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Generalized convolutions IV
by
K. URBANIK (Wroctaw)

Abstract. The paper is a continuation of the author’s earlier work [9]. It is a study of o-
stable probability measures and some Banach algebras associated with generalized convolutions.
The main result of the paper is the existence of weak characteristic functions for every
generalized convolution.

1. Notation and preliminaries. Generalized convolutions were introduced
in [8]. Let us recall some definitions. We denoter by P the set of all
probability measures defined on Borel subsets of the positive half-line R, .
The set P is endowed with the topology of weak convergence. For pe P and
a>0 we define the map T, by setting (T, w)(E) = u(a™* E) for all Borel
subsets E of R,. By 6, we denote the probability measure concentrated at
the point ¢. Further we put Tou=J, for all peP.

A commutative and associative P-valued binary operation o on P,
continuous in each variable separately, is called a generalized convolution if it
is distributive with respect to convex combinations and maps T, (a > 0) with
8, as the unit element. Moreover, the key axiom postulates the existence of
norming constants ¢, and a measure ye P other than J, such that

(L.1) T, 8"~

where 83" is the nth power of &, under o. For basic properties of generalized
convolutions we refer to [8] and [11]. In particular, every generalized
convolution is continuous in both variables ([11], Theorem 2.1). Moreover,
generalized convolution algebras admitting a nonconstant continuous
homomorphism into the algebra of real numbers with the operations of
multiplication and convex combinations admit characteristic functions ([8],
Theorem 6). The characteristic function plays the same fundamental role for
a generalized convolution as the Laplace transform for the ordinary one. The
aim of this paper is to prove that every generalized convolution algebra
admits an analogue of the characteristic function which will be called a weak
characteristic function. The main results of this paper are based on two
techniques: one uses o-stable measures, the other uses Banach algebra
arguments. The idea of generating some Banach algebras by generalized
convolutions is due to V. E. Volkovich in [12] and [13].
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In the sequel we shall use the following notation. R, will denote the
compactified half-line [0, co]. P will denote the set of all Borel probability
measures on R, and P, = P\P.

We begin with the following simple lemma.

Lemma 1.1, Suppose that p,, pe P, p# o, T, o~ and the sequence
Ty, b is conditionally compact in P. Then the sequence byja, is bounded and
the set of limit points of Ty py coincides with the set of measures T, u where ¢ is
any limit point of the sequence b,/a,.

Proof. Suppose that d, = by, /an, — oo for a subsequence n; <n, <.,
Then, by Proposition 2.2 in [11], all limit points of the sequence T, 7;‘»,‘ H
= 'I;nk U, in P belong to P, which contradicts the assumption. Thus the
sequence b,/a, is bounded. Let v be a limit point of the sequence Ty, 4y and
Z’,‘,m‘c H, = V- Withoqt loss of generality we may assume that the sequence
Cp = b,,,k/a,,,k is convergent, say to a limit ¢. Then the formula

Ty i = Ty (T i) (k=1,2, )
yields v = T, . Conversely, if ¢ is a limit point of b,/a, and ¢, = by /O, — €,
then Rmk Um, ~ T, g, which completes the proof.
Lemma 1.2. Let u, ve P. Then for any bounded Borel function f on R,

the function (u, v) — {f(x)(6,06,)(dx) is Borel on R, xR, and the Jormula
0

:ff(x) (o)) = | jf Zf 1098,08,)(dx) s (d) v (do)
0

holds.

Proof. Let F be the set of all bounded Borel functions f for which the
above assertion is true. By formula (2.13) in [11] the set F contains all
bounded continuous functions on R... Moreover, the set F is closed under
bounded convergence, which shows that it contains all bounded Borel
functions on R.. The lemma is thus proved.

For any pair u,v from P by uv we shall denote the probability
distribution of the product XY of two independent random variables with
probability distributions u and v respectively. The operation uv is a
commutative semigroup operation with the following properties:

(12) (Lwv="T(w) (acR,),
(13) Tp=6,n (acR,),
(14 (crt(1=av)d =c(u)+(1-a(vd) (O<c< ).

Moreover, we have the following lemmas.
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LemMa 1.3, Let p.veP. Then jor any bounded Borel function f on R,
the formula

o o)

[ £y d) = [ [ f (o) utd)vidy)
[¢]

00
holds.

Lemma 14, If p is absolutely continuous with respect to the Lebesgue
measure on Ry and v({0}) = 0, then pv is also absolutely continuous with
respect Lo the Lebesgue measure on Ry, Conversely, if the Lebesgue measure
on R Is absolutely continuous with respect to p and v # 8y, then the Lebesgue
measure on Ry is also absolutely continvous with respect to uv.

Let m denote the Lebesgue measure on R... Put my = §5+m. By P, we
shall denote the subset of P consisting of all measures absolutely continuous
with respect to my. Further by Q we shall denote the subset of P, consisting
of all measures equivalent to the Lebesgue measure on R... It is evident that
both sets Py and Q are invariant under all transformations T, (4 > 0). As a
direct consequence of Lemma 1.4 we have the following statement.

Provosrrion 11, If ue Py and ve P, then uve Py,

By L,(mg) we shall denote the space of all comples-valued Borel
functions on R, with the finite norm |[f]|., = vraisup {|f(x): xe R, }. Of

my
course, we identify two functions equal mg-almost everywhere. We observe

that the equality [lgll,, = O yields g(0) = 0 and [|g(xy)dx = 0 for all yeR,..
0

0 00 o0
Then | [|g(xy)ldx p(dy) =0 for any peP, and consequently [g(xy)u(dy)
00 [}

=0 mop-almost everywhere. Thus for every ue P the formula

o

(13) W, ) = [ Fuldy)  (xeRy)
0

defines the operator U, from L, (mg) into itself. Of course

(1.6) (U S)0) = f(0),
(9] (Upu £)(x) = (U, f)(ax)  mo-almost everywhere,
(1~8) UL‘}M‘(I“UW L C’L]M“}’(I"‘C') U\, (OQCQ l)

for all pe P and feL,(mo). Further, by Lemma 1.3 we have the formula
(1.9) Up=UU, (u,veP)

Substituting x = ¢* (—o0 € u < o0) into (1.5) we get, by Theorem 3.6.4 in
[4], the following statement. )
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ProPOSITION 1.2. For every pe Py and fe L, (mo) the function (U, f)(x) is
continuous for x > 0.

As a direct consequence of the above proposition and (1.9) we obtain
the following assertion.

CorOLLARY 1.1. If u,, we P, ve Py, py— p and u({0}) = O, then, for every
feLg(mg), Uy, f— U, [ pointwise. If in addition U, f is continuous at the
origin, then the above relation holds without any restriction on u({0}).

In what follows , (h> 0) will denote the uniform distribution on the
interval [1, 1+h]). Of course w,e Py.

ProrosiTioN 1.3. For any peP and feL,(mo)

Uo [ = U S

me-almost everywhere as h— 0.

Proof. We note, by (1.6), that (U, /)(0) = f(0) = (U, f)(0). Further, by
(1.9),

x(1+h)

(Um,.uf)(X)=—h% f for x>0,

(U f) (W) du

which yields our assertion.

LEmMMA 1.5. Suppose that p, ve P, v({0}) =0, f, ge L (my), and

(1.10) jl(ﬂi—)(—x—)'dx <,
4
(1.11) Jw}@dx <.
[}
Then
(1.12)
f x™ U, g)(x)(U, f)(x gj (™) (U, g)(xy) dx p(dy).

Proof. Denote by I the left-hand side of formula (1.12). Then, by (1.5),
= g (I)Z"’(ng)(Z)f(z“‘y)V(dy)dZ»

By assumption (1.10) we may change the order of integration. Setting zé xy
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and taking into account that v has no atom at the origin we get, by virtue of
(1.9), the formula

o

= [x" f(x" (U g)(x)dx

2 o

= (j)x"‘ S 6[ (U, 9) (xy) u{dy) dx.

Changing, by (1.11), the order of integration we get the assertion of the
lemma.

LemMa 1.6, Suppose that p,,veP, v({0}) =0, f, ge Lo(mo) Mn
—+d, (a>0),
o)
U, X
F( “"»glfm)wldx <o (n=1,2,..)
x
0
0
U,
(1.13) jl—(-w%)g)—‘dx < o0
V]
and U,(f) = 0 mg-almost everywhere. Then

o]
[ xS (x" YU, g)(ax)dx = 0.
] .

Proof. By Lemma 1.5 we have the equality

(1.14) jw ) i, (dy) = n=1,2,..)

where
w(y) = f X~ f (") (U, g) (xy) dx.

By (1.13) the function w is bounded on R... Moreover, by Theorem 3. 6.4 in
[4] it is continuous on (0, co). Consequently, (1 14) yields the equation w(a)
= 0, which completes the proof.

2. o-stable measures. A measure A from P is said to be o-stable if 4 5 d¢
and
(21 T "~ A

for a measure ue P and a norming sequence a, of positive numbers tending
to 0; the measure p which can arise belongs to the domain of attraction of A.
By S we shall denote the set of all o-stable measures from P. The set S is


GUEST


icm®

62 K. Urbanik

nonvoid because the measure y defined by (1.1) belongs to S. Moreover,
(2.2) L,S=S (a>0).

