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The Mayer-Vietoris and the Puppe sequences
in K-theory for C*-algebras

by
J. HILGERT (Darmstadt)

Abstract, We show the existence of a Mayer—Vietoris ard a Puppe sequences in the K-
theory for C*-algebras. Both sequences generalize the respective sequences in the commutative
case in the sense that they reduce to those sequences under the identification K, (Co(X))
= R#(X) if all algebras involved are chosen to be commutative, ie. of the form Co(X) for a
locally compact space X. The sequences are used to calculate the K-theory of certain bundle-C*-
algebras with continuous identity field.

0. Notation and preliminaries. For any C*-algebra A4 call S4
:={f: [0, 1]— A continuous, /' (0) = 0'=f (1)} the suspension of A. For two
C*-algebras 4 and B we say that two morphisms ¢;: A~ B, i=0, 1, are
homotopic if there exists a family ®,: A — B of morphisms for te [0, 1] such
that @: I xA— B defined by &(¢, a) = &,(a) is jointly continuous and &,
= ¢, for i =0, 1. We write ¢, = @o. The morphism ¢: A— B is called a
homotopy equivalence if there exists a morphism y: B— 4 such that poy
~idy and Yo ~id,. A C*algebra C is called contractible if idc ~ 0:
C - C. Recall (cf. [3]) that the K-functor does not distinguish homotopic
morphisms. Thus homotopy equivalences induce isomorphisms and
contractible C*-algebras have vanishing K-groups.

1. Mayer—Vietoris sequence. Let B, B, and C be C*-algebras and f;: B;
— C C*-morphisms for i =1, 2. Suppose f, is onto. Consider the pullback

The C*-algebra D can be written as {(by, b;)e B;® Bj: fi(b,) = f1(b,)}. Then
there is a natural inclusion j: D— By @ B,. The map j induces group
homomorphisms j,: K, (D)— K, (B)) ® K, (By).

We define group homomorphisms v,: K, (B;) ® K, (Bz)— K, (C) by
vt (f)x—(fa)ys Where (fi),: Ky (B)— K, (C) is the group homomorphism
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induced by f; for i=1,2. This means, for beK,(B), that v,(b; @ b))
= (f)u (b)) = (f2)y (b2):

There. are two more maps which play an important role in the Mayer-
Vietoris sequence. We show the construction of ay: Ko(C)— K, (D); the map
ay: K{(C)— Ko(D) is constructed analogously.

Note first that there is a natural isomorphism between ker f, and kerg, .
Let [; ker f, — D be the inclusion induced by that isomorphism. Note also
that the surjectivity of f, implies that g; is onto. Thus we get the following
commutative diagram with exact rows:

0 ker fy——tes D —It >,
lﬂz lﬁ
0 ker By —>C

This diagram induces the following commutative diagram with exact rows:

(
gihe Ko(By) % Kylker £) b (D) (g1l K(By) %
[SAM (g2l (F)x
3.
(fz)“ Kg(Cl R KM(EF fg) [* Kq(Bz) (fz)* K|(C) 6{

Now' we define ay: Ko(C)— Ky (D) by ag:=1,008;.

TueoreM (Mayer—Vietoris sequence, cf. [2], [6]). Let B,, B, and C be
C*-algebras, f;: B; — C be C*-morphisms for i =1, 2 and let D be the pullback
over f, and f,. Moreover, assume that f, is surjective. Then the following
sequence is exact:

Ko D) L2 (BB K By) —— 2= Ko (C)
o %o

K (C) <K, (B)® K B) <—— (D)

Proof. First we show that imj, ckerv,. For beK,(D) we have

Uy (s (D) = 04 ((91)4 (D) @ (92) (D)
= (/s ((91)1; (D))“ () ((92)¢ (b)) =(f1081)« D) —(f2092)y (D) = Q.

‘The reverse inclusion is- obtained by a diagram chase in the above
diagram. Let b, e K, (B;) and b,e K, (B;) be such that (fy), (b;) = (£2), (b).
Then §,(b;) = 8, 0(f1)4 (b1) = 8, 0(f2), (by) = O whence there exists dbe K, (D)
such that (g,),(b) = b;. We have (f3), (b5~(g2),(b)) = 0 so that there exists
‘ae K, (ker f3) with i, (a). = b, —(g5),(d). Now we set b’ = d+I,(a) and obtain
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(@)4(®) =@y ®)+0=b; and (g:), (¥) = (g2), (0)+(g20D4 (0) = (g), (B} +
+i,(0a) = by. Thus we have proved that imj, =kerv,.

