

# The Mayer-Vietoris and the Puppe sequences in K-theory for $C^*$ -algebras

by

#### J. HILGERT (Darmstadt)

Abstract. We show the existence of a Mayer-Vietoris and a Puppe sequences in the K-theory for  $C^*$ -algebras. Both sequences generalize the respective sequences in the commutative case in the sense that they reduce to those sequences under the identification  $K_*(C_0(X)) = K^*(X)$  if all algebras involved are chosen to be commutative, i.e. of the form  $C_0(X)$  for a locally compact space X. The sequences are used to calculate the K-theory of certain bundle- $C^*$ -algebras with continuous identity field.

- 0. Notation and preliminaries. For any  $C^*$ -algebra A call SA:=  $\{f: [0, 1] \rightarrow A \text{ continuous, } f(0) = 0 = f(1)\}$  the suspension of A. For two  $C^*$ -algebras A and B we say that two morphisms  $\varphi_i \colon A \rightarrow B$ , i = 0, 1, are homotopic if there exists a family  $\Phi_i \colon A \rightarrow B$  of morphisms for  $t \in [0, 1]$  such that  $\Phi \colon I \times A \rightarrow B$  defined by  $\Phi(t, a) = \Phi_t(a)$  is jointly continuous and  $\Phi_i = \varphi_i$  for i = 0, 1. We write  $\varphi_1 \simeq \varphi_0$ . The morphism  $\varphi \colon A \rightarrow B$  is called a homotopy equivalence if there exists a morphism  $\psi \colon B \rightarrow A$  such that  $\varphi \circ \psi \simeq \mathrm{id}_B$  and  $\psi \circ \varphi \simeq \mathrm{id}_A$ . A  $C^*$ -algebra C is called contractible if  $\mathrm{id}_C \simeq 0$ :  $C \rightarrow C$ . Recall (cf. [3]) that the K-functor does not distinguish homotopic morphisms. Thus homotopy equivalences induce isomorphisms and contractible  $C^*$ -algebras have vanishing K-groups.
- I. Mayer-Vietoris sequence. Let  $B_1$ ,  $B_2$  and C be  $C^*$ -algebras and  $f_i$ :  $B_i \to C$   $C^*$ -morphisms for i = 1, 2. Suppose  $f_2$  is onto. Consider the pullback



The  $C^*$ -algebra D can be written as  $\{(b_1, b_2) \in B_1 \oplus B_2 : f_1(b_1) = f_2(b_2)\}$ . Then there is a natural inclusion  $j : D \to B_1 \oplus B_2$ . The map j induces group homomorphisms  $j_* : K_*(D) \to K_*(B_1) \oplus K_*(B_2)$ .

We define group homomorphisms  $v_*: K_*(B_1) \oplus K_*(B_2) \to K_*(C)$  by  $v_*: (f_1)_* - (f_2)_*$ , where  $(f_i)_*: K_*(B_i) \to K_*(C)$  is the group homomorphism

induced by  $f_i$  for i=1, 2. This means, for  $b_i \in K_*(B_i)$ , that  $v_*(b_1 \oplus b_2)$  $=(f_1)_*(\mathfrak{b}_1)-(f_2)_*(\mathfrak{b}_2).$ 

There are two more maps which play an important role in the Mayer-Vietoris sequence. We show the construction of  $\alpha_0$ :  $K_0(C) \to K_1(D)$ ; the map  $\alpha_1: K_1(C) \to K_0(D)$  is constructed analogously.

Note first that there is a natural isomorphism between ker  $f_2$  and ker  $g_1$ . Let  $l: \ker f_2 \to D$  be the inclusion induced by that isomorphism. Note also that the surjectivity of  $f_2$  implies that  $g_1$  is onto. Thus we get the following commutative diagram with exact rows:



This diagram induces the following commutative diagram with exact rows:

Now we define  $\alpha_0: K_0(C) \to K_1(D)$  by  $\alpha_0:=l_{\bullet} \circ \partial_f$ .