Given p (0 <p < ), by §, we shall denote the set of all measures A
from P other than §, satisfying for all a, be R, the equality

(2.3) TAoT A= ’.I;p(,,,b) A
where
gpla, b) = (@ +b")"" (0 <p < o0)

and g, (a, b) = max(a, b). It is clear that the sets §, (0 < p < o0) are disjont
and

(2.4) T,5,=5, (a>0).

Moreover, setting ¢, =n""? (0 < p < o) we have the formula T, A°" = ) for
AeS,. This yields the inclusion

(2.5) 5,8 (0<p<o).

For any pair u,veP and 0 <p< oo by pu*,v we shall denote the
probability distribution of g,(X, Y) where the random variables X and Y are
independent and have the probability distributions x and v respectively. It is
clear that the operations », are generalized convolutions and

(2.6) Sa*pOp =0, 0 (a,beR,).

Moreover, for any complex number z with Rez <0, 0 < p<oo and p,veP,

2.7 :j?exp (2xP) (V) (dx) = :f exp(zx?) u(dx) ojo exp(zx)v(dx).

Proposirion 2.1. Let AeS§, (0 < p < o0). Then for any pair p,veP the
Jormula

Apo iy = Alux*,v)
is true.
Proof. By (1.3) and (2.6) for any u, ve R, we have the equalities
28,040, = T,A0 T, A = Tl = O A = A(8,%,9,).
Applying Lemmas 1.2 and 1.3 for any pair g, ve P we get the formula

Apodv = T ?(M,, 0 AS,) u(du) v(dv) = ? Tl(éu *,8,) t(du) v (dv)
00 0

0
= A(ux*,v),
which completes the proof.
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LemMa 21, S, #Q if and only if o==x,. Moreover, S
={6, a>0} = 8.

Proof. Since all measures from §,, are idempotents under the operation
o, the sufficiency of our condition is a direct consequence of Theorems 4.1
and 4.2 in [11]. The necessity follows from the formula S, = {6,: @ > 0} for
the operation #,,. To prove the inclusion S, < S it suffices, by (2.4), to show
that ;&S for the operation . Setting ay =1, a, = (logn)™* (n > 2), u(E)
= [ €"“du, we get, by a simple calculation, T, 1" = 8;, which
cofriﬁéﬁs the proof.

The relationship between o-stable measures and the family S, (0
< p<o0)is given by the following statement.

ProposiTioN 2.2, For any generalized convolution the equality

S=US5,
p

o0

is true. )
Proof. The inclusion § = |JS, follows from (2.5) and Lemma 2.1. To

14
prove the converse inclusion let us suppose that ieS and (2.1) holds for a
measure pe P and a norming sequence a, tending to 0. Then T, u— do and

consequently T, u°"* — A, which, by Lemma 1.1, yields lim (4, 1/a,) = L.

oo
Since a, — 0, the above relation implies for any pair x, y of positive numbers
the existence of subsequences a,, and a,, satisfying the condition

a,,k y
<

lim — =
k—’wamk

Put by = xa,/ay,, dy = xa, /a4y +m,. Then
Ty Topgam ™ = Tl 10 T (T, K7™
The right-hand side of the above equality tends to T,AoT,A as k- co.
Consequently, by Lemma 1.1, the limit d = lim d, exists and the left-hand
k= o0

side of the equality in question converges to T;4 as k- co. We define th.e
function g by setting g(x, y) =d if x, y> 0 and g(0, x) = g(x, 0) = x. This
function fulfils the equality

(2.8) T.A0TA = Tuni  (x, yeRy).

By the continuity of the operation o in both variables and Lerpma‘ 1.1 we
infer that the function g is continuous on R, x R.. Moreover, it fulfils the
conditions

(29) g(x, ») =g, %),
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(2.10) glg(x, y), 2)=g(x, g (v, 2)),
(2.11) g(zx, zy) = zg(x, y)

for all x,y, zeR.,.
Now we shall prove the inequality

(212) g(x, y) = max(x,y) (x, yeRy).

Suppose the contrary for-a pair a > b, i.e. g(a, b) < a. Since g(0, x) = x, we
have b > 0. Then, by Lemma 2.3 in [11], g(a, b) > 0, and consequently, by
(2.11), without loss of generality we may assume that g(a, b) = 1. In this case
we have

(2.13) a>1

and A = T,Ao T, 1. Setting ¢ = b/a we get the equality A = T,(1 0T, 1), which,
by induction, yields the formula
(2.14) A=T.(Aov,) (n=12,..)
where vy = T,A and v, = —1Va0 T4

Let u be a limit point in P of the sequence Aov, and Aov,, — uin P. By
Corollary 24 in [11], u# &, because A 6,. Further, by (2.13) and
Proposition 2.2 in [117], all limit points of the right-hand side of (2.14) belong

to P, which yields a contradiction. The inequality (2.12) is thus proved.
Now we shall prove that for all xe R,

(2.15) g(x, y1) 2 g(x, y2) whenever y; >y,.

Suppose that y; > y,. Then, by (2.12), g(yy, y1) = y,. Since g(0, y;) = y,, we
conclude, by the continuity of g, that there exists a number y, lying between
0 and y, and satisfying the equality g(y,, y,) = y,. Taking into account (2.9),
(2.10) and (2.12) we have the inequality

g(x, y1) = 4g(x, g(vo, ¥2)) = g(9(x, y2), yo) = g (, y2)
for all xe R, which completes the proof of (2.15).

F. «Bohnenblust proved in [2] (pp. 630~632) that any continuous
function ¢ satisfying equalities (2.9), (2.10), (2.11), inequality (2.15) and the
boundary condition g(0, x) = x is of the form g = g, (0 < p < c0). This, by
(28), shows that AeJS,, which completes the proof.

P

Lemma 2.2. No o-stable measure has an atom at the origin.

Proof. Suppose that AeS. Then, by Proposition 2.2, AeS, for some
p (0 <p < o). For p= o0 our assertion follows immediately from Lemma
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2.1, Consider the case p < cv. Then the measure A can be written in the form
L=+ =), where A'eP, /({0}) =0 and
(2.16) 0<ge<l,
Consequently,

AoT A= T, A=cd+(1—-c) T X
where b, = (1+n")"?, This yields, by Proposition 2.1 in [11],
2.17) Ao T A cdy+(1—c)8, in P.
On the other hand
AoT A =ctdp+c(l~e) A +c(l—c) A +(1—c Ao T, A,
By Propositions 2.1 and 2.4 in [11], T,A'— 6, and X0 T,A’ - §, in P. Thus
AoT,A=c?dy+c(l—c) A +(1—c)d, _in P.

Comparing the above relation with (2.17) we infer that ¢ = ¢, which, by
(2.16), yields ¢ = 0. This shows that A has no atom at the origin.

Lemma 2.3, Suppose that d,e Sy, py— p >0 and )y~ 1 # 8 in P. Then
cither A€ S, or A({o0}) > 4.

Proof. First suppose that 1& P. Then using equality (2.3) for 1, and the
continuity of ¢ in both variables we get the corresponding equality (2.3) for
A This shows that AeS,. Suppose now that de P, ie.

A=l +(1—c) A
where 1'e P and
(2.18) 0<ce<gl.

Then the measures 4, have a representation 4, = ¢, A, +(1—c,) 4, where ¢,
—e¢, A =8, and A, -1 in P. Consequently,

(2.19) Ay O Ay = Tzl,,,",l,,»cé,,ﬁ(l——c) Ty,4 in B.
On the other hand
(2.20) A © Ay = CF A O A+ 20, (1 =) Ay 0 Ay +(1 ~e) 2 AL 0.

By Propositions 2.4 and 2.5 in [11]}, 04y = 8, 20— Aol and eacph
limit point of AY oA/ belongs to P, Since, by (2.19), the sequence g0, i8
convergent in P and inequality (2.18) holds, we infer by (2.20) that t‘he
sequence A7 ol! is conmvergent to a measure v belonging to P,. Thus, by
(2.20),

An©An = 2 +2¢(1=¢)d,+(1 ~c)2AfoA'.

#
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Comparing the above relation with (2.19) we get the equality for the mass
of the limit measure at co:

¢=c*v({o})+2¢(l—0).

Since v({o0}) > 0, we have, by (2.18), ¢ > 2¢(1 —c), which yields ¢ > %. Thus
A({e0}) > %, which completes the proof.

Lemma 24. If p,o>p>0and S, # @ (n=1,2,..), then S, Q.

Proof. Let m(y) denote any median of p. Suppose that 1,8, . Then,
by Lemma 2.2 and Proposition 2.2, m(4,) > 0. Since m(T, u) = am(y), we may
assume by (2.4) without loss of generality that m(4,) = 1. Passing to a
subsequence if necessary we may also assume that the sequence 1, is
convergent in P, say to A. Of course, m(4) = 1, which shows that A s &, and
A({o0}) € 1-2([0, 1]) < 3. Applying Lemma 2.3 we infer that AeS,, which
completes the proof,

In what follows g, (0 < s < 1) will denote the measure from P with the
Laplace transform exp(—2z°) (ze Ry). In other words, g, is the stable measure
with exponent s in the ordinary convolution algebra on R.. It is clear that

(2.21)

* Moreover, it is well known that

0,6, ass—1.

