U\widetilde{x}, S^m \widetilde{y}) = 0.$$

It is obvious that the function $(x, y) \to (U\widetilde{x}, \widetilde{y})$ is a bounded sesquilinear form on K. By Theorem 1.3 in [13, Chap. II], there is an operator U_0 on K such that $(U_0x, y) = (U\widetilde{x}, \widetilde{y})$ for all $x, y \in K$. \widetilde{U}_0 denotes the operator in $H^\infty(L(K))$ defined by $\widetilde{U}_0(z) = U_0$ for all z. To complete the proof, the equality $(\widetilde{U}_0f, g) = (Uf, g)$ for $f, g \in H^2(K)$ is needed. Because \widetilde{U}_0 , U are bounded, it is enough to show that $(\widetilde{U}_0\widetilde{x}_n,\widetilde{y}_m) = (U\widetilde{x}_n,\widetilde{y}_m)$ for all x, y in K and for all nonnegative integers n, m. Let $x, y \in K$. If $m \neq n$ then $(U\widetilde{x}_n,\widetilde{y}_m) = 0$ and

$$(\tilde{U}_0 \, \tilde{x}_n, \, \tilde{y}_m) = \int (U_0 \, x z^n, \, y z^m) \, dm = (U_0 \, x, \, y) \int z^n z^{-m} \, dm = 0.$$

If m = n then

$$(U\widetilde{x}_n, \widetilde{y}_m) = (U\widetilde{x}_n, \widetilde{y}_n) = \int (U(z)xz^n, yz^n) dm$$

$$= \int (U(z)x, y) dm = (U\widetilde{x}, \widetilde{y})$$

$$= (U_0x, y) = (U_0x, y) \int z^n z^{-n} dm$$

$$= \int (U_0xz^n, yz^n) dm = (\widetilde{U}_0\widetilde{x}_n, \widetilde{y}_m).$$

Hence, the above necessary equality is proved.

A result like Proposition 9 concerning "acting in orthogonal directions" for two doubly commuting shifts was proved by Słociński [12, Theorem 1].

Proof of Theorem 1. Let V_1 , V_2 be two doubly commuting isometries on a separable Hilbert space H. By a result of Słociński [12, Theorem 3], there exist subspaces H_{uu} , H_{us} , H_{su} , H_{ss} such that:

 $H = H_{uu} \oplus H_{us} \oplus H_{su} \oplus H_{ss}$

 H_{nu} , H_{us} , H_{su} , H_{ss} reduce V_1 and V_2 ,

 $V_1|_{H_{uu}}$ and $V_2|_{H_{uu}}$ are unitary operators,

 $V_1|_{H_{\text{ns}}}$ is unitary and $V_2|_{H_{\text{ns}}}$ is a shift,

 $V_1|_{H_{em}}$ is a shift and $V_2|_{H_{em}}$ is unitary,

 $V_1|_{H_{ss}}$ and $V_2|_{H_{ss}}$ are shifts.

This decomposition will be called the Slociński decomposition.

The pair $\{V_1|_{H_{uu}}, V_2|_{H_{uu}}\}$ is reflexive and has property C as a pair of commuting normal operators [10, Theorem 9.21]. The pair $\{V_1|_{H_{us}}, V_2|_{H_{us}}\}$ is reflexive by Proposition 9 and Theorem 2' and has property C by Remark 3 (1) and Proposition 4. The pair $\{V_1|_{H_{su}}, V_2|_{H_{su}}\}$ is reflexive and has property C by the same reason. $V_1|_{H_{ss}}, V_2|_{H_{su}}$ are doubly commuting shifts. Thus, they act in "orthogonal directions" by [12, Theorem 1]. This means that H_{ss} is unitarily isomorphic to $H^2(H^2(K))$. Then $V_1|_{H_{ss}}$ corresponds to the shift S in $H^2(H^2(K))$ and $V_2|_{H_{ss}}$ corresponds to the operator T defined by $T(z) = T_0$ for all z in C, where T_0 is a shift on $H^2(K)$. Hence, this pair is reflexive by Theorem 2' and has property C by Remark 3 (2) and Proposition 4. Now, we apply Theorem 5 and we get the reflexivity of the pair $\{V_1, V_2\}$.

Let $\{V_1, V_2\}$ be a pair of (not necessarily doubly) commuting isometries and suppose it has the above Słociński decomposition (which need not exist in general [12, Example 1]). Putnam's theorem [10, Corollary 1.19] shows that the double commutativity of parts of V_1 , V_2 can fail only on $H_{\rm ss}$. Hence, the following theorem can be deduced by the same techniques as in the proof of Theorem 1.

THEOREM 10. Let $\{V_1, V_2\}$ be a pair of commuting isometries which has the Slociński decomposition. If the pair $\{V_1|_{H_{ss}}, V_2|_{H_{ss}}\}$ is reflexive and has property C, then the pair $\{V_1, V_2\}$ is reflexive and has property C.

We end up with the following example. Let $\{V_1, V_2\}$ be a pair of isometries having the Słociński decomposition and $H_{ss} = H^2$, $V_1|_{H_{ss}}$ is the shift on H^2 , i.e. $(V_1|_{H_{ss}}f)z = zf(z)$ for all f in H^2 , $V_2|_{H_{ss}}$ is the Toeplitz operator of multiplication by $\varphi \in H^{\infty}$, i.e. $(V_2|_{H_{ss}}f)z = \varphi(z)f(z)$, but φ is not a constant function. Then V_1 , V_2 commute, but do not doubly commute. The pair $\{V_1|_{H_{ss}}, V_2|_{H_{ss}}\}$ is reflexive and has property C. Hence, the pair $\{V_1, V_2\}$ is reflexive by Theorem 10.

References

- E. A. Azoff, C. K. Fong and F. Gilfeather, A reduction theory for non-self-adjoint operator algebras, Trans. Amer. Math. Soc. 224 (1976), 351-366.
- [2] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512.
- [3] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, 2ième éd., Gauthier-Villars, Paris 1969.
- [4] F. Gilfeather, A. Hopenwasser and D. Larson, Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbation, preprint.
- [5] D. Hadwin and E. A. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), 3-23.
- [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs 1962.
- [7] A. Hopenwasser and J. Kraus, Tensor products of reflexive algebras II, preprint.
- [8] J. Kraus, Tensor products of reflexive operator algebras, preprint.
- [9] R. Olin and J. Thomson, Algebras of subnormal operators, J. Funct. Anal. 37 (1980), 271-301.
- [10] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York-Heidelberg-Berlin 1973.
- [11] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517.
- [12] M. Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262.
- [13] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New-York-Heidelberg-Berlin 1979.
- [14] W. R. Wogen, Quasinormal operators are reflexive, Bull. London Math. Soc. (2) 31 (1979), 19-22.

Received September 21, 1984

KATEDRA ZASTOSOWAŃ MATEMATYKI AKADEMII ROLNICZEJ CHAIR OF APPLIED MATHEMATICS, ACADEMY OF AGRICULTURE

Al. 29 Listopada 46, 31-425 Kraków, Poland

.

(1999)