THEOREM (Mayer-Vietoris sequence, cf. [2], [6]). Let B<sub>1</sub>, B<sub>2</sub> and C be  $C^*$ -algebras,  $f_i: B_i \to C$  be  $C^*$ -morphisms for i = 1, 2 and let D be the pullback over  $f_1$  and  $f_2$ . Moreover, assume that  $f_2$  is surjective. Then the following seauence is exact:

Proof. First we show that im  $j_* \subset \ker v_*$ . For  $b \in K_*(D)$  we have  $v_+(j_+(b)) = v_+((g_1)_+(b) \oplus (g_2)_+(b))$  $= (f_1)_* ((g_1)_* (\mathfrak{d})) - (f_2)_* ((g_2)_* (\mathfrak{d})) = (f_1 \circ g_1)_* (\mathfrak{d}) - (f_2 \circ g_2)_* (\mathfrak{d}) = 0.$ 

The reverse inclusion is obtained by a diagram chase in the above diagram. Let  $b_1 \in K_+(B_1)$  and  $b_2 \in K_+(B_2)$  be such that  $(f_1)_+(b_1) = (f_2)_+(b_2)$ . Then  $\partial_{a}(b_{1}) = \partial_{f} \circ (f_{1})_{\bullet}(b_{1}) = \partial_{f} \circ (f_{2})_{\bullet}(b_{2}) = 0$  whence there exists  $b \in K_{\bullet}(D)$ such that  $(g_1)_{\bullet}(b) = b_1$ . We have  $(f_2)_{\bullet}(b_2 - (g_2)_{\bullet}(b)) = 0$  so that there exists  $a \in K_{+}(\ker f_2)$  with  $i_{+}(a) = b_2 - (g_2)_{+}(b)$ . Now we set  $b' = b + l_{+}(a)$  and obtain



 $(g_1)_{\star}(b') = (g_1)_{\star}(b) + 0 = b_1$  and  $(g_2)_{\star}(b') = (g_2)_{\star}(b) + (g_2 \circ l)_{\star}(a) = (g_2)_{\star}(b) + (g_2 \circ l)_{\star}(b) = (g_2)_{\star}(b) + (g_2)_{\star}(b) = (g_2)_{\star}$  $+i_{\star}(\mathfrak{a})=\mathfrak{b}_{2}$ . Thus we have proved that  $\mathrm{im}j_{\star}=\ker v_{\star}$ .

It remains to be shown that the Mayer-Vietoris sequence is exact at the corners. We show that for the right side, the left side is proved analogously. To see that im  $v_{+} \subset \ker \alpha_{+}$  calculate for  $b_{i} \in K_{+}(B_{i})$  that  $\alpha_{+}((f_{1})_{+}(b_{1}) -(f_2)_{\star}(b_2) = \alpha_{\star}((f_1)_{\star}(b_1)) - \alpha_{\star}((f_2)_{\star}(b_2)) = l_{\star} \circ \partial_{a}(b_1) - l_{\star} \circ \partial_{t} \circ (f_2)_{\star}(b_2) = 0.$ 

The reverse inclusion again requires a little diagram chase. Suppose, for  $c \in K_{+}(C)$ , that  $\alpha_{+}(c) = 0$ . Then  $l_{+} \circ \partial_{f}(c) = 0$  and there exists a  $b_{1} \in K_{+}(B_{1})$ with  $\partial_a(b_1) = \partial_f(c)$ . Therefore  $\partial_f((f_1)_*(b_1) - c) = \partial_g(b_1) - \partial_f(c) = 0$ . This in turn implies that there exists a  $b_2 \in K_{+}(B_2)$  with  $(f_2)_{+}(b_2) = (f_1)_{+}(b_1) - c$ , thus  $c = v_{+}(b_1 \oplus b_2).$ 

The inclusion im  $\alpha_* \subset \ker j_*$  is seen from the following calculation for  $c \in K_{\star}(C)$ . We have  $j_{\star}(\alpha_{\star}(c)) = j_{\star}(l_{\star} \circ \partial_{f}(c)) = (g_{1})_{\star} \circ l_{\star} \circ \partial_{f}(c) \oplus (g_{2})_{\star} \circ l_{\star} \circ \partial_{f}(c)$  $=0\oplus i_{\star}\circ\partial_{f}(\mathfrak{c})=0.$ 

Finally we get the reverse inclusion again by diagram chasing. Note that  $\ker j_{\bullet} = \ker (g_1)_{\bullet} \cap \ker (g_2)_{\bullet}$ . Thus for  $b \in \ker j_{\bullet}$  there exists an  $a \in K_{\bullet}(\ker f_2)$ with  $l_{+}(a) = b$ . We get  $i_{+}(a) = (g_2)_{+} \circ l_{+}(a) = 0$  and hence there exists a  $c \in K_*(C)$  with  $\partial_f(c) = a$ . This implies that  $\alpha_*(c) = l_* \circ \partial_f(c) = l_*(a) = b$ . This concludes the proof.