_ndx
QS(E) = frs (x )-;c"
E

where r, is an entire function ([5], Theorem 2.3.1). Hence it follows that
0,€Q. Let X, be a random variable with the probability distribution o,. For
any p (0 <p<o)and g (0 <g<p)by T, We shall denote the probability
distribution of the random variable X;ff. Of course n,,eQ and, by formula
(2.7,

(2.22)

for all a, beR,.
Lemma 2.5. Let AeS, (0 <p < o). Then for any q (0 <g < p)

A, ,e8,nQ,

Tapg*p Tty = T a) Tpg

Ay — A as g—p.

Proof. By (221) we have Am,,— 4 as g p. Put v = Am,,. By Lemma
2.2, 7 has no atom at the origin. Applying Lemma 1.4 we infer that ve (.
Further, by Proposition 2.1 and formula (2.22) we get the equality

TvoTv= 'I;q(a,,,)v
for all a, beR,. Thus veS,, which completes the proof.
Remark 21. If S, @, then for any g (0 <q < o0) the Weibull-

icm®

Generalized convolutions IV 67

Gnedenko measures

0 (E) = q Ju™"" lexp(—u~%du
E

belong to S, N Q.
In fact, by Lemama 2, o =%, and our assertion can be verified by a
simple calculation. :

We know that S (. By Proposition 2.2, S,# @ for some p (0
< p< o). Now as a direct consequence of Lemmas 2.4, 2.5 and Remark 2.1
we get the following statement.

ProposiTION 2.3. For every generalized convolution there exists an index
% (0<x< o) such that S,=Q for p>x and S,#@ for 0<p< .
Moreover, S,nQ # @ for 0 <p <x.

The index » will be called the characteristic exponent of the generalized
convolution o and denoted by (o).

We now proceed to the study of norming sequences.

LEMMA 2.6. For any measure p belonging to the domain of attraction of a
measure A from S, (0 < p < c0) there exists a monotone nonincreasing norming
sequence b, such that T, p°"— A.

Proof. Let u belong to the domain of attraction of ieS, (0 <p < o).
Taking an arbitrary norming sequence a, fulfilling (2.1) we put b,
=min{g;: j=1,2,..., n}. Of course, b,—=0, b, = b,y

(2.23) b,<a, (n=1,2,..),
b, = a; for some j, (1 <j,<n) and
(224 Bt =T, o T, 7 (n=1,2,.).

Here we use the notation p°®=3J,. By (2.23) the sequence b,/a, is
conditionally compact, which yields the conditional compactness of 7, u°"

Applying Lemma 1.1 we conclude that all its limit points are of the form T, A

for some numbers ¢ from the unit interval [0, 1]. By (2.24) and Corollary 2.3

in [11] the sequence T, "7 s also conditionally compact and, by
n

Lemma 1.1, all its limit points are of the form T;A for some nonnegative
numbers d. Moreover, for any such number ¢ there exists a number d such
that, by (2.24),
LA=20Ti="T, sk
Thus ¢ =(1+d")"'", which shows that ¢=1. In other words, T, u*"— 4,
which completes the proof.
Let s be a real number. A sequence a, of positive numbers is said to be
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regularly varying of index s ([1], p. 94) if

(225) 111'1’1 (a[xn]/ an) =x

n—+ao

for every x> 0. The square brackets here denote the integral part.

Lemma 27. Let AeS, (0 < p < ). Then each monotone nonincreasing
norming sequence corresponding to any measure belonging to the domain of
attraction of A is regularly varying with index —1/p.

Proof. It is evident that for monotone nonincreasing sequences a, it
suffices to prove (2.25) for positive rational numbers x only. Suppose that a,
> Gy.1, ay— 0 and (2.1) holds for a measure p.

First we shall prove (2.25) with s = — 1/p for positive integers x. By (2.1)
we have

Enﬂokn — (72‘" ucn)ok — ick = kl/p'q'
which yields

k=1,2,..),

T A (k=1,2,..).

=1/pg,,
This, by Lemma 1.1, implies
lim (kY a,/a,,) =1

n-+o0

Hence it follows that (2.25) is true for positive integers.
Let r be a positive integer. Put g, =n—r[n/r]. Then 0<gq, <r and
consequently T, u"— &,, which, by (2.1), yields

(2.26) T, et 3,
On the other hand

k=1,2,..).

T,

or[nfr] or _.
[t H - A= 7:1/1’ As

which yields the relation

T_. or{nfr]
i Upagy K e

Comparing this with (2.26) we have, by Lemma 1.1,

~1/p
lim—1 — 1 (r=1,2,..).
n—+on a"
This gives (2.25) for x =1/r (r=1,2,...).
Now let x be a positive rational number k/r. Then

Oy _ gy G (K\TH"
ay [ [ r ’

which proves (2.25) for positive rational nqmbers. The lemma is thus proved.
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From Lemma 2.7 and the corollary to Theorem 3 in [1] we get the
following statement.

CoroLLARY 2.1. Let AeS, (0 < p < o). Then each monotone nonincreas-
ing norming sequence a, corresponding to any measure belonging to the domain
of attraction of A has the properties:

nfa,— o for s> 1/p,

na,—»0 for s<t/p.

COROLLARY 2.2. If pt belongs to the domain of attraction of a measure from
S, (0 <p < ), then T 1" — 8¢ for all s > 1/p.

Proof. By Lemma 2.6 we can take a monotone nonincreasing norming
sequence a, corresponding to the measure u. By Corollary 2.1 we have n‘a,
— oo for all s>1/p. Now our assertion is a direct consequence of the
formula

T:,—sﬂon = T;x"’a,,”i (T:z,, K.
PROPOSITION 2.4, For any measure p belonging to the domain of attraction
of a measure from S, (0 < p < o) the moments | x? u(dx) are finite for all q
0

satisfying the inequality 0 < g < p.
Proof. Given a positive number g < p, we take a number s satisfying
the inequality

(2.27) 1/p<s<l1/q.

Then, by Corollary 2.2, T _, 4" = 8o, which, by Lemma 4.2 in [11], yields
([0, n*]) - 1. From the above relation we get easily

(2.28) nu([r®, o))~ 0.

Put r =1/s and n = [k] (k=1,2,...). Then, by (2.27),
(2.29) g<r

and

(2.30) m<k (k=12,..).
Moreover, by (2.28),

(2.31) ne i ([n, 00))— 0.

Since, by (230), u([n, ©)) = u(lk, ) and nm = k-1 (k=1, 2,..), the
relation (2.31) yields k" p([k, o)) — 0 as k- co. Hence and from (2.29) one

can easily get the finiteness of the moment § x* p(dx), which completes the
(V]

proof.
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3. Banach algebras associated with generalized convolutions. Let V' be the
set of all complex-valued bounded countably additivemeasures on R... As the
norm || in ¥ we take the total variation of «. By Lemma 1.2 for any Borel
subset E of R, the function 6,048, (E) is Borel measurable on R, xR,. We
extend the generalized convolution o from P onto ¥ by setting

0
(2o B)(E) = | [8,08,(E)a(du)p(dv)
00
for any pair a, fe V. It is clear that aofeV and |jwofl| < [« (8]l

Let V, denote the subset of ¥ consisting of all set functions absolutely
continuous with respect to the measure my. It is easy to check that V, is a
subspace of V invariant under all transformations T, (a > 0). Moreover,
1, (a>0) are linear isometries on ¥, and for any aeV, the mapping
(0, ©)2a — T, a is continuous. Further, the Banach space V;, is isomorphic to

L, (mo), and consequently each continuous linear functional / on V, is of the
form

G (@) = If(x)a(dx) (xeVy)

where fe L (my).
Lemma 3.1. The space V, is closed under the generalized convolution o.
Proof. By Proposition 2.3 there exists a measure geS,nQ for some

index p (0 <p < o0). From Lemma 1.2 we get the equality

(3.2) (T,14p0)(E) = (o 00)(E T}J(éuo&) (E) o (du) o (dv)

for all Borel subsets E of R.. Suppose that mqy(E) = 0. Since T1p0€0, we

have (T,,,)(E) = 0, which, by (3.2), implies (5, 04,)(E) = 0 for o x s-almost
all (u, v)e R, xR,. Hence we conclude by Lemma 1.2 that

o0

(33) (@0 BYE) = [ [(8,08,)(E)a'(du) f (dv) =

00 i

for any pair o', f" of set functions' absolutely continuous with respect to the
Lebesgue measure on R.. Each pair a, fe Vo has a representation o = ad,
+(1 a)a’, f=bdo+(1—b)p where 0<a<1, 0<b< 1 and the measures

o', B’ are absolutely continuous with respect to the Lebesgue measure on R.. .
Then

(0 B)(E) = abdy (E)+(1 —a) bat'(E)+a(1—b) B (E)
+(1-a)(1-b) (@ 0 f)(E),

which, by (3.3), yields (x 0 B)(E) = 0. In other words, the set function aof is
absolutely continuous. with respect to m,, which completes the proof.
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CoroLLARY 3.1. V¥, is the Banach algebra with the unit &, under the
operation O.

In what follows by H we shall denote the set of all continuous
homomorphisms from the Banach algebra V, onto the field of complex
numbers. For any he H we have the formula h(xopf) = h(a) h(B) («, e V)
and h(8,) = 1. Since h is a linear functional we have also the representation

(34) h(@) = [k(x)a(dx) (aeV)
0
where ke L, (mp). The kernel k has the following properties:
(3.5) k(0) = 1,
(3.6) llkll o = 1.