It remains to be shown that the Mayer—Vietoris sequence is exact at the
corners. We show that for the right side, the left side is proved analogously.
To see that imwv, < kerw, calculate for beK,(B;) that o, ((f1)s(b))—
'—(f2)* (bl)) = Oy ((fl)* (bl))"a* ((f2)* (52)) = l* o ag(bl)_ l* o af o(fl)* (by) = 0.

The reverse inclusion again requires a little diagram chase. Suppose, for
ce K, (C), that a,(c) = 0. Then [, 00,(c) =0 and there exists a by e K, (B,)
with 8,(b,) = 8,(c). Therefore &, ((f1)(by)—¢) = §,(b)—a;(c) =0. This in
turn implies that there exists a by e K, (B,) with (f3), (b3) = (f1)« (b)) —¢, thus
¢ =0, (b b,).

The inclusion ima, <kerj, is seen from the following calculation for
ce K, (C). We have j,, (0, (9) = jy {1, 0 9,{0) = (91)4, 0L, 00, () ® (g2)s 01, 08, ()
=0®1i,00,(9=0.

Finally we get the reverse inclusion again by diagram chasing. Note that
kerj, = ker(gy), nker(g,),. Thus for dekerj, there exists an ae K, (ker f3)
with I, (a) =b. We get i,(a) =(g95), 0l (d)=0 and hence there exists a
ce K, (C) with 8,()) = a. This implies that e, () = L, 08,()) = I, (a) = b. This
concludes the proof. m :

I1. Puppe sequence.
DeriNiTiON. Let 4 and B be C*-algebras and ¢: B— 4 a C*-morphism.
Define the mapping cone, denoted by C,, as follows:

C, = {(b,)eB®P(4): ¢(b)=1(0),f(1) =0},

where P(4):={f: I > A continuous} is the algebra of paths in A.
Given the map i: S4 — C, defined by i(f) = (0, f) we get a sequence of
C*-algebras which we call the Puppe sequence:

SBE;SA?C,,;ZB?A

where So(g):= @og and v,((b,f)):=b.
TueoreM. The Puppe sequence induces the following exact sequence in K-
theory:

KolCp) —— KolBl——— Ko ( A)

K1(A)<—"‘K1(B) < (Cp)

Proof. First we show that we can replace K,(SB) and K,(S4) by
K,(C) and K, (C%) respectively. In fact, we construct maps k: S4 — C,,Q
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and I: C; — SB that induce isomorphisms in K-theory and give a diagram of
the following kind that is commutative up to homotopy:

S .
EY L Ay SR . SN

We have C, = {b./ ¢)eB@®P(A)DPB): ¢(g(0)=/0), f(1)=0,b
=¢(0), g(1) = 0} which we can identify with {(f, g)e P(4)@® P(B): ¢(g(0)
=f(0),f(1) =0, g(1) = 0}. There is a map k: SA— C, defined by k(f)
:=(f, 0). It is clearly injective. Now consider the cone CB:= {geP(B): ¢g(1)
=0} and the map u: C, —CB defined by u((f, 9)) =g. Since
((1—10(g(0), g)e C,, for any geCB we see that p is surjective. Clearly
ker u = k(SA). But the cone CB is contractible and therefore the six-term
sequence associated to 00— SA — G, CB—0 shows that k,: K, (S4)
—»K*(C%) is an isomorphism. Moreover, the natural map v,: C, —C,
defined by (f, g)—(g(0), f) makes the following triangle commutative:

SA-——£-———> Cy

7

G e

Now' consider the mapping cone C; = {(f, g, F)eSA ® P(C,) = SA® P(B)®
@ P(P(A): i(f) =(g(0), F(-, 0)), (g(1), F (-, 1)) = (0, 0)}. We can identify C,
with the algebra {(g, F)e P(B)® P(P(A)): @pog =F(0,"), F(1,-)=F(:, 1)
=0, g(0) = g(1) = 0}, as one easily sees, and consider the map I: C;— SB
given by l(g,F) =g. For a given geSB set F(s, f):=(pog(1))(1—s); then
(g, F)e C; and (g, F)=g whence | is surjective. The kernel of I is
{g. FIeP(BY® P(P(A): F(O,")=F(l,"y=F(;,1)= 0} which is isomorphic
to the cone C(S4). Thus I, K,(C)—K,(SB) "is an isomorphism.
The map v;: C; —SA is given by (g, F)—>F(:, 0). Consider the family of
maps &;: C;— SA defined by &,(s):= F(s(1-1), st); then &, =1, &,(s)
=F(0,5) and &, is a homotopy. Clearly &, = Spol.