## II. Puppe sequence.

DEFINITION. Let A and B be C\*-algebras and  $\varphi: B \to A$  a C\*-morphism. Define the mapping cone, denoted by  $C_{\omega}$ , as follows:

$$C_{\varphi} = \{(b, f) \in B \oplus P(A): \ \varphi(b) = f(0), f(1) = 0\},\$$

where  $P(A) := \{f: I \to A \text{ continuous}\}\$  is the algebra of paths in A.

Given the map i:  $SA \to C_{\varphi}$  defined by i(f) = (0, f) we get a sequence of C\*-algebras which we call the Puppe sequence:

$$SB \xrightarrow{S\varphi} SA \xrightarrow{i} C_{\varphi} \xrightarrow{v_{\varphi}} B \xrightarrow{\varphi} A$$

where  $S\varphi(g) := \varphi \circ g$  and  $v_{\bullet}((b, f)) := b$ .

THEOREM. The Puppe sequence induces the following exact sequence in Ktheory:

$$K_0(C_p)$$
  $K_0(B)$   $K_0(A)$ 
 $K_1(A)$   $K_1(B)$   $K_1(C_p)$ 

Proof. First we show that we can replace  $K_{\pm}(SB)$  and  $K_{\pm}(SA)$  by  $K_*(C_i)$  and  $K_*(C_{\nu_m})$  respectively. In fact, we construct maps  $k: SA \to C_{\nu_m}$  and  $l: C_i \to SB$  that induce isomorphisms in K-theory and give a diagram of the following kind that is commutative up to homotopy:



We have  $C_{v_{\varphi}} = \{(b, f, g) \in B \oplus P(A) \oplus P(B): \varphi(g(0)) = f(0), f(1) = 0, b = g(0), g(1) = 0\}$  which we can identify with  $\{(f, g) \in P(A) \oplus P(B): \varphi(g(0)) = f(0), f(1) = 0, g(1) = 0\}$ . There is a map  $k: SA \to C_{v_{\varphi}}$  defined by k(f):=(f, 0). It is clearly injective. Now consider the cone  $CB:=\{g \in P(B): g(1) = 0\}$  and the map  $\mu: C_{v_{\varphi}} \to CB$  defined by  $\mu((f, g)) = g$ . Since  $((1-t)\varphi(g(0)), g) \in C_{v_{\varphi}}$  for any  $g \in CB$  we see that  $\mu$  is surjective. Clearly ker  $\mu = k(SA)$ . But the cone CB is contractible and therefore the six-term sequence associated to  $0 \to SA \to C_{v_{\varphi}} \to CB \to 0$  shows that  $k_*: K_*(SA) \to K_*(C_{v_{\varphi}})$  is an isomorphism. Moreover, the natural map  $v_v: C_{v_{\varphi}} \to C_{\varphi}$  defined by  $(f, g) \mapsto (g(0), f)$  makes the following triangle commutative:



Now consider the mapping cone  $C_i = \{(f, g, F) \in SA \oplus P(C_{\varphi}) \subset SA \oplus P(B) \oplus P(P(A)): i(f) = (g(0), F(\cdot, 0)), (g(1), F(\cdot, 1)) = (0, 0)\}$ . We can identify  $C_i$  with the algebra  $\{(g, F) \in P(B) \oplus P(P(A)): \varphi \circ g = F(0, \cdot), F(1, \cdot) = F(\cdot, 1) = 0, g(0) = g(1) = 0\}$ , as one easily sees, and consider the map  $l: C_i \to SB$  given by l(g,F) = g. For a given  $g \in SB$  set  $F(s,t) := (\varphi \circ g(t))(1-s)$ ; then  $(g,F) \in C_i$  and l(g,F) = g whence l is surjective. The kernel of l is  $\{(g,F) \in P(B) \oplus P(P(A)): F(0,\cdot) = F(1,\cdot) = F(\cdot,1) = 0\}$  which is isomorphic to the cone C(SA). Thus  $l_*: K_*(C_i) \to K_*(SB)$  is an isomorphism. The map  $v_i: C_i \to SA$  is given by  $(g,F) \mapsto F(\cdot,0)$ . Consider the family of maps  $\Phi_i: C_i \to SA$  defined by  $\Phi_i(s) := F(s(1-t), st)$ ; then  $\Phi_0 = v_i, \Phi_1(s) = F(0,s)$  and  $\Phi_i$  is a homotopy. Clearly  $\Phi_1 = S\varphi \circ l$ .