Moreover, the map (3.4) from H into L, (m,) is one-to-one.
In the sequel H*® will denote the subset of H consisting of symmetric
homomorphisms, ie. of homomorphisms h fulfilling the condition h(®)

= h(z) where the bar denotes the complex conjugate. It is clear that he H® if
and only if the corresponding kernel k is real-valued. We always have two
trivial symmetric homomorphisms h, and h,, defined by the formulas

hole) = «(Ry),  hoo(@ =a({0}) (xeV).
We shall also use the notation H¥. = H*\{hy, h,}. Further, for any
leSn P, we put
= {h: he H, h(T A— 1) # 0}.
We note that, by Proposition 2.3, SN Py # @. Moreover, hy, h, ¢ H;.
Lemma 3.2, For every AeS NPy the set H, is nonvoid.

Proof. By Lemma 2.1 and Proposition 2.1 we may assume that
AeS, NP, for some p (0 < p < o). Further, by Proposmon 2.1, we have the
formula

(T A=A = A(8,—61)"",
which, by Lemma 1.3 and formula (2.7), yields
(3.7)

f exp(—xP)(Ty A—A)°2"(dx) = [ (exp(—2°x")—exp(— xP))*" A (dx)
0

!
> })exp( —2nx?) (1 —exp [(1—27) x7])*" A (dx)
0

> A([a, b)exp(—2nb?) (1 —exp[(1 —27) a’])>"
for any pair of positive numbers a <b. By Lemma 22, A([a, b)) > 0 for
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suitably chosen « and b. Then the right-hand side of (3.7) is greater than o2
for a positive constant ¢. On the other hand the left-hand side of (3.7) is less
than |[(T; A—2)°2". Thus

T A—=2E2Vn 2 (n=1,2,..),

and consequently the spectral norm of T, A—A is positive. This shows that
T, A— A does not belong to the radical of ¥,, which yields the assertion of the
lemma.

Lemma 3.3. Let ceS,nQ (0 <p < o). Then for every he H\{hy} we
have either h(T,0) = 0 for all t >0 or h(T,0) = exp(ct?) (t = 0) for a complex
constant ¢ with Rec < 0.

Proof. Put f(x)=h(T4,0) (x> 0). The continuity of the mapping
(0, cv)at — T,o yields the continuity of the function /" on (0, co). By (2.3) the
function f fulfils the equation

F)f ) =1 (x+y)

It is well known ([4], VIIL8.1) that all solutions of the above equation not
identically equal to O are of the form f(x)=e¢™ where ¢ is a complex
constant. Thus either h(T,0) =0 for all t >0 or h(T;0) = exp(ct’) for a
complex constant ¢. By (3.5), we have Rec < 0. It remains to prove that Rec
< 0. Suppose the contrary, ie. Rec=0. Then taking the kernel k
corresponding to h, we have, by (3.4),

(x,y > 0).

Tk(tx)a(dx) =exp(ibt?) (=0

for a real constant b. Setting to = 1 if b = 0 and t, = (2r/|b|)!/? otherwise we
o0
have [k(tox)o(dx) =1, which, by (3.6), yields Rek(fox)=1 and con-

0
sequently k(tox) =1 for o-almost all x. Since o Q, we conclude by (3.5) that
k(x) = 1 mg-almost everywhere. This yields, by (3.4), h(x) = a(R.) = ho(®)
for all ae V,, which contradicts the assumption. The lemma is thus proved.
We note that for he H,, h(T,0) # h(o) and consequently the function
h(T,0) does not vanish identically on (0, c0). As a direct consequence of
Lemma 3.3 we get the following corollary.

CoroLLARY 32. Let 068,nQ (0 <p < o). Then for every heH,,
h(T;0) = exp(ct?) (t = 0) where ¢ is a complex constant with Rec < 0.

LemMa 34. Let 6€S,nQ (0 <p < ). Then lim h(T,«) = «(R,) for all
heH, and acV,. o

Proof. By Corollary 3.2, h(T;0) = exp(ct”) (t = 0) for a complex con-
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stant ¢ with Rec¢ < 0. Let k be the kernel corresponding by (3.4) to h. For
positive. numbers ¢ and ¢ we put
Ale, ) = {x: 1 =Rek(tx) > ¢.
Then, by (3.4) and (3.6),
1~Reexp(ct?) = {(1—Rek(tx))o(dx) = ea(A(e, 1)),

o

0
which yields
lim o(Ae, ) =0

=0+

By (3.5), 0¢ Az, #). Thus

(e >0).

lim (8o+0)(A(s, 1) =0,
0+

which implies
lim p(A(e, 1) =0
=0+
for all pe Py. The above relation, formula (3.6) and the inequality

o0
1—Reh(Tp) = [(1—Rek(tx) p(dx) < 2u(Ae, ) +e
0
give the relation
lim k(T p) =1
(=0
for all ue P,, which by the Jordan decomposition of set functions yields the
assertion of the lemma.

Our next aim is to establish some basic properties of kernels
corresponding by (3.4) to homomorphisms from H,. In what follows K, will
denote the set of all such kernels. As a direct consequence of Proposition 1.2,
Lemma 3.4 and formula (3.5) we get the following statement.

LeMMA 3.5. Let eS8 Q. Then for every ke K, the function U,k is
continuous on R.. for every uePyq.
LEMMA 3.6, Let &S Q. Then for all keK, and pu, ve P the equality
Upor k = (U, (U, k)
holds mg-almost everywhere.

Proof. We note that for Ae Py, (U k)(t) = k(T 4) (t = 0), which yields,
by Lemma 3.5, the continuity of U,k on R.. Given u,veP, we have, by
Proposition 1.1, wy, . w,ve Py where @, is the uniform distribution on the
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interval [1, 1+ h]. Consequently,
(3.8) Uw;,uow;,v k= (met
Further, by (1.9),

K) (e K-

1+u

(Umu(whunmhv) B(x)=u" ! i[ (Uwhucw;,v k) (xy)dy,

which, by (3.8), implies the equality

14w

(Umu(mhuoa)hv) k) (x) =yt ! (Uwhp. k) (xy) (Uwhv k) (xY) dy.

Applying Proposition 1.3 to the right-hand side of the above equality as h
— 0 we obtain the relation

1+u

(39) (U opoopm ) (x) > u™? ! (U k) () (U, k) (xy) dy

as h— 0. On the other hand, by the continuity of U, k on R, and Corollary
1.1,

Umu(mhnomhv) k d Uaxu(;mv) k

as h— 0. Comparing the above relation with (3.9) and applying formula
(1.9) we get the equality

1+u 1+u

u™t [ U k) Gy)dy =™ [ (U, k) (xy)(U, k) (xy) dy,
1 1

which yields the assertion of the lemma as u— 0.
Lemma 3.7. Let 0eS,nQ (0 <p <) and ke K,. Then

jl Rek(x)
x"

0
Proof. Put

dx <oo  for all r <1+4p.

1

fJ'l—-Rek(xy)d xo(dy).

Since the integrand is nonnegative, we can change the order of integration.
Then, by Corollary 3.2, we obtain

1—-R
1=j__°°xfpﬁ__<€ﬂdx
0
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The above integral is finite for r < 1+4p. Thus the integral

1

1-R
J 1=Rek) )
X
0
is finite for o-almost all y, which yields the assertion of the lemma.

The measure y defined by condition (1.1) is o-stable. By Proposition 2.2
there exists an index po (0 < py < 00) such that VES,,.

Lemma 38, Let 0eS,nQ (0 <p < w) and ke K,. The integral

j.@m's,w»fdx

X"
0

is finite whenever 1 <r < min(1+4p, 1+ po).

Proof. Put ¢ = 8, 08, By Lemma 3.6, U, k = k* mg-almost everywhere.
Thus, taking into account (3.6), we have the inequality

(3.10) (Imk)® = (Rek)*—ReU, k € 1~Re U,k
mg-almost everywhere. From Lemma 3.7 we get the inequality
fleik(xy)d <by™' (yeR.)

0

for r < 1+p where b is a positive constant. Consequently,

1
@3.11) fl“Re(g, LGN fjllwczxe(dy)

0 00
<b J)"” e(dy).
0

If py= co, then, by Lemma 21, ¢ =, and consequently ¢ =d,. In this
case the right-hand side of (3.11) is obviously finite. Consider the case
Po < o0. Since the measure ¢ belongs to the domain of attraction of the
measure y, we infer, by virtue of Proposition 2.4, that the right-hand side of
(3.11) is finite whenever 1 <r < 1+py. Now for r fulfiling the condition
1 <r<min(l+p, 1 4po) our assertion is an immediate consequence of
inequality (3.10). The lemma is thus proved.
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LemMa 3.9. Let 6eS,nQ (0 <p < o0). Then for every ke K, the integral

1
L=k,
X

0
is finite.
Proof. Since, by Lemma 3.7,

1
j1~Rek(x)dx
x

0
is finite, it suffices to prove the inequality

J Mmk )l 50 < o

]

(3.12)

Let r be a real number satisfying the inequality 1 <r <min(l+p, 1+po).
Then, by the Schwarz inequality,

( jllmk(x)l dx>2< J dx j (mk(x)?
X X
0 0 [

Taking into account the inequality 2—r <1 and Lemma 3.8, we conclude
that both integrals on the right-hand side of the above inequality are finite.
This yields (3.12), which completes the proof.

