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On the reflexivity of pairs of isometries and
of tensor products of some operator algebras

by
MAREK PTAK (Krakéw)

Abstract. In the present paper we prove the reflexivity of a WOT-closed algebra generated
by a pair of doubly commuting isometries. Our next result is the reflexivity of the tensor
product of the algebra of all analytic Toeplitz operators on H? with any reflexive algebra.

1. Introduction and preliminaries. L(K) denotes the algebra of all (linear
bounded) operators in a complex separable Hilbert space K. I or I stands
for the identity in K. By a subspace of K we always mean a closed subspace
and by an algebra of operators on K we mean a subalgebra of L(K) with
upit Ix. If & is subset of L(K), then A(¥), Lat & stand for the WOT
(= weak operator topology)-closed algebra generated by & and the lattice of
all invariant subspaces for &, respectively. If T'e L(K) then the shorter
notation A(T), A(T, &), Lat T, Lat(T, &) will be used instead of W({T}),
AT} U &), Lat {T}, Lat({T} v #). AlgLat & stands for the algebra of all
operators on K which leave invariant all subspaces from Lat &. An algebra
o is called reflexive if of = AlgLat o/. A family & < L(K) is called reflexive

* if the algebra (%) is reflexive. An operator Te L(K) is called reflexive if so
is & ={T}. :

Sarason [11] proved that every commutative WOT-closed algebra of
normal or Toeplitz operators is reflexive. The reflexivity of an isometry was
proved by Deddens [2]. Another proof of this fact was given by Wogen [14].
He also proved that quasinormal operators are reflexive. Then Olin and
Thomson [97 proved the reflexivity of subnormal operators.

In this paper we study the reflexivity of a pair (two-element family) of
isometries. Deddens’, Wogen’s and Olin and Thomson’s proofs needed a sort
of canonical decomposition of an isometry, of a quasinormal and of a
subnormal operator respectively. But a Wold-type decomposition which was
necessary there need not exist for two commuting isometries [12, Example
1]. Stocinski showed [12] that the Wold-type decomposition holds for any
pair {V;, V,} of doubly commuting isometries (ie. V;, V, commute and V;, V3*
commute). Our first main result is:
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TueoreM 1. Ewvery pair {Vi, Vo} of doubly commuting isometries is
reflexive.

This problem is connected with the reflexivity of the tensor product of
reflexive algebras. There are some partial result concerning this problem in
[17, [41, [5], [7], [8]. In this paper we prove another result in this direction.
Let 7, # be WOT-closed algebras of operators on Hilbert spaces K, H,
respectively. Then, following [8], #®. denotes the WOT-closure in
L(H®K) of the algebraic tensor product #®.« (for the definition of tensor
product see [13, Chap. 1V]), We denote by H? the classical Hardy space on
the unit circle and .#* denotes the collection of all analytic Toeplitz
operators on H2 Then we can prove

THEOREM 2. For any algebra o7y in L(K), # *&./q is reflexive whenever
S0 is .o/,

Now, let us fix a separable Hilbert space K with the inner product (-, *).
If % < K then [&] denotes the smallest subspace of K containing .. Let
Te L(K) and let L belong to Lat T. Then T, denotes the restriction of T to
L. If n is a positive integer, then K denotes the direct sum of n copies of K,
T™ denotes the direct sum of n copies of T acting on K™, If 7 = L(K) then
we denote ™ = {T™: Te}. If xeK then C(7, x) denotes the smallest
subspace of K containing x and invariant for 7. Following [10, Chap. 3] we
recall some definitions. A function f from the unit circle C into K will be
called measurable if, for each xe K, the function z— (f(z), x) is Lebesgue
measurable. I?(K) denotes the collection of all measurable functions f from
C to K such that [||f(2)*dm < co, where m is the normalized Lebesgue
measure on C. We identify functions which are equal m-a.e. H?(K) denotes
the set of functions fe?(K) such that [(f(z), x)z"dm = 0 for all xeK and
nz1. If K is the field of complex numbers C, then H?(C) equals H?,

We will also study operator-valued functions. Let & < L(K) be a WOT-
closed algebra. A function F from C into o is said to be measurable if, for
every xeK; the K-valued function z — F(z) x is measurable. For such an F,
let- ||F||,, denote the essential supremum of |F(z)] on C, ie. |[Fll,
=inf{sup {||[F(2)]l: zeo}: o is a Borel subset of C, m(C—o) =0} L*()
denotes the collection of all- measurable functions F from C to .o/ such that
[IFl|,, is finite (we identify functions equal m-a.e.). .

