B. Cuartero and M. A. Triana

- [7] N. J. Kalton, Plurisubharmonic functions on quasi-Banach spaces, Studia Math. 84 (3) (1986), to appear.
- [8] J. L. Krivine, Théorèmes de factorisation dans les espaces réticulés, Sém. Maurey-Schwartz 1973-74, Exposés 22-23, École Polytechnique, Paris.
- [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, 1979.
- [10] M. R. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud., Princeton University Press, 1981.
- [11] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L. Astérisque 11 (1974), Soc. Math. France.
- [12] N. Popa, Uniqueness of the symmetric structure in $L_p(\mu)$ for 0 , Rev. Roumaine Math. Pures Appl. 27 (10) (1982), 1061-1083.
- [13] M. A. Triana, Espacios F-normados de funciones y sucesiones vectoriales, Doctoral Thesis, Zaragoza 1984.
- [14] P. Turpin, Représentation fonctionnelle des espaces vectoriels topologiques, Studia Math. 73 (1982), 1-10.

DEPARTAMINTO TEORÍA DE FUNCIONES FACULIAD DE CIENCIAS (MATEMÀTICAS) 50000 Zaragoza. Spain and DEPARTAMENTO MATEMÀTICAS I FTSII. UNIVERSIDAD DE ZARAGOZA 50000 ZURAGOZA. Spain

124

Received December 24, 1984 (2024) Revised version August 22, 1985 icm®

STUDIA MATHEMATICA, T. LXXXIV. (1986)

A direct proof of van der Vaart's theorem

b

J. BOURGAIN (Brussels and Pasadena, Cal.) and H. SATO (Fukuoka)

Abstract. The aim of this paper is to give a direct and simple proof of van der Vaart's theorem [3] determining the absolutely continuous component of a signed measure on R^d from its characteristic functional.

1. Introduction and results. Let

$$d\lambda(t) = d\lambda(t_1, t_2, ..., t_d) = (2\pi)^{-d/2} dt_1 dt_2 ... dt_d$$

be the modified Lebesgue measure on \mathbf{R}^d , for a λ -integrable function f on \mathbf{R}^d define the Fourier transform by

$$\widetilde{f}(\alpha) = \int_{\mathbf{R}^d} e^{i(\alpha,t)} f(t) d\lambda(t), \quad \alpha \in \mathbf{R}^d,$$

where (α, t) is the inner product of \mathbb{R}^d , let \mathscr{K} be the collection of all λ -integrable functions \varkappa which satisfy the following conditions:

- (1) $\{ \varkappa(t) \, d\lambda(t) = 1.$
- (2) There exists a > 1 such that

$$Q(\varkappa) = \sup_{t \in \mathbb{R}^d} (1 + ||t||^{da}) |\varkappa(t)| < +\infty,$$

where ||t|| is the Euclidean norm on \mathbb{R}^d , and define

$$\widetilde{\mathcal{K}} = \{ \varkappa \in \mathcal{K}; \ \widetilde{\varkappa} \in L^1(\lambda) \}.$$

Furthermore, for every \varkappa in $\mathscr K$ and T>0 define $\varkappa_T(t)=T^d\varkappa(Tt)$. Then evidently we have for every T>0,

$$\int \kappa_T(t) d\lambda(t) = 1$$
 and $\tilde{\kappa}_T(\alpha) = \tilde{\kappa}(\alpha/T)$.

Let μ be a signed measure on \mathbf{R}^d . Then we have the Lebesgue decomposition

$$d\mu(t) = \frac{d\mu}{d\lambda}(t) d\lambda(t) + d\mu_{s}(t),$$

where μ_s is the singular component of μ .

In this paper we shall prove the following theorems.

Proof of van der Vaart's theorem

Theorem 1. Let μ be a signed measure on \mathbf{R}^d . Then we have for every \varkappa in $\mathscr K$

$$\frac{d\mu}{d\lambda}(t) = \lim_{T \to +\infty} \int_{\mathbf{r}d} \varkappa_T(t-s) \, d\mu(s), \quad a.e. \ (d\lambda),$$

and the exceptional null set does not depend on the choice of \varkappa .

As an application of Theorem 1, we have the following theorem.