We can pow formulate a result which plays a crucial role in our
considerations.

ProposiTioN 3.1. Let ceS,nQ (0 <p < o). If feL,(my) and U,f
=0 mg-almost everywhere, then f =0 mq-almost everywhere.

Proof. By (1.6) we have f(0) = 0. Consequently, to prove our assertion
it suffices to show that f = 0 almost everywhere with respect to the Lebesgue
measure on R, .

We define an auxiliary function F analytic in the half-plane Rez < 0 by
setting

F(z) = Tf(xpl)x""’ exp(zx?) dx
0

By Lemma 3.2 the set H, is nonvoid. Taking a kernel k from K, and an
arbitrary positive number b we put g(x) = k(x)—k((1+b)*?x) (x&R.). Of
course, ge Lo(my). Further, for any positive number a we put g,
= Ty,008, (n=1,2,..). Finally, setting v=0¢ we shall show that the
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conditions of Lemma 1.6 are fulfilled. The conditions 0({0})) =0and p,— 6
are obvious. By Corollary 3.2 "

(3.13) (Uq 9)(x) = exp(cx?)—exp [c(1+b) x7]

for a complex constant ¢ with Rec <0, which yields the inequality

By Lemma 3.6 we have the formula

(U, 9)(x) = exp(en™? xF) k(ax) —exp [c(14+b)n™ x"] k(a (14 b)!/? x),
which yields the inequality

(U, 9) () < 11—k (ax) lexp(cn™? x)

+ |1 =k(a(1+b)""7 x) exp [c(1+b)n~? x7]
+|1—exp(chbn™? xP)| exp(cn™P xP).
Applying Lemma 3.9 we infer that the integral

J‘"lwnnm (0
e (] X
X

0

is finite. Thus we have proved that all conditions of Lemma 1.6 are fulfilled.
Now, by virtue of this lemma, we get the equality

11 (e (U, g) (ax)dx = O
0

for all a > 0. By (3.13) the above equality can be written in the formk
]

{x™1f(x" ") exp(ca xP) [1—exp(cba? x")] dx = 0
0

for all a, b > 0. Dividing the left-hand side of this equality by b, changing the
order of integration and passing to the limit as b—» 0, which is of course
justified, we get the equality F(ca®) =0 for all a > 0. This shows that the
function F vanishes in the half-plane Rez < 0. Now our assertion is an
immediate consequence of the Uniqueness Theorem for the Laplace
transform,

Lemma 3.10, Let 0eS,nQ (0 <p < ). Then H = H\ {hg, hoo}.

Proof. Suppose that hw hy and h¢ H,. Then, by Lemma 33, h(T;0)
=0 for t > 0. Let k be the kernel corresponding to h. Then (U, k)(z) = O for
t>0 and, by (3.5), (U,k)(0) = 1. The kernel k, corresponding to h is
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simply the indicator of the one-point set {0} and (U,k,)(t) =0 for t> 0,
(Ugke)(0) =1, Thus U,k = U,k,, which, by Proposition 3.1, yields k
=k, mp-almost everywhere or, equivalently, h = h,. The lemma is thus
proved.

From Lemma 3.10 we get immediately the following corollary.

CoroLLARY 33. For any oeS§,nQ (0<p<o0) the equality H%
=H*NH, is true.

An extension of the operation (u, v) — uv (u, ve P) to the space ¥ can be
defined by the formula

o 2]

[ (@B = | J 7 Gopyald pay)

0

(3.14)

for all pairs «, feV and all bounded Borel functions on R.. From
Proposition 1.1 one can easily get the relation af eV, for all xe V, and feV.
ProposITION 3.2, Let ceS,nQ (0 < p < ). Then the set {ou: aeV} is
dense in V,.
Proof. Since the set {oa: aeV} is closed under linear combinations it
suffices to prove that each linear continuous functional ! on ¥, vanishing on
this set vanishes identically on ¥,. By (3.1)

18 = Ef(y)ﬁ(dy) (BeVe)

for some fe& L, {mo). Thus I(¢d,) = (U, f)(x) (xeR,), which yields U, f =0
on R.. Applying Proposition 3.1 we infer that /' = 0 mgy-almost everywhere,
which yields our assertion.

Lemma 3.11. Let 6€S,nQ (0 < p < o). Then lim h(T;a) = a({0}) for all
t—o0

heH, and aeV,.
Proof. By Corollary 3.2 we have the formula h(7, o) = exp(ct?) (teR..)

for a complex constant ¢ with Rec < 0. Let k be the kernel corresponding to
h. Then, by (3.14), .

h(Top) = I k(ex)(ap) (dx) = IGXP(Ct" Y Bdy)

for any Be V. The right-hand side of the above formula tends to §({0}) as ¢
~ 0. But §({0}) = (s8)({0}) because o has no atom at the origin. Hence it
follows that our assertion is true on the set {sf: feV’}. Taking into account
.the boundedness of the norm ||h(7;-)| <1 and Proposition 3.2 we get, by
virtue of the Banach-Steinhaus Theorem ([4], Theorem 2.12.1), the assertion
of the lemma.

ProrposITION 33. Let 6eS,nQ (0 <p < o). Then H*nH, # .
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Proof..By Lemma 3.2 the set H, is nonvoid. Let h be an arbitrary
homomorphism from H,. By Corollary 3.2 we have the formula h(T, o)
= exp(ct”) for a complex constant ¢ with Rec < 0. Moreover, by (3.14)

00
(3.15) h(Tioa) = {exp(ct?x)a(dx) (teR,)
0
for all xe V.
First consider the case Ime = 0. Then, by (3.15),

h(ow) = h(o®) = h(oa)
which, by Proposition 3.2, shows that he H*,

Suppose now that Imc s 0. We note that the equality o = of (a, BeV)
yields a = . In fact, setting

(xe V),

o0

K09 = [7e0ad) )= [ /G Blay
I

for any continuous bounded function f we have, by (3.14), U fo=U, fp.
which, by Proposition 3.1, yields f, = Jp+ Since the function f was chosen
arbitrarily, we get the equality o = f. This property enables us to define
linear functionals on {oa: meV} by means of the formula

low, 2) = r‘j?fexp(zx")ac(dx) (xe V)
. [

for all complex numbers z with Rez < 0, For any ac V the function I(oa, 7) is
analytic and bounded by ||«]| in the half-plane Rez < 0, It is also continuous
on the line Rez = 0. Moreover, by Proposition 2.1 and formula (2.7), the set
{oa: eV} is closed under the convolution o and

(3.16) l(ooo0f, 2) = l(va, 2)I(aB, z)
for all @, feV in the half-plane Rez < 0. By (3.15) we have the formulas

low, ct) = h(Ty,00), 0w, 2t) = h(Ty,,08)
for all te R., which, by (3.4) and (3.5), imply the inequalities
(3.17) [How, ct) < |jovl|,
(3.18) [How, &0)] < [lo@] = |jow|
for all te R... Put
I = {ct: teR.}, I,={cr teR.}.

Since Rec < 0, the angle between the half-lines I, and I, is less than . Let D
be the angular domain contained in the half-plane Rez <O with the
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boundary I, u I,. The function I{oa, *) is bounded on D. On the half-lines I,
and I, we have the estimates (3.17) and (3.18). Applying the Phragmen—
Lindelsf Theorem ([7], 5.61) we get the inequality
[H(oa, z)| < |joa|

for all oe V and zeD. We note that —1eD. Setting g(oa) = [(oa, —1) we
get, by (3.16), a linear and multiplicative functional on {oa: ae V)
satisfying the conditions |g(oo)| < |lowl| and g (o) = g(o0) (xe V). By
Proposition 3.2 it can be extended to a symmetric homomorphism g of ¥,
onto the field of complex numbers. Since g(T, o) = exp(—¢7), we infer that
geH,, which completes the proof.

Propositions 2.3, 3.3 and Corollary 3.3 imply the following statement:

COROLLARY 3.4. HS # Q.
The next proposition states an important property of H .
PropoOSITION 3.4. Let h be an arbitrary homomorphism from H%.. Then

(3.19) s, ={h(T,): 0 <a<oo}
and the correspondence ‘
(0, 0)sa— h(T,)e HY

is one-to-one.

Proof. Let k and k' be the kernels corresponding to homomorphisms
h and K from H% respectively. By Proposition 2.3 there exists an index
p (0 < p < o) such that S, "Q # @. Let 0eS,n Q. Then, by Corollaries 3.2
and 3.3, (U,k)(t) =exp(—ct?) and (U,k)(t) = exp(—c't") (te R,) for some
positive constants ¢ and ¢’. Setting a = (¢//c)'/? and k,(x) = k(ax), we have
the equality

(Usk)(t) = exp(—c't") = (U, k)(1)  (teRy),

which, by Proposition 3.1, yields k, =k’ mg-almost everywhere. In other
words i = h(T,?). Formula (3.19) is thus proved. Suppose now that h(T,")
= h(T;"). Then exp(—ca®) = h(T, 0) = h(T,0) = exp(—cb”) and consequently
a = b, which completes the proof. .

In the sequel we shall use the notation h(Tya) = ho(x) and h(T,)
=hy(x) for all aeV, and heH%. As a consequence of Corollary 3.3,
Proposition 3.4 and Lemmas 3.4 and 3.11 we get the following corollary.