We can treat elements of L*(.+/) as operators in L(I? (K)) as follows. Le
FeL(«) and feI*(K). Then Ff is the function in I*(K) such that (Ff)z
= F(z) f(2). Since ||F||,, is finite, F is bounded as an operator on I?(K).
H®(sf) denotes the set of all -elements Fel®(a) such that
F(H?*(K)) = H*(K); such'F can be treated as operators on H2(K) and
H%(s#) is the collection of all such operators F on H?(K).

The unilateral shift (shortly, shift) in H?(K) will play the main role in
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this paper. Let us recall that the shift in H*(K) is defined as (Sf)z = zf (z) for

feH?(K). In what follows § will always denote such a shift.

2. Properties C and C_,. A subset 7, of L(K) has property C if, for each
positive integer n and each y in K™, there is xe K and a unitary operator
U: C(TY, y)— C(T o, X) such that

U’T(")IC(!"%‘)J) U* = Tlowr g0

for every T in 7. Property C was introduced by Wogen [14]. He applied it
to prove the reflexivity of an isometry. But we will also need another
property. Let 7o < L(K). If ToeT, then T denotes the element gf
H*(L(K)) defined by T(z) =To for zin C. Put 7 = {T quﬂ"o}. We will
say that 7 has property C, if for each f in H?(K) there is x in K and a
unitary operator U: C(7,f)— C(J o, X} such that

UTleir,n U* = Blewom

for every T, in 7. .
It is clear that property C,, implies property C am_i that J, contained
in L(K) has property C (or C) if and only if (T ,) does. Now, we have

Remark 3. (1) Each algebra of normal operators has property Cg.

(2) Each shift of arbitrary multiplicity has property C. _

The proof that any algebra of normal operators has property C is
essentially contained in the proof of the reflexivity of su_ch an a}gebra [10,
Theorem 9.21]. Taking H?(K) instead of K and following the idea of the
above-mentioned proof, we get property Cg for an algfebfal of no.rmal
operators. (2) is easy to see because a shift of arbitrgry multiplicity rest}rlcted
to its cyclic invariant subspace is unitarily equivalent to the shift of
multiplicity 1 [10, Theorem 3.33].

The following proposition will be needed:

ProposrTioN 4. Let S be the shift on H*(K) and Toe L(K). T denotes the
element of H®(L(K)) defined by T(z) = Ty for z in C. If Ty has property C,
then {T, S} has property C. N

Wogen ‘[14, proof of Lemma 2] proved Propémt}on 4 when T, was
a normal operator. If T has only property C,, Wogen's proof also applies
with small modifications (we first apply property Ci, and next property C
which results from property C,). Tl?eorem 1 in [14] can be generalized to

THeoREM 5. Let 7 ={T;} (iel) be a set of operators ir'l a separable
Hilbert space K, and let & = {R;} (iel) be a set of operators in a separable
Hilbert space K,. T @R denotes the collection of all‘opera‘tors T®R; on
K, @K, for icl. If the algebras U(T), A(A) are reflexive and have property
C then W(T ®A) is reflexive and has property C.
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The proof can be done in the same way as the proof of Theorem 1 in

[14].

3. Reflexivity of #'*®s/,. The unitary isomorphism between H?®K
and H? (K) is well known. Hence, operators on H*®K correspond unitarily
to operators on H?(K). In particular, if pe#*® and Ae L(K) then PRA
corresponds to the operator-valued function (') A acting as an operator on
H*(K) as follows: (¢ () Af)(z) = ¢(2) Af (2) for each feH?(K). For the sake
of convenience, we will study operator-valued functions instead of tensor
products.

Let us fix for this section a WOT-closed algebra .o/, in L(K). Then .o/
denotes the collection of all Ae H*(L(K)) such that there is Aye s, with

A(z) = A, for almost all z. It easy to see that #*®.«#, regarded as an
algebra of operators on H*®K corresponds unitarily to A(S, of) as an
algebra on H?(K). Thus Theorem 2 becomes

THEOREM 2. If o, is reflexive then W(S, of) is reflexive.