Now it suffices to prove that any sequence  $C_{\varphi} \xrightarrow{p} B \xrightarrow{\varphi} A$ , where  $C_{\varphi}$  is the mapping cone of  $\varphi$  and the map  $v_{\varphi}$  is the projection onto the first factor, induces an exact sequence in K-theory. But this sequence gives rise to the short exact sequence  $0 \to SA \to C_{\varphi} \to B \to 0$  which in turn induces the exact sequence  $K_n(C_{\varphi}) \to K_n(B) \to K_{n-1}(SA)$ . Since the triangle



where the vertical map is the suspension isomorphism commutes we deduce that  $K_{\star}(C_{\omega}) \to K_{\star}(B) \to K_{\star}(A)$  is exact. Thus the following sequence is exact:

$$K_{\star}(SB) \xrightarrow{S\varphi_{\star}} K_{\star}(SA) \to K_{\star}(C_{\varphi}) \to K_{\star}(B) \xrightarrow{\varphi_{\star}} K_{\star}(A)$$

and we remark that  $C_{S\varphi} = S(C_{\varphi})$  so that we can close the exact sequence to obtain the diagram in the statement of the theorem.

III. Examples. The Mayer-Vietoris and the Puppe sequences can be applied to calculate the K-theory of  $C^*$ -algebras that are represented as section algebras of  $C^*$ -bundles. The following simple examples show how to calculate the K-groups of a section algebra from the K-groups of restrictions to smaller spaces.

Let  $Y \subset X$  be compact spaces. Define a  $C^*$ -algebra D as the following pullback:

$$\begin{array}{c}
D \longrightarrow M_{nk}(C(X)) \\
\downarrow r \\
\downarrow r \\
M_k(C(Y)) \longrightarrow M_{nk}(C(Y))
\end{array}$$

Here r simply denotes the restriction to Y and d is the map that assigns the block diagonal matrix

$$\begin{bmatrix} f \\ \cdot \cdot \cdot_f \end{bmatrix}$$

to an  $f \in M_k(C(Y))$ , the  $k \times k$ -matrix algebra over the continuous functions on Y. For the sake of brevity we define  $B := M_{nk}(C(X))$ ,  $A := M_k(C(Y))$  and  $C := M_{nk}(C(Y))$ . We obtain the Mayer-Vietoris sequence

The map  $d_{\bullet}: K_{\bullet}(A) \to K_{\bullet}(C)$  is, if we identify  $K_{\bullet}(A)$  with  $K_{\bullet}(C)$  under  $\varphi_{\bullet}: K_{\bullet}(A) \to K_{\bullet}(C)$  induced by the inclusion  $\varphi: A \to C$  which maps  $a \in A$  to the matrix in C that has a in the upper left corner and zeros elsewhere, just multiplication by n. If X is a contractible space and  $y_0 \in Y$ , the map



ev:  $B \to M_{nk} = M_{nk}(C)$  given as the evaluation at  $y_0$  is a homotopy equivalence. Thus with the canonical embedding  $j: M_{nk} \to C$  we get a commutative triangle up to homotopy:



Thus the triangle in K-theory induced by this one commutes, and since ev<sub>\*</sub> is an isomorphism, we can replace  $K_*(B)$  by  $K_*(M_{nk})$  and  $r_*$  by  $j_*$ . If we set  $A:=\{f\in A: f(y_0)=0\}$  we get a split exact sequence  $0\to A\to A\to M_k\to 0$  and hence we get a split exact sequence in K-theory  $0\to K_*(A)\to K_*(A)\to K_*(A)\to K_*(M_k)\to 0$ . Note that  $K_1(M_{nk})=K_1(M_k)=K_1(C)=0$  and  $K_0(M_{nk})=K_0(C)=Z$ . Hence we get the following exact sequence:



where the maps  $v_1$  and  $v_0$  are given as follows:  $v_1(\mathfrak{a}) = -n\mathfrak{a}$  for  $\mathfrak{a} \in K_1(\mathring{A})$  and

$$v_0(m \oplus (a \oplus l)) = (0 \oplus m) - n(a \oplus l) = -na \oplus (m-nl)$$