COROLLARY 3.5. Let h be an arbitrary homomorphism from H%.. Then

B = {h(T,): aeR.)
and the correspondence
R.3a—h(T,)eH*
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is one-to-one. Moreover, for any oeV, the mapping R,3a— h(T,o) is
continuous. .

A continuous linear functional [ on ¥} is said to be positive if Hxod@) =0
for all ue V.

PROPOSITION 3.5. Edch positive continuous linear functional | on V, has Jor
any he HY the representation

1(“)=‘f h(Tw) o (dt)
*
where @ i$ a bounded Borel measure on R, .

Proof. The space H' of symmetric homomorphisms of the Banach
algebra V can be identified with the space of all symmetric maximal ideals
of ¥ ([6], Corollaries T and II, pp. 228, 229). Let he H,. Then, by Corollary -
3.5, the mapping

R.5t- h(T)eH*

generates a topology on H* such that H' is compact and for each xe ¥, the
functions h(T,«) (te R.) are continuous. The space H* with this topology is
homeomorphic to R, . Hence it follows, by Theorem 3 in [6], p. 234, that the
space of all symmetric maximal ideals of ¥, with the natural topology is also
homeomorphic to R.. Applying the representation theorem for positive
functionals ([6], Theorem 3, p. 323) and Corollary 3.5 we get our statement.

4. Weak characteristic functions. The concept of characteristic function
for generalized convolutions has been introduced in [8], We say that the
generalized convolution o admits a characteristic function if there exists a
one-to-one correspondence u«+ [ between measures p from P and real-
valued bounded continuous functions 7 on R, such that, for all u, ve P,
(eut(l~c)v)™ = cfi+(1=c)7 O < c< 1), (LW~ () = fat) (a>0), (pov)~
= [i¥ and the uniform convergence f, - I on every compact subset of R.. is
equivalent to the convergence u,-+u The fonction u— I is called a
characteristic function for the generalized convolution o. It has been proved
in [8], Theorem 3 that o admits a characteristic function if and only if it is
regular, ie. there exists a nonconstant continuous homomorphism from the
generalized convolution algebra in question into the algebra of real numbers
with operations of convex combinations and multiplication. The generalized
convolution »,, is not regular ([8], p. 219). Another example of nonregular
generalized convelutions is given in [10].

Our aim is to introduce a substitute of characteristic functions for all
generalized convolutions.

We say that the generalized convolution o admits a weak characteristic
function if there exists a one-to-one correspondence y+> fi between measures

6 ~Studin Mathematicn. LXXXULt


GUEST


82 K. Urbanik

icm

u from P and real-valued functions f from L (m) such that the functions
are continuous for pe P,, and

(4.1) (cut+(—0y) =ca+(1—aF (0<c<),
4.2) (Tu@®)" = a@) (a>0),
(43) (nov)” =9

for all u, ve P. Here the equalities between functions from L (m,) are taken
my-almost everywhere. We also assurne that for every ue P

(4.4) (0hp)” = B

mg-almost everywhere as h — 0 where w, is the uniform distribution on the
interval [1, 1+h] and, moreover, the pointwise convergence (w,u,)
—(wp )" on R, for all h > 0 is equivalent to the convergence u,— . The
function p— I is called a weak characteristic function for the generalized
convolution o.

We start with proving some simple properties of weak characteristic
functions.

Lemma 4.1. The equality 5o(t) = 1 holds for all te R, .

Proof. Since dye Py, the function 8, is continuous and, by (4.3), 8,5,
= §, everywhere on R, . Thus either 8,(z) = 1 for all te R, or 8,(t) = 0 for
all te R, . The last case is impossible because then, by (4.3), i = 8y = 0 m,-
almost everywhere, which contradicts the assumption that the correspon-
dence p«> i is one-to-one. This completes the proof.

LemMA 4.2. For all ueP and h >0 the formula

()" = U,y
is true everywhere on R..

Proof. First we note that w,e P, and consequently, by Proposition 1.1,
wype Py for all pe P. Thus both functions &, and (w, )" are continuous,
which yields the continuity of U, d,.

For measures yx concentrated on a finite set our assertion is obvious. In

fact, if p =1§‘1 0, p; Where a;, pjeR, (j=1,2, ..., n) and 121 p; =1, then, by
(13) and (14),

n

m
ﬂw=j§31 M ED) L oups-
= J=1

Taking into account properties (4.1), (4.2) and the continuity of (w, )~ and
U, &, we have

@i ()= 3, Gulay1p, = (U, 3 @)
j=1
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for all te R,. Approximating an arbitrary measure from P by measures
concentrated on finite sets we get, by Corollary 1.1, the assertion of the

~ lemma.

Lemma 4.3. For any pueP we have [1(0) = 1.
Proof. For every pueP, by (4.4),

(4.5) (@n )" (0) = A(0)

as h— 0 because the measure m, has a positive mass at the origin. Further,
by Lemma 4.1,

(4.6) (@4 1) (0) = @,(0)

for every pe P. In particular, 8,(0) = (w,d0)” (0) = &, (0), which, by Lemma
4.1, gives the formula &,(0) =1 (h > 0). Now our assertion follows directly
from (4.5) and (4.6).

Lemma 44. For any pueP we have ||fl|, = 1.

Proof. For any pe P we have, by Lemma 4.3, the inequality ||f]|,, = 1.
Suppose that ¢ = [|9]| , > 1 for a measure ve P. Then

{;2
Put
w on
A= (Cz—l) Z 2—2—;

n=1

Of course, Ae P and

(-1 1
A=V zO( Cz 50+E§A«)7

which, by (4.1), (4.2) and Lemma 4.1, yields the equality
Lfcr=1 1
1= v2< - +—c-z-z>
mo-almost ~ everywhere. - Consequently (2 =Y =(c?2—1)7* mg-almost
everywhere. This shows that if ¢*—#2 = 0 on a set 4, then ¥* = 0 mg-almost

everywhere on A, which yields mg(4) =0. Thus ¢?—72 >0 mgy-almost
everywhere on R, and consequently

‘72
el P
mg-almost everywhere. But this contradicts formula (4.7) because {e L, (mo).
The lemma is thus proved.
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Proposition 4.1. For every ue P the formula
a= U# 51
is true mg-almost everywhere.

Proof. By (44), 03u=(g)u51)A451 my-almost everywhere as u— 0.
Since, by Lemma 4.2, (wyw,) =U,,®, and, by Lemma 44, [[w,fl,, = 1, we
have (w,®,)” — U,, 8; as u— 0 because w,& Po. On the other hand, by (4.4),
(04»,)" — @y mo-almost everywhere as u - 0. Thus &, = U, §; mo-almost
everywhere on R.. Applying (1.9) and Lemma 4.2 we obtain for any ueP
the equality

(wnﬂ)ﬁ == Up(Uwhsl) = Uw,,uSJ

my-almost everywhere. By Proposition 1.2 the right-hand side of the above
formula tends to U, 8, mp-almost everywhere as h — 0. By (4.4) the left-hand
side tends to [ mg-almost everywhere as h— 0, which yields the assertion of
the lemma.

As a direct consequence of Proposition 4.1 and formula (1.9) we get the
following statement.

CoroOLLARY 4.1. For any pair u, ve P we have
(W) =U,7
me-almost everywhere.

The above formula and the continuity of weak characteristic functions
for measures belonging to P, yield, by Corollary 1.1, the following result,

CoroLLAry 4.2. If p,p,eP, vePy and p,—y, then (vu) — vy
pointwise on R, .

ProrositioN 4.2. For any ue P we hove the relation

t
lime™ fA(wdu = 1.
t—0 0

Proof. Let w be the uniform distribution on the unit interval [o, 1].
For any pe P we have, by Corollary 4.1,

(@) () = (Vo (O = [ A0 du
[

my-almost everywhere for ¢ > 0. The right-hand side of the above formula is
continuous for t > 0. Since we P, and consequently, by Proposition 1.1,
wpe Py, the left-hand side is continuous for £ 0 and, by Lemma 4.3,
(wp) (0) =1, which yields our assertion.

Our next aim is to establish a relationship between weak characteristic
functions. and homomorphisms from HS .
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ProrosiTiON 4.3. Each weak characteristic function [i induces a homo-
morphism h from H%, by means of the formula

(4.8) h(o) = afél (Nea(dx) (ae V).
0

Proof. Since §;eL,(my), formula (4.8) defines a continuous linear
functional on ¥,. Using condition (4.3), the continuity of Zi for pe P, and
Proposition 4.1 we get the multiplicativity of h. Moreover, by Lemma 4.1,
h(Jo) = 1. Since the function §, is real-valued, we have h(&) = h(a) for all
aeV,. Thus he H*. Observing that i(t) =h(Tu) (t >0, ne Py) and taking
into account that the correspondence u«» i is one-to-one we obtain h # hy
and h # h,. Consequently he H%, which completes the prool.

TueoreM 4.1. Each generalized convolution admits a weak characteristic
function. The kernel k corresponding to a homomorphism from H. defines a
weak characteristic function by means of the formula

4.9) a=Uk (ueP).