Proof. Suppose that Be L(H?(K)) and Lat(S, &) < LatB. Let .of%
denote the set {A3: Aoeo/,} and let o/* denote the set {A*: Ae o} Then
Lat (S*, &/*) < Lat B*. For a complex number a of modulus less than 1, we
define the function h, on C as follows: h,(z) = (1—az)"! for zeC. The
function k, is an eigenvector of the adjoint of the shift of multiplicity 1 on
H? corresponding to the eigenvalue a. Let Le Lat s7* and let xe L. Thus the
function z — h,(z) x, shortly denoted by h,x, is an eigenvector of S* with the
same eigenvalue a. Thus h,L is invariant for $*. Let 4*e.o7* Then

(4* (ha ))(2) = A by (2) x = hy(2) A% x = (h, ) (2)

where yeL, because LeLato/¥. Thus A, Lis invariant for each element of
A§. Hence, h,Lis invariant for B*. Let xcK and let a be as above. Then
there is ye K such that B*(h,x) = h,y. Thus

B* §*(hyx) = B*(ah, x) = aB* (h,x) = ah, y = §* (h,y) = §* B¥(h,x).

The set {h,x: xeK, |a| <1} is linear dense in H?(K) because {h: la) <1} is
linear dense in H2 Thus B* commutes with 8* i.e. B commutes with S.
Hence, Be H*(L(K)) [10, Corollary 3.20].

Now, we prove that BeH®(«,). Let LeLat #o. Then
H?(L)e Lat(S, o) = LatB. Let xe L and let % denote the function in H*(L)
defined by %(z) = x for all ze C. Thus BXe H2(L), so La(BR)(z) = B(2)X(2)
= B(z)x for almost all ze C. Hence, Lat o/, < Lat B (2) for almost all zeC.
Since .« is reflexive, B(z)e o/, for almost all z¢ C. Hence, B is an element of
{:{ ® (). The following crucial lemma will finish the proof of Theorem 2'. It
is separated from the whole proof, because it may be of independent interest.

Lemma 6. If o, is reflexive then A(S, of) = H (A o)

Proof. Since {S} U s/ is contained in H “(s4,), to prove the inclusion
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c it is enough to show that H®(e/,) is WOT-closed. Let 4 be a WOT-limit
of a sequence of elements of H® (7). It is obvious that 4 is a measurable
operator-valued function. Ae [® (L(K)) because ||4]| ‘as norm of an operator
is equal to ||4||, [3, Chap. II, § 2, Proposition 2]. It is easy to see that
AeH®(L(K)). Now AeH®(s/,) because o/, is WOT-closed.

The important part of the proof is the proof of the inclusion =. For the
sake of convenience, we will study vector-valued or operator-valued functions
defined on the interval [—mn, n] instead of C. Let B be an element of
H®(of,) and let k be an integer. If x,yeK then

n

[2m)~* [ (B(®)x, y)e™™dt| < 1Bl lIxll 1¥1]-

Hence, the function (x,y)—(2m)~' [(B()x,y)e”™dt is a bounded

sesquilinear form on K. By [13, Chap. II, Theorem 1.3], there is a bounded
operator B, on K such that

(Bix, y) = (271:)*1 } (B(t)x, y)e“”"dt.

H?*(K) is invariant for B, so it is easy to see that B, =0 for k= —1, -2, ...

Now, we prove that B, € .o/, for all integers k. Let Le Lat.«/y and xe L,
ye I* (the orthogonal complement of L in K). Then (B(r)x, y) = 0 for almost
all ¢, thus (B, x, y) = 0. This means that B, xe L. Hence L is invariant for B,.
Since o7, is reflexive, B,e ;.

Let us denote

&=Y BS= Y BS, n=12..,
k=0

k=-n
6, =n" (Gt ... +Fp1)-
If k, denotes the nth Fejér's kernel [6, Chap. II] then as in [6, Chap. II] we
can prove that

®) (02(5)%, ) = @) [ (Bt)x, v)kyls—1)dr

=(2m)~" [ (Bs—1)x, y)k,(r)dt
for all x, yekK, se[—n,n] and n=1,2,... In the second integral B is
periodically extended to the function on the real line.
To finish our proof, it is enough to show that o, converges to B
in WOT. Let f, ge H*(K). We can periodically extend f, g to the whole
real line and define for real t the functions f, geH*(K) as follows:
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£i(8) = f(s+1), g,(s) =g(s+1) for se[—n, n]. We also define the functions
B,e H®(</ ) for real ¢ by B,(s) = B(s—t) for se[—m=, n]. Our first step is to
show that (B, f, g)—(Bf,g) as t—0. It is easy to prove that (B,f, g)
= (Bf;, g,). Hence, we have
(B, /. 9)—(Bf, g)l = |(Bf,, g;)—(BY, g)i

< (Bfi, 9)—(Bfes g)l +1(Bf;» 9)— (B, )l

< [(Bf:» 9= ) +|(B(fi~S), g)|

< 1Bl 1l lige = gll +1IBll oo I1.£: = 1| gl -
Because || f,l| ='H fll and fi— f, g,— g as t — 0 the desired result is proved.