for  $m \oplus (a \oplus l) \in Z \oplus (K_0(A) \oplus Z)$ . If we assume that  $K_1(A)$  is torsion free, then  $v_1$  is injective and therefore  $K_1(D) \cong K_0(A) \oplus Z/\text{im } v_0$ . But for  $c, b \in K_0(A)$  and  $m_c, m_d \in Z$  we have  $c \oplus m_c - b \oplus m_d \in \text{im } v_0$  if and only if there is an  $a \in K_0(A)$  and  $m, l \in Z$  such that c - b = -na and  $m_c - m_d = m - nl$ . The condition on the integers is always satisfied, thus  $K_1(D) \cong K_0(A)/nK_0(A) = K_0(A)/nK_0(A)$  is torsion free, too. Further, we have the exact sequence  $0 \to K_1(A)/\text{im } v_1 \to K_0(D) \to \text{ker } v_0 \to 0$ . We assumed  $K_0(A)$  to be torsion free, so  $\text{ker } v_0 = \{m \oplus (a \oplus l) \in Z \oplus (K_0(A) \oplus Z): -na = 0, m = nl\} \cong Z$ . Thus the sequence splits and since  $\text{im } v_1 = nK_1(A)$  we have  $K_0(D) \cong (K_1(A) \otimes Z/nZ) \oplus Z$ . If we now observe that  $K_*(A) \cong K_*(C_0(Y)) = K^*(Y)$  we get the following

Example 1. Let  $Y \subset X$  be compact spaces such that X is contractible and  $\tilde{K}^*(Y)$  torsion free, and let D be the  $C^*$ -algebra of continuous functions from X into  $M_{nk}$  such that the values on Y are block diagonal matrices with identical blocks of size  $k \times k$ . Then  $K_0(D) = (\tilde{K}^1(Y) \otimes Z/nZ) \oplus Z$  and  $K_1(D) = \tilde{K}^0(Y) \otimes Z/nZ$ .

Similarly one calculates

EXAMPLE 2. Let  $Y \subset X$  be compact spaces with X contractible and D the algebra of continuous functions  $X \to M_{nk}$  that map Y to block diagonal matrices with blocks of size  $k \times k$ . Then  $K_0(D) = (\tilde{K}^0(Y))^{n-1} \oplus \mathbb{Z}^n$  and  $K_1(D) = (\tilde{K}^1(Y))^{n-1}$ .

The assumption that X be contractible has of course been made to avoid problems in calculation which arise from the fact that we do not know the map  $r_*$ :  $K_*(B) \to K_*(C)$  in general. There are some more cases where we know this map.

EXAMPLE 3. Let  $Y \subset X$  be compact spaces and Y a deformation retract of X. Let D be the  $C^*$ -algebra of continuous functions  $X \to M_{nk}$  such that the values on Y are block diagonal matrices with identical blocks of size  $k \times k$ . Then  $K_*(D) \cong K^*(Y)$ . If the condition that the blocks be identical is dropped we have:  $K_*(D) \cong K^*(X) \oplus (K^*(Y))^{n-1}$ .

We have seen that torsion in the K-groups can cause trouble. In some cases we can get around that using the Puppe sequence.

Let X and Y be compact spaces and  $f: Y \to X$  a continuous map. Consider the mapping cone  $C_f$ . We obtain a map  $f': Y \to C_f$  which is the composition of f and the canonical map  $g: X \to C_f$ . Now consider the  $C^*$ -algebras  $M_k(C(X))$  and  $M_{nk}(C(Y))$ . We get a map  $\varphi: M_k(C(X)) \to M_{nk}(C(Y))$  by  $\varphi(a) := d(a \circ f)$  [cf. Example 1 for the definition of d]. Consider the mapping cylinder  $M_{\varphi}$  given by the pullback



where ev is the evaluation at t=0. Note that  $P(M_{nk}(C(Y)))$  is canonically isomorphic to  $M_{nk}(C(Y \times I))$  and  $M_k(C(X))$  is canonically isomorphic to the algebra of maps  $X \to M_{nk}$  whose values are block diagonal matrices with identical blocks of size  $k \times k$ . Thus we see that  $C_{\varphi}$  is the  $C^*$ -algebra of maps from  $C_f$  into  $M_{nk}$  whose values on g(X) are block diagonal matrices with identical blocks of size  $k \times k$  and which vanish on  $y_0 \in C_f$ , the vertex of the cone. Now it is easy to get

EXAMPLE 4. Let X and Y be compact spaces and  $f: Y \to X$  a continuous function. Let  $C_f$  be the mapping cone of f and D the  $C^*$ -algebra of continuous functions from  $C_f$  into  $M_{nk}$  whose values on the canonical image of X in  $C_f$  are block diagonal matrices with identical blocks of size  $k \times k$ . Let D be the subalgebra of D consisting of those maps that vanish on  $y_0 \in C_f$ , the



vertex of the cone. Then  $K_*(D) \cong K_*(D)$  and we get the following exact sequence:



Finally, if we drop the condition on the blocks, we get

Example 5. Let X and Y be compact spaces and  $f\colon Y\to X$  a continuous function. Let  $C_f$  be the mapping cone of f and D the  $C^*$ -algebra of maps from  $C_f$  into  $M_{nk}$  whose values on the canonical image of X in  $C_f$  are block diagonal matrices with blocks of size  $k\times k$ . Let  $\mathring{D}:=\ker$  where  $\ker$  is the evaluation at the vertex  $y_0\in C_f$ . Then  $K_1(D)\cong K_1(\mathring{D})$  and  $K_0(D)\cong Z\oplus K_0(\mathring{D})$ . Moreover, we have the following exact sequence:



#### References

- M. J. Dupré and R. Gillette, Banach bundles, Banach modules and automorphisms of C\*algebras, preprint, 1980.
- [2] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
- [3] J. Hilgert, Foundations of K-theory for C\*-algebras, Tulane Dissertation, 1982.
- [4] M. Karoubi, Foncteurs dérivés et K-théorie, in: Lecture Notes in Math. 136, Springer, Berlin 1971, 107-186.
- [5] -, K-Theory, An Introduction, Springer, Berlin 1978.
- [6] J. Milnor, Introduction to Algebraic K-Theory, Princeton University Press, 1971.
- [7] J. Rosenberg, Homological invariants of extensions of C\*-algebras, preprint, 1980.
- [8] -, The role of K-theory in noncommutative algebraic topology, preprint, 1980.
- [9] C. Schochet, Topological methods for C\*-algebras III, axiomatic homology, Pacific J. Math. 114 (1984), 399-445.
- [10] J. L. Taylor, Banach algebras and topology, in: Algebras in Analysis, J. H. Williamson (ed.), Academic Press 1975.

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE

Schlossgartenstr. 7, 6100 Darmstadt, West Germany

Received August 29, 1983 Revised version February 14, 1985 (1916)

# τ-smooth linear functionals on vector lattices of real-valued functions

by

### WOLFGANG ADAMSKI (München)

Abstract. A vector lattice E of real-valued functions is said to be a strong Daniell lattice if every positive linear functional  $\Phi$ :  $E \to R$  is  $\tau$ -smooth (i.e.  $\lim_{\alpha} \Phi(f_{\alpha}) = 0$  for every net  $(f_{\alpha})$  in E with  $f_{\alpha} \downarrow 0$ ). Under some additional assumptions which, in general, cannot be omitted, several characterizations of strong Daniell lattices are given. These results are then applied to the vector lattices  $\mathcal{C}(\mathcal{L}, \mathcal{B})$  and  $\mathcal{C}^{b}(\mathcal{L}, \mathcal{B})$  of  $\mathcal{L}$ -continuous (and bounded) functions with  $\mathcal{B}$ -bounded support, where  $\mathcal{L}$  denotes a lattice of sets and  $\mathcal{B}$  is an  $\mathcal{L}$ -bounding system.

- 1. Introduction. This paper is a continuation of [4]. However, whereas in [4] we are concerned with the characterization of Daniell lattices (i.e. vector lattices E of real-valued functions having the property that every positive linear functional on E is  $\sigma$ -smooth), we consider in this paper only such vector lattices on which every positive linear functional is  $\tau$ -smooth. Under some additional assumptions which, in general, cannot be omitted, we give several characterizations of these so-called strong Daniell lattices. As application of these general characterization theorems, we can prove, among others, the following results:
- (1) For a completely regular space X the following statements are equivalent:
  - (a) X is realcompact.
  - (b) The space of all continuous functions on X is a strong Daniell lattice.
  - (c) The space of all Baire-measurable functions on X is a strong Daniell lattice.
- (2) If (X, A) is a measurable space, then X is A-complete ([1]) iff the space of all A-measurable functions on X is a strong Daniell lattice. In particular, a topological space X is Borel-complete ([11]) iff the space of all Borel-measurable functions on X is a strong Daniell lattice.

Some special cases of our results can be found in [10] and [17]. However, the methods of proof are different. Our proceeding seems to be more direct; in contrast to [10] and [17], we do not make use of any compactification.

Throughout this paper X will denote an arbitrary nonvoid set and  $E \subset \mathbb{R}^X$  a vector lattice (with respect to pointwise operations).  $1_Q$  denotes the indicator function of a subset Q of X. For  $f \in E$  we put ||f||