Proof We have, by Corollary 34, H% # (. Let k be the kernel
corresponding to a homomorphism from H¥% . Defining for any pueP the
function f by formula (4.9), we infer that je L, (m,) and, by Corollary 3.3
and Lemma 3.5, that /i is continuous on R, for ue P,. Conditions (4.1) and
(4.2) are evident. Condition (4.3) follows immediately from Corollary 3.3 and
Lemma 3.6. Condition (4.4) is a consequence of Proposition 1.3. Since
w,e Py, and consequently @, is continuous, we infer by virtue of Corollary
1.1 that the convergence u, - p (4, 4,€ P) yields the pointwise convergence
(wpttn)” = (w0p)” on R, for all h>0.

By Proposition 2.3 there exists a measure o belonging to S, Q for
some p (0 <p<oo). By Corollaries 3.2 and 3.3, &(¢) =exp(—bt") for a
positive constant b. Suppose now that u, p,eP and (o, ) — (wp )
pointwise on R, for all h > 0. By (3.6), [(@sit) |l <1 (n=1,2,..). Thus
U, (wy ,u,,)A — U, (wy )" pointwise on R, for all & > 0, which, by formula (1.9),
yields the pointwise convergence U, &~ U,, G for all k> 0. The last

result can be written as follows:
[ €xp(—bt? x7) (w0, ) (dX) — [ eXp(—bt" x) (3 1) (dX)
o 0

for all te R, and h> 0. This yields, by the well-known properties of the
Laplace transform, the convergence ,p,—» wy,p for all h>0. Hence it
follows that the sequence u, is conditionally compact in P and each its Jimit
point A fulfils the equality w, 4 = w, g for all A > 0 ([9], Proposition 1.1 and
1.2). Since w, — &, as h-» 0, we finally get the equality 4 = p, which shows
that u,— u. :
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It remains to prove that the correspondence ue i s one-to-one.
Suppose that 2 = § mg-almost everywhere. Then U, fi = U, 7, which, by (1.9)
and (4.9), implies the equality U, & = U, . This equahty can be written in the
form

[ exp(—bt? xP) u(dx) = J'exp( bt? xFyv(dx) (te R.),

0
which, by the Uniqueness Theorem for the Laplace transform, yields u = v.
The theorem is thus proved.

By Proposition 4.1 every weak characteristic function y < J is uniquely
determined by its value ;. From Proposition 4.3 and Theorem 4.1 we get
the following corollary.

CoROLLARY 4.3. The set of all weak characteristic functions 8, coincides
with the set of kernels corresponding to homomorphisms from H..

Let p— [ be a weak characteristic function, It is evident that, for any
¢>0, p—(Ty is also a weak characteristic function. Two weak
characteristic functions u — fi and u— ' are said to be similar if there exists
a positive number ¢ such that 7 =(T,)" me-almost everywhere for any
ueP.

As a direct consequence of Proposition 3.4 and Corollary 4.3 we get the
following result.

CoroLLARY 4.4. All weak characteristic functions of a gyeneralized
convolution are similar.

We proceed now to a description of o-stable measures in terms of weak
characteristic functions.

THEOREM 4.2. Suppose that % (o) < 0. Then a probability measure A is o-
stable if and only if A(t) = exp(—ct?) my-almost everywhere for some positive
constants ¢ and p such that p < x(0).

Proof. Sufficiency. Suppose that I(f) =exp(—ct’) mg-almost
everywhere for some positive constants ¢ and p. Using formulas (4.2) and

(4.3) we get equality (2.3) which, by inclusion (2.5), shows that the measure A
is o-stable.

Necessity. Suppose that A is o-stable. Then, by Propositions 2.2 and
2.3, Ae 8§, for an index p fulfilling the inequality 0 < p < x(0). By Lemma 2.5
for every g satisfying the condition 0 <gq <p there exists a measure

2,68, Q such that A, — A as ¢ — p. From Corollaries 3.2, 3.3 and 4.3 we get
the formula

Z,(8) = exp(—c, 19

for some positive constants ¢

(teRy) -
.- Thus, by Corollary 4.1,
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1+h
() (t) = h™? 1[ exp(—c,t'x9)dx (teR,)
for all h> 0. Since (wy4,) —(ws4)" as ¢— p and the function (w,4)" is
continuous because w,ie Py, we conclude that the ¢, tend to a finite
nonnegative limit ¢ and
" 1+h
(p2) () =h"" ! exp(—

ct?xP)dx  (teR,)

for all h> 0. Now applying (44) we obtain the equality
1) = exp(—ct?)
mg-almost everywhere. The case ¢ = 0 is impossible because 4 5 , and, by
Lemma 4.1, 85(f) = 1 (te R,). The theorem is thus proved.
Remark 4.1. The assertion of Theorem 4.2 remains true in the case
#(0) = 00, ie. for o = *,, if we restrict ourselves to measures AeS\S.

Two measures u and v from P are said to be similar if u= T,y for a
positive number c.

ProrosITION 4.4. For any p (0 <p <
similar.

Proof: By Lemma 2.1 our assertion is obvious for p = co. Consider the

oo) all measures belonging to S, are

. case p < o0. Let u, veS,. Then, by Theorem 4.2 and Remark 4.1,

fi(t) = exp(—at’), V() = exp(—bt)

mo-almost everywhere, where a and b are positive constants. Setting c¢
= (a/b)"", we have, by (4.2), (TLv)"(2) = exp(—at”) mg-almost everywhere,
which yields u = T,v. This completes the proof.

From Propositions 2.3 and 44 we get the following property of o-stable
measures.

COROLLARY 4.5. All measures belonging to S\S, are equivalent to the
Lebesgue measure on R...

Each measure y appearing in condition (1.1) for the generalized
convolution will be called a characteristic measure. By Lemma 1.1 all
characteristic measures are similar.

ProrosiTioN 4.5. The set S, consists of characteristic measures.

Proof. Let y be defined by condition (1.1). Of course, it is o-stable and,
by Propositions 2.2 and 2.3, belongs to a set S, with'0 < p < %. To prove
our statement it suffices, by Proposition 44, to show that yeS,.

If 5 = oo, then, by Lemma 2.1, 0 = %, and S, = {3,: a > 0}. One can
easily check that in this case y =4, for a positive number b, and
consequently yeS,.
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Now consider the case % < oo and suppose the contrary: p <x. Let ¢,
be the norming sequence appearing in (1.1). By Lemma 2.6 we may assume
without loss of generality that the sequence ¢, is monotone nonincreasing.
Let g be an arbitrary number satisfying the condition p < g < 3. Then, by
Corollary 2.1,
(4.10) ‘ nte, — 0.

By Proposition 23, S, Q s Q. Taking a measure 4, from S, Q, we have
(4.11) Toyghy’ =24 m=1,2,.)
Further, by Corollary 4.2, we have the pointwise convergence

(T, 89" = (g

which, by Theorem 4.2 and Corollary 4.1, gives

(4.12) (A, T80 ~ }o exp(—bt? x7) A, (dx)
0 .

where () = exp(~bt?) (b > 0). Setting b, = (2n)*"4c, we have, by (4.10),
(4.13) b,— 0
and, by (4.11),
T A =T,4 (=12 ..)
The above equality, Corollary 4.1 and formulas (4.2), (4.3) imply the equality

Ay (bat) = (T, 227 () = ( jS (€2ntX) Ay (dX))?",
which together with the 1nequahty

(ke T 52700 = 164

0

(CantX)*" A, o (dX) 2

( I 5\1 (CZn tx) "'q (dx))Zn
yields

e Ty 00 0= 2y(b0)  (n=1,2, ...

Pfasxsing to the limit as n— oo we get, by (4.12), (4.13) and the continuity
of A,

o0
: gexp(—btpx")lq(dx) 21 (teR,),
which contradicts the assumptions b > 0 and 1,e Q. The proposition is thus
proved.
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A generalized convolution is completely described by its characteristic
exponent and characteristic measure. More precisely, we have the following
theorem which for regular generalized convolutions has been proved in [9],
Theorem 2.3.

TusoreM 4.3. If %(0) = x(0) and the characteristic measures of o and o'
are similar, then o =o'

Proof. If x(0) = x(0) = oo, then our statement follows immediately
from Lemma 2.1. Consequently it suffices to consider the case x (o) = %(0)
=% < ov. Passing to similar measures if necessary, we may assume without
loss of generality that y is a characteristic measure for o and o
simultaneously. Moreover, for suitably chosen weak characteristic functions
p—fiand p— ' of o and o respectively we have, by Theorem 4.2,

7(0) = exp(—2) = 7'(9)
mo-almost everywhere. Let p < x. Settmg o =ym, , we infer, by Lemma 2.5,
that ¢ is o-stable and o'-stable simultaneously and oe(Q. Moreover, by
Corollary 4.1, we have for any pe P

Ui = (i) = Upn, ;6 = Upn, & = (01" = Uy,

which, by Proposition 3.1, ylelds A= [I' my-almost everywhere. Hence and
from (4.3) it follows that for any panr u,veP

(pov) = = 'V =(uo'v)" = (uo'v)".

Consequently, (x0v)” = (10'v)", which completes the proof.

The similarity of all weak characteristic functions (Corollary 4.4) enables
us to associate with every gemeralized convolution o the subset C(0) of

L,(mo) defined as follows: feC(o) if and onmly if /=2 me-almost
everywhere for some pe P. Of course, this set does not depend upon the
choice of a weak characteristic function.

We proceed now to a description of the set C(o).