The equality (x) is satisfied for all x, ye K, in particular for the vectors

f (s), g (s). Now, using the inner product in K we can carry out the estimation
in the same way as in [6, Chap. II, p. 19]. For all § > 0 we get the inequality

(60t 9185, 00 < sup ) [ (Bs=0=B0)S 9. 9(9) s
53 k(02181
= sup (B~ ) f, )+ 2181 1 il 55 1y 0.

(B, f, g) converges to (Bf, g) as t — 0 and sup k,(t) converges to 0 as n— oo
. {th=s

as the Fejér’s kernel. Hence o,— B as n— oo in WOT. =

H_adwi‘n and Nordgren [5] called an operator algebra super-reflexive if
every its WOT-closed subalgebra is reflexive. From the previous results we
get immediately:

Prorosimion 7. If &y = L(K) is reflexive and has property C,, then
H PR, is super-reflexive.

Proof. The algebra #*°®./, is reflexive by Theorem 2 and has
property C by Proposition 4. Thus, by Proposition 2.5 in [5], #°®., is
super-reflexive. m

Proposition 7 and Remark 3 imply immediately the following

CoroLLARY 8. (1) The algebra H#°@H#* is super-reflexive.

(2) If of, is an algebra of normal operators, then H'*°R.of, is super-
reflexive.

°0(3) If o < L(K) is an algebra of normal operators. then the algebra
H QL () is super-reflexive as an algebra of operators on H*QI2(K).
(3) was also proved in [5].

4. Reflexivity of a pair of isometries. Before we present the proof of .

Thgorem 1, we .show the following proposition concerning “acting in
orthogonal directions” which will be useful.
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ProrosiTioN 9. Let U be a normal operator in L(H?(K)) which commutes
with the shift S on H*(K). Then Ue H®(L(K)) and there is a normal operator
U,e L(K) such that U(z) = U, for almost all z in C.

Proof. By Corollary 3.20 in [10], UeH®(L(K)) and U(z) is normal for
almost every z by Theorem 3.17 from [10]. For each xe K we define the
function Xe H2(K) putting %(z) = x for all z in C. Now, we prove that

(x#)  for each x in K, there is yo in K such that
UX = Jo.
Let xe K. Then there is yoeK and feH?(K) such that UX = Jo+Sf. Thus
Ux—§, = Sf. Hence
S¥(US—7o) =S*Sf = f.
By Putnam’s theorem [10, Corollary 1.19]
f=US*%—-8*7,=0.

Thus () is fulfilled.

For x, yeK and nonnegative integers n, m we denote by X,, Vn
the functions defined as follows: %,(z) =z"x and ¥, (z) = z™y. Since (*x) is
fulfilled, if m # n we have

(UZ,, T =(US"X, S™§) = (S"UX, S"9) = 0.

It is obvious that the function (x, y) = (U, ) is a bounded sesquilinear
form on K. By Theorem 1.3 in [13, Chap. II], there is an operator Uy, on K
such that (Ugx, y) = (UX, 7 for all x, yeK. U, denotes the operator in
H®(L(K)) defined by Uo(z) = U, for all z. To complete the proof, the
equality (U, f, g) =(Uf, g) for f, geH?*(K) is needed. Because U,, U are
bounded, it is enough to show that (Ug %,5m) = (UX,, 7) for all x, y in K
and for all nonnegative integers n, m. Let x, yeK. If m#n then (UX,, ¥m)
=0 and

(T %y T = [(Ugxz", yz")ydm = (Uo x, y) [z"z"™dm = 0.
If m=n then
(USyy ) = (UFy, 5 = [(U (@) x2", yz")dm
) =[(U(2)x, y)dm = (U%, )
=(Uox, y)=(Uox, y)f2"z""dm
= [(Ugxz", yz")dm = (To % T)-
Hence, the above necessary equality is proved. m

A result like Proposition 9 concerning “acting in orthogonal directions”
for two doubly commuting shifts was proved by Stocinski [12, Theorem 1].
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Proof of Theorem 1. Let V;, ¥, be two doubly commuting isometries
on a separable Hilbert space H. By a result of Stocifski [12, Theorem 3],
there exist subspaces H,,, H, H,., H, such that:

us?