Theorem 2. Let μ be a signed measure on $I\!\!R^d$ and $\widetilde{\mu}(\alpha)$ the characteristic functional of μ defined by

$$\widetilde{\mu}(\alpha) = \int_{\mathbf{R}^d} e^{i(\alpha,t)} d\mu(t), \quad \alpha \in \mathbf{R}^d.$$

Then we have for every \varkappa in \mathscr{K}

$$\frac{d\mu}{d\lambda}(t) = \lim_{T \to +\infty} \int_{\mathbb{R}^d} e^{-i(\alpha,t)} \widetilde{\mu}(\alpha) \widetilde{\varkappa}(\alpha/T) d\lambda(\alpha), \quad a.e. \ (d\lambda),$$

and the exceptional null set does not depend on the choice of x.

Corollary. For every λ -integrable function f and every \varkappa in $\tilde{\mathscr{K}}$ we have

$$f(t) = \lim_{T \to +\infty} \int_{\mathbf{g}d} e^{-i(\alpha,t)} \tilde{f}(\alpha) \, \tilde{\varkappa}(\alpha/T) \, d\lambda(\alpha), \quad a.e. \ (d\lambda),$$

and the exceptional null set does not depend on the choice of κ .

The above theorems were first proved by van der Vaart ([3], Lemma 2.6 and Theorem 1) for a slightly more general class of kernel functions. J. Bourgain gave a direct proof for the kernel function $\varkappa(t) = \exp(-\frac{1}{2}||t||^2)$ (see H. Sato [2], Lemma 3). Combining the idea of J. Bourgain and the arguments of W. Rudin [1], we shall give the direct proofs in simplified formulations. The authors consider that the class $\mathscr K$ of kernel functions is sufficient for the practical use.

2. Proofs of theorems. For any signed measure μ on \mathbf{R}^d and any \varkappa in $\mathscr K$ define

$$(D_{\varkappa}\,\mu)(t) = \lim_{T \to +\infty} \int_{\mathbb{R}^d} \varkappa_T(t-s) \, d\mu(s)$$

if the right side converges. Then, since we have $D_{\kappa} = c^+ D_{(1/c^+)\kappa^+} - c^- D_{(1/c^-)\kappa^-}$ where

$$\varkappa = \varkappa^+ - \varkappa^-, \quad c^+ = \int \varkappa^+ d\lambda, \quad c^- = \int \varkappa^- d\lambda \quad \text{and} \quad c^+ - c^- = 1,$$

without loss of generality we may assume that $\varkappa(t) \ge 0$, a.e. $(d\lambda)$. Therefore in the remaining part of the paper we always assume that every kernel function \varkappa in $\mathscr K$ is nonnegative.

Fix a positive number a > 1 and define

$$\mathscr{K}_a = \big\{ \varkappa \in \mathscr{K} \colon \, Q(\varkappa) = \sup_{\cdot} (1 + ||t||^{da}) \, \varkappa(t) < +\infty \big\},\,$$

$$\varphi(t) = \frac{1}{1 + ||t||^{da}},$$

and $\varphi_T(t) = T^d \varphi(Tt)$, $t \in \mathbb{R}^d$, T > 0. Then for every finite measure μ on \mathbb{R}^d the function

$$(D\mu)(t) = \limsup_{T \to +\infty} \int_{\mathbb{R}^d} \varphi_T(t-s) d\mu(s)$$

is Borel measurable since for every $T_0 > 0$

$$\sup_{T>T_0} \int_{\mathbf{R}^d} \varphi_T(t-s) \, d\mu(s)$$

is lower semi-continuous.

Lemma 1. Let μ be a finite measure on \mathbf{R}^d and A a Borel subset such that $\mu(A) = 0$. Then there exists a Borel subset $\Omega_a \subset A$ such that $\lambda(A \setminus \Omega_a) = 0$ and

$$(D_{\kappa}\mu)(t)=0, \quad t\in\Omega_a,$$

for every \varkappa in \mathscr{K}_a .

Proof. For every \varkappa in \mathscr{K}_a and every t in \mathbb{R}^d we have

$$0 \leqslant \liminf_{T} \int \varkappa_{T}(t-s) \, d\mu(s) \leqslant \limsup_{T} \int \varkappa_{T}(t-s) \, d\mu(s)$$

$$\leqslant Q(\varkappa) \lim \sup_{T} \int \varphi_{T}(t-s) \, d\mu(s) = Q(\varkappa) \, \bar{D}\mu(t).$$

Therefore, if we show that $\bar{D}\mu(t) = 0$ for λ -almost all t in A, then we have

$$D_{\varkappa}\mu(t)=0, \quad t\in\Omega_a=\{t\in A; \ \bar{D}\mu(t)=0\},$$

for every \varkappa in \mathscr{K}_a .