Tueorem 44. Let fe Ly (mo). Then feC (o) if and only if

(4.14) lime™* y fWdu=f(0) =1

t=+0

and for any pair p, ve P, the inequality

(415) f J () (o p)(dx) I S ov)dx) = ( 5 S () (ov)(dx)?

holds.
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Proof. Necessity. Suppose that f = 1 mg-almost everywhere for some
AeP. Then condition (4.13) follows immediately from Lemma 4.3 and
Proposition 4.2. Let y, ve Po. Taking into account the continuity of 2 and ¥
we have, by (4.3), Corollary 4.1 and Proposition 1.1,

17 (690N (dx) = Uy A = (Vs (0¥ ) (1)
0
= (U, 9)(1) = ;fmx) $() A(d).

Condition (4.15) is now a direct consequence of Schwarz’s inequality.
Sufficiency. Suppose that fe L, (mg) and both conditions (4.14) and
(4.15) are fulfilled. Put

oo

4.16) l’(oc) = (_Ef(x)az(dx) (xe V).

By (4.14) we have the formula
4.17) 1(8g) = 1.
Thus setting v = §, into (4.15) we get the inequality

Hpow = (1(w)* >0

for any ue P,;. The above inequality together with (4.15) yields l(ao@) = 0
for all xe V. Consequently, ! is a positive continuous linear functional on V.
Let h be the homomorphism from H% induced by a weak characteristic
function by means of formula (4.8). Then h(Tu) = fi(t) (te R.) and h(T, 1)

= h,,(4) = u({0}) for all ue Py. Thus applying Proposition 3.5 we have the
formula

(4-18) Wy = nj ﬁ(t)l(dt)+u({0})i({°0}')

for a bounded Borel measure A4 on R, . Substituting u = &, into (4.18) we get,
by virtue of (4.17) and Lemma 4.1,

4.19) A(Ry) = 1.

Let v, (h >h0) denote the uniform distribution on the interval [0, h]. Then
Iv)=h""t ‘j)' f(H)dt and consequently by (4.14)

(4.20) as h~ 0.

I(Vh)-»}

By Lemma 4.4 we have ||V, = 1. Since v,& Py, the function ¥, is continuous
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and the last equality for the norm yields
(4.21) Pl <1  (teRy).
Substituting u = v, into (4.18) we get

Iy = [ %@ Adr).

R
Consequently, by (4.21),
vl < A(Ry)  (h>0),

which, by (4.20), yields A(R,) > 1. Comparing this inequality with (4.19) we
conclude that A(R,)=1 and A({c0})=0. In other words, ieP and
representation (4.18) has the form _

1) = Iﬁ(t)i(dt) (e Po).

By Corollary 4.1 and the continuity of /i the right-hand side of the above
-]

equality is equal to | Z(t) u(dt). Consequently, by (4.16), we have the equality
h)

;ff (@) u(dt) = Ii(t) p(dt)

for all pe Py. This yields f = 1 mgy-almost everywhere, which completes the
proof.

ProposiTioN 4.6, Let
everywhere and

peP (n=1,2,..0. If f,—f mo-almost

t
limt™* [ f (wdu =1, '
t=0 0
then there exists a measure peP such that p,~p and f = [ mo-almost
everywhere. ‘
Proof, We have, by Lemma 44, [f|l, = 1. Changing if necessary th
function f on a set of the measure m, zero we may assume without loss of
generality that f is a Borel function from L, (mq). Since mo has an atom at
the origin, we infer, by Lemma 4.3, that f(0) = 1. Consequently, f fulfils
condition (4.14). By the dominated convergence theorem condition (4.15) is
also fulfilled, Thus, by Theorem 4.4, f = mg-almost everywhere for a
measure u from P, By Corollary 4.1,

(Cl),, ”")" = Uw;, ﬁn g Uw;, ﬂ = (Cl);, .M)A
for all h > 0, which yields u,— p. The proposition is thus proved.
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THEOREM 4.5. Let oeS, (0 <p <x(0). A function f from Lg(mg)
belongs to C(o) if and only if

“.22) ~ lime? } fluydu=f0) =1
0

-0

o0
and the function [ f(t'% x)o(dx) is completely monotone on (0, o).
0

Proof. Passing if necessary to a similar weak characteristic function we
may assume without loss of generality that &(f) = exp(—1t”) (te R..).

Necessity. Suppose that f = 1 mq-almost everywhere for some Ag P.
We have already shown (4.22) in proving Theorem 4.4. Further, we note that.
by Corollary 4.5, 6 Q. Applying Corollary 4.1, we have

y

1777 %) 0 (dx) = (U, D(t) = (U, 6)(c79)
()]

exp(—txP)A(dx) (teR,),

o8

) ]
which yields the complete monotonicity of the function [ f (s x)o (dx) on
0

(0, o0). ‘
Suffi‘fiency. Suppose that fe L, (mg), condition (4.22) holds and the

function § f(t'?x)o(dx) is completely monotone on (0, co0). Then, by the
o}

Bernstein Theorem,

(4.23) T£@P 0@ = [exp(—ty)e(dy) (teR,)
0 0

for a Borel measure ¢ on R,.
By (4.22) we have

)
=1 [ [ f(tx)o(dx)dt — 1
00
as h— 0. Consequently, by (4.23),
h o
=t | [exp(—tyP)o(dyydt — 1
00
as i~ 0. On the other hand the left-hand side of the above formula tends to
2(R.) as h— 0. Thus ¢(R,) =1 and consequently ge P. Now equality (4,23
can be rewritten in the form U, f = U, 6, which, by Corollary 4.1, yields uf

= U,{. Applying Proposition 3.1, we get f = § m,-almost everywhere, which
completes the proof.
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Now we shall discuss some criterions for the existence of characteristic
functions. We begin with a simple lemma.

Lemma 4.5. If for every pe P the weak characteristic function J is equal
mg-almost everywhere to a continuous function [i, then the correspondence u
- I is a characteristic function for the generalized convolution in question.

Proof. To prove this it suffices to show that the uniform convergence
[, — [I on every compact subset of R, is equivalent to the convergence ,
— . Suppose that u,— u and a,—a (0<a < o). Then we have T, u,
— T, and consequently

0

;f& (03) 1) 5, ) )

The above relation yields, by virtue of Proposition 4.1, the uniform
convergence [, — [ on every compact subset of R, . Conversely, suppose that
fi,— fi. By Lemma 4.4 the functions @, are bounded in common and, by
Corollary 4.1,

(con Mn)A = Uwhﬁn = Vo fi= (wy /'L)As
which yields u,— u. This completes the proof.

THEOREM 4.6. Suppose that 003, € Py for some o-stable measure o. Then
the generalized convolution o admits a characteristic function.

Proof. We note that in this case c¢S,. In fact, by Lemma 2.1, S,
consists of the measures d, (@ >0) and o = *,,. Then we have, by (2.6),
Oa* 01 =0y 0,1 Po- Thus, by Proposition 2.2, ceS, for a finite index p.
Let u— fi be a weak characteristic function. By Theorem 4.2 and Remark
4.1, Z(t) = exp(—ct?) my-almost everywhere for a positive constant c. Since
608, € Py, the function (6 08,)” is continuous, and consequently the function

8,() = exp(ct’) (0 06;)" (1)
is continuous on R,. By (4.3) we have 8, =&, my-almost everywhere.
Setting, for any ueP, fi="U; &, we get continuous functions satisfying, by

Proposition 4.1, the equality i = i mo-almost everywhere. Applying Lemma
4.5 we get the assertion of the theorem.

A measure y from P is said to be o-quasi-invariant if for all a > O the
measure 700, is absolutely continuous with respect to #. This concept has
been introduced by V. E. Volkovich in [12] and [13].

LemMA 4.6. Suppose that there exists a o-quasi-invariant measure in P.
Then codye Py for every ¢eSnQ.
Proof. Let 1 be a o-quasi-invariant measure in P and ceS Q. Then,
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by Lemma 1.3, we have the formula
(4.24) on(E) = Zn(x“’ E)o (dx)

for all Borel subsets E of R.. Further, by Lemmas 1.2 and 1.3,

(4.25) oo by (E) = ? 6,00, (E)on (dx)

(=4

5::}: 051 (E) a'(dx) ”(dy)a

it
Ot 8
o8

which, by the equality
85,08, = Ty(3,00 )

and Lemma 1.2 yields

(x >0)

(4.26) onod, (E) = Tnoéx_l(x'lE)a(dx).
0

As a consequence of Lemma 1.2 we also have the formula

o
427 608,(E) = [9,08,(E)o(dx).
0
Suppose that m,(E) = 0. Since, by Proposition 1.1, ane P,, we then have
on (E)_ =0 and, by (4.24), n(x"! E) = 0 for g-almost all x. Since n is o-quasi-
invariant, the last equality yields nodé (x™*E) = 0 for g-almost all x, Now,
by (4.26), we have g0, (E) = 0, which, by (4.25), implies 6,08, (E) = 0 for
on-almost all x. Since, by Lemma 1.4, o is absolutely continuous with respect
to on, we also have 6,08, (E) = 0 for o-almost all x and finally, by (4.27),
006 (E) =0. This shows that the measure ¢ 04, is absolutely continuous
with respect to mg, which completes the proof.

) As an immediate consequence of Lemma 4.6 and Theorem 4.6 we get a
criterion for the existence of characteristic functions. We note that some
results of this type has been proved in [12] and [13].

TuEOREM 4.7. If there exists a o-quasi-invariant measure in P, then the
generalized convolution o admits a characteristic function.
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