‘ Now it suffices to prove that any sequence C,, = B— A, where C, is the
mapping cone of ¢ and the map v, is the projectibn onto the first factor,
induces an, ,eg;g;gt sequence in K-theory.. But this sequence gives rise to the
short exact sequence 0S4 — C,— B0 which in turn induces the exact
sequence K,(C;)~ K, (B) K, (S4). Since the triangle ‘ ;
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K {(B)———K,-4(SA)

P
Kn (A)

where the vertical map is the suspension isomorphism commutes we deduce
that K, (C,) — K, (B) = K, (A4) is exact. Thus the following sequence is exact:

K, (SB) 255 K, (SA) » K, (C) - K, (B) S K, (4)

and we remark that Cg, = S(C,) so that we can close the exact sequence to
obtain the diagram in the statement of the theorem. m

1. Examples. The Mayer—Vietoris and the Puppe sequences can be
applied to calculate the K-theory of C*-algebras that are represented as
section algebras of C*-bundles. The following simple examples show how to
calculate the K-groups of a section algebra from the K-groups of restrictions
to smaller spaces. '

Let ¥ < X be compact spaces. Define a C*-algebra D as the following
pullback:

D= M, (C(X)

r
M(C Y Ny—rg= Mot {C (V)

Here r simply denotes the restriction to Y and d is the map that assigns the
block diagonal matrix :

"]

to an fe M,(C(Y)), the k xk-matrix algebra over the continuous functions
on Y. For the sake of brevity we define B:= My, (C(X)) 4:=M,(C(Y))
and C:= M, (C(Y)). We obtain the Mayer-Vietoris sequence

K(D)——> Ki(B)® I A)——> K1(C)

Ko(C) € K{ B)® Kol A) ———K0(D)

The map d,: K,(4)— K,(C) is, if we identify K,(4) with K,(C) under
9. K,(4) - K,(C) induced by the inclusion ¢: A - C which maps ae 4
to the matrix in C that has a in the upper left corner and zeros: elsewhere,
just multiplication by n. If X is a contractible space and ypeY, the map
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ev:_B—»M,,,‘=M,,,,(C ) given as the evaluation at y, is a homotopy
equivalence. Thus with the canonical embedding j: My, — C we get a
commutative triangle up to homotopy:

Mnkm"—‘-l—'—)c

X/

'_l“hus‘.the triangle in K-theory induced by this one commutes, and since ev,
is an isomorphism, we can replace K, (B) by K, (M,) and r, by j,. If we set
A:={fed: f(yo)) = 0} we get a split exact sequence 0>A—A—M,~0
and hence we get a split exact sequence in K-theory 0- K, (4) — K, (4)
- K, (M)~ 0. Note' that K; (M) =K, (M) =K,(C)=0 and Ky(M,)
= Ko(M,) = Ko(C) = Z. Hence we get the following exact sequence:

(D) K A) B k(A)

KolA) <—~%-—Z®(K0(A)@Z)<—————KD(D)

wh;re the maps vy and v, are given as follows: v, (a) = —na for aeK,(4)
an

vo(m®(a@® D) =0Om—n(a®)= —na®(m—n)

for me(a®DeZ @ (Ko(d) ® 2). If we assume that K, (d) is torsion free,
then v, is injective and therefore K, (D)= K,(A)® Z/imv,. But for
<, beI.(o(/i) and m, myeZ we have c@®m,—dDmyeimv, if and only if
there is an ae Ko(4) and m, le Z such that c—b = —na and m,—m, = m—nl.
The condition. on the integers is always satisfied, thus K, (D) = K, (A)YnK o (A)
=Ko A).QZ/nZ i Ko (A) is torsion free, too. Further, we have the exact
sequence 0K, (A)fimv; — Ko(D)— kervg — 0, We assumed Ko (A) to be
torsion free, so kerv, = m@(aONeZ D (Ko(A) D Z): —na=0,m=nl} =Z.
Thus the sequence splits and since imv, =nK,(d) we have K, (D)
= (K (A®ZMmZ)®Z. U we now observe that K, (d) =K (Co(M)
= K*(Y) we get the following * e
Exampre 1. Let 'Y « X be compact spaces such that X is contractible
and K* (_Y) torsion free, and let D be the C*-algebra of continuous functions
f(riom tlf .ilnic; l\'{c,,,, su:h’ that the values on Y are block diagonal matrices with
identical i blocks - of »size -k x:k. Then K, (D)= (K?*
K. D Ry oz T KO =K M @I OZ and

icm

Mayer—Vietoris and Puppe sequences 103

Similarly one calculates

ExaMpLE 2. Let Y = X be compact spaces with X contractible and D the
algebra of continuous functions X — M, that map Y to block diagonal
matrices with blocks of size kxk. Then Ko(D)=(K°(Y)I""'@®Z2" and
K, (D)= (R* (V)" ‘

The assumption that X be contractible has of course been made to
avoid problems in calculation which arise from the fact that we do not know
the map r,: K, (B)— K, (C) in general. There are some more cases where we
know this map.