H=H, ®H,®H,®H,,

H.., H,, H,, H, reduce ¥, and V,,
Vilu,, and Vg  are unitary operators,
Vily,, is unitary and Vyly is a shift,
Viln,, is a shift and Vilm,, is unitary,

Wilu, and Vilg  are shifts.

This decomposition will be called the Slocinski decomposition.

The pair fV1|H“ Valm, .} is reflexive and has property C as a pair of
commuting normal operators [10, Theorem 9.217. The pair ’Vll,, o Valn, } is
reflexive by Proposition 9 and Theorem 2’ and has property C by Remark 3
(1) and Proposition 4. The pair {V;] a0 Val Hsu} is reflexive and has property C
by the same reason. Vi|y_, Valu,, are doubly commuting shifts. Thus, they act
in “orthogonal directions” by [12, Theorem 1]. This means that H
unitarily isomorphic to H?(H?(K)). Then V|y,, corresponds to the shift S in
H? (H2 (K)) and Vyly, corresponds to the operator T defined by T'(z) = T, for
all z in C, where To is a shift on H2(K). Hence, this pair is reflexive by
Theorem 2’ and has property C by Remark 3 (2) and Proposition 4, Now, we
apply Theorem 5 and we get the reflexivity of the pair {V;, V3}. »

Let {V;, ¥} be a pair of (not necessarily doubly) commuting isometries
and suppose it has the above Slocinski decomposition (which need not
exist in general [12, Example 17). Putnam’s theorem [10, Corollary 1.19]
shows that the double commutativity of parts of ¥;, ¥, can fail only on H,,.
Hence, the following theorem can be deduced by the same techmiques as in
the proof of Theorem 1.

TueoreM 10. Let {Vy, Vo} be a pair of commuting isometries which has the
Stociniski decomposition. If the pair § Vilny, V2l H, } is reflexive and has property
C, then the pair {Vy, V,} is reflexive and has' properry C.

We end up with the following example. Let {V;, V,} be a pair of
isometries having the Slocinski decomposition and H,, = H?, Vilu, is the
shift on H? ie. (Vlg, f)z=12f(2) for all f in H? Valg, is the Toephtz
operator of multiplication by pe H®, i.e. (V] n, )2 = ¢(2) f (z) but ¢ is not a
constant function. Then V,, ¥, commute, but do not doubly commute, The
pair {Vilg, Vily,} is reflexive and has property C. Hence, the pair {V;, Va}
is reflexive by Theorem 10.

Reflexivity of pairs of isometries 55

References

[1] E. A. Azoff, C. K. Fong and F. Gilfeather, A reduction theory for non-self-adjoint
operator algebras, Trans. Amer. Math. Soc. 224(1976), 351-366.

[2] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509--512.

[3] J. Dixmier, Les algébres dopérateurs dans Tespace Hilbertien, 2iéme éd., Gauthier-Villars,
Paris 1969.

[4] F. Gilfeather, A. Hopenwasser and D. Larson, Reflexive algebras with finite width
lattices: tensor products, cohomology, compact perturbation, preprint.

[5] D. Hadwin and E. A. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7
(1982), 3-23.

(6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs 1962.

[71 A. Hopenwasser and J. Kraus, Tensor products of reflexive algebras I, preprint.

[8] J. Kraus, Tensor products of reflexive operator algebras, preprint.

[9] R. Olin and J. Thomson, Algebras of subnormal operators, J. Funct. Anal. 37 (1980),
271-301.

[10] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York—
Heidelberg-Berlin 1973.

[i1] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17
(1966), 511-517.

[12] M. Stocifiski, On the Wold-type decomposition of a pair of commuting isometries, Ann.
Polon. Math, 37 (1980), 255-262.

[13] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New-York—Heidelberg—
Berlin 1979.

{141 W. R. Wogen, Quasinormal operators are reflexive, Bull. London Math. Soc. (2) 31 (1979),
19-22.

KATEDRA ZASTOSOWAN MATEMATYKI AKADEMII ROLNICZEJ
CHAIR OF APPLIED MATHEMATICS, ACADEMY OF AGRICULTURE

Al 29 Listopada 46, 31-425 Krakéw, Poland

Received September 21, 1984 (1999)


GUEST