ExampLE 3. Let Y X be compact spaces and Y a deformation retract
of X. Let D be the C*-algebra of confinuous functions X — My such that
the values on Y are block diagonal matrices with identical blocks of size
kxk. Then K, (D) = K*(Y). If the condition that the blocks be identical is
dropped we have: K, (D)= K*(X)® (K*(V))""".

We have seen that torsion in the K-groups can cause trouble. In some
cases we can get around that using the Puppe sequence.

Let X and Y be compact spaces and f: Y~ X a continuous map.
Consider the mapping cone C;. We obtain a map f': Y- C, which is the
composition of f and the canonical map g: X - C;. Now consider the
C*-algebras M,(C(X)) and My(C(Y). We get a map ¢: M, (C(X))
—vM,,,(C(Y)) by ¢(a):=d(aof) [cf. Example 1 for the definition of dJ.
Consider the mapping cylinder M, given by the pullback

My~ M (€ (X)

?

P(M(CY ) —s7— MulC YD)

where ev is the evaluation at t = 0. Note that P(M,,k(C(Y))) is- canonically
isomorphic to M, (C(YxD) and M (C(X)) is canonically isomorphic to the
algebra of maps X — M,, whose values are block diagonal matrices with
identical blocks of size k x k. Thus we see that C,, is the C*-algebra of maps
from C, into M,; whose values on g(X) are block diagonal matrices with
identical blocks of size k x k and which vanish on yoe C;, the vertex of the
cone. Now it is easy to get

ExampLE 4. Let X and Y be compact spaces.and f: Y— X a continuous
function. Let C, be the mapping cone of f and D the C*-algebra of
continuous functions from C; into M,, whose values on the canonical image
of X in C are block diagonal matrices with identical blocks of size k x k. Let
D be the subalgebra of D consisting of those maps that vanish on yoe C;, the
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vertex of the cone. Then K, (D) _—~=K*(15) and we get the following exact
sequence:

1
k(D) Ko —2F

K'(Y)

KoY)

pr KO0) Ko(D)

Finally, if we drop the condition on the blocks, we get

ExaMpLE 5. Let X and Y be compact spaces and f: Y— X a continuous
function. Let C, be the mapping cone of f and D the C*-algebra of maps
from C, into M, whose values on the canonical image of X in C, are block
diagonal matrices with blocks of size k x k. Let D :=kerev, where ev is the
evaluation at the verlex yoeC,. Then K,(D)=K,(J) and K, (D)
= Z @ Ky (D). Moreover, we have the following exact sequence:

1
Ky(5) SK'0n L ki
Koy B KOX) Kol
(<55 @K o)
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t-smooth linear functionals on vector lattices
of real-valued functions

by
WOLFGANG ADAMSKI (Mtinchen)

Abstract. A vector lattice E of real-valued functions is said to be a strong Daniell lattice if
every positive linear functional #: E— R is t-smooth (ie. im®(f,)=0 for every net (f,) in E
with f,10). Under some additional assumptions which, in general, cannot be omitted, several
characterizations of strong Daniell lattices are given. These results are then applied to the vector
lattices (%, #) and 6°(%, #) of £-continuous (and bounded) functions with #-bounded
support, where .# denotes a lattice of sets and # is an #-bounding system.

1. Introduction. This paper is a continuation of [4]. However, whereas in
[4] we are concerned with the characterization of Daniell lattices (i.e. vector
lattices E of real-valued functions having the property that every positive
linear functional on E is o-smooth), we consider in this paper only such
vector lattices on which every positive linear functional is z-smooth. Under
some additional assumptions which, in general, cannot be omitted, we give
several characterizations of these so-called strong Daniell lattices. As
application of these general characterization theorems, we can prove, among
others, the following results:

(1) For a completely regular space X the following statements are equivalent:
(a) X is realcompact.
(b) The space of all continuous functions on X is a strong Daniell lattice.
(c) The space of all Baire-measurable functions on X is a strong Daniell
lattice. )

(2) If (X, o) is a measurable space, then X is sf-complete ([1]) iff the space
of all sf-measurable functions on X is a strong Daniell lattice. In
particular, a topological space X is Borel-complete ([11]) iff the space of
all Borel-measurable functions on X is a strong Daniell lattice.

Some special cases of our results can be found in [10] and [17].
However, the methods of proof are different. Our proceeding seems to be
more direct; in contrast to [10] and [17], we do not make use of any
compactification.

Throughout this paper X will denote an arbitrary nonvoid set and
E < R a vector lattice (with respect to pointwise operations). 1, denotes the
indicator function of a subset @ of X. For feE we put |fll
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