Without loss of generality we may assume that μ is a probability measure and define $\mathscr{A} = \{t \in A; \ \bar{D}\mu(t) > 0\}$ and for every positive number γ , $\mathscr{A}_{\gamma} = \{t \in A; \ \bar{D}\mu(t) > \gamma\}$. Then in order to show that $\lambda(\mathscr{A}) = 0$ it is sufficient to show that $\lambda(\mathscr{A}) = 0$ for every $\gamma > 0$.

For every t in \mathscr{A}_{γ} there exists a sequence of positive numbers $T_k = T_k(t)$ $\mathscr{I}_{\gamma} + \infty$ such that

$$\int \varphi_{T_k}(t-s) \, d\mu(s) > \gamma$$

for every k in $N = \{0, 1, 2, 3, ...\}$.

Assume that for t in \mathcal{A}_{y} and T > 0 we have

$$\int \varphi_T(t-s)\,d\mu(s) > \gamma,$$

and define

$$B_k = \{ s \in \mathbb{R}^d : e^{-k} \ge \varphi(T(t-s)) > e^{-(k+1)} \}, \quad k \in \mathbb{N}.$$

Then we have

$$\gamma/T^d \leqslant \int \varphi(T(t-s)) d\mu(s) \leqslant \sum_{k=0}^{+\infty} e^{-k} \mu(B_k).$$

Let l = l(T) be the maximal natural number which does not exceed $\log \left[2e^2/(e-1)\gamma\right] + d(\log T)$. Then we have

$$\sum_{k \ge l} e^{-k} = \frac{e^{-l}}{1 - e^{-1}} \le \frac{\gamma}{2T^d}$$

so that

$$\gamma/T^d \leqslant \sum_{k=0}^{\infty} e^{-k} \mu(B_k) \leqslant \sum_{k< l} e^{-k} \mu(B_k) + \sum_{k \ge l} e^{-k}$$
$$\leqslant \sum_{k < l} e^{-k} \mu(B_k) + \gamma/(2T^d)$$

and consequently

$$\sum_{k < l} e^{-k} \mu(B_k) \geqslant \gamma/(2T^d).$$

Define b = (a-1)/(2a) > 0, $L = (1 - e^{-b})^{-1}$ and $M = \gamma/(2L)$. Then there exists k(T) < l = l(T) such that

$$\mu(B_{k(T)}) \geqslant \frac{M}{T^d} e^{(1-b)k(T)}.$$

For assume the contrary. Then we have

$$\sum_{k<1} e^{-k} \mu(B_k) < \sum_{k<1} \frac{M}{T^d} e^{-bk} \leqslant \frac{ML}{T^d} = \frac{\gamma}{2T^d},$$

which is a contradiction.

For every k in N we have

$$C_k(t) = \left\{ s \in \mathbf{R}^d; \ \varphi\left(T(t-s)\right) > e^{-(k+1)} \right\}$$

$$= \left\{ s \in \mathbf{R}^d; \ (1+T^{da}||t-s||^{da})^{-1} > e^{-(k+1)} \right\}$$

$$\subset \left\{ s \in \mathbf{R}^d; \ ||t-s|| < \frac{1}{T} \exp\left[\frac{k+1}{da}\right] \right\} = S_k(t),$$

$$\lambda\left(S_k(t)\right) = \frac{\lambda(V)}{T^d} \exp\left[\frac{k+1}{a}\right],$$

where V is the unit ball of \mathbf{R}^d , and

$$\mu(S_{k(T)}(t)) \geqslant \mu(C_{k(T)}(t)) \geqslant \mu(B_{(k(T)}(t))) \geqslant \frac{M}{T^d} e^{(1-b)k(T)}.$$

Since we have

$$\delta = \inf_{k} \frac{M \exp\left[(1-b)k\right]}{\lambda(V) \exp\left[(k+1)/a\right]} = \inf_{k} \frac{M}{\lambda(V)} \exp\left[\frac{a-1}{2a}k - \frac{1}{a}\right] > 0,$$

therefore

$$\mu(S_{k(T)}(t)) \geqslant \mu(B_{k(T)}(t)) \geqslant \delta \lambda(S_{k(T)}(t)).$$

On the other hand we have

radius
$$S_{k(T)}(t) = \frac{1}{T} \exp\left[\frac{k(T)+1}{da}\right] \leqslant \frac{1}{T} \exp\left[\frac{l(T)+1}{da}\right]$$

 $\leqslant \frac{2e^2}{\gamma(e-1)} \left(\frac{1}{T}\right)^{\frac{a-1}{a}} \to 0 \quad \text{as } T \to +\infty.$

Thus we have proved that the collection of open subsets

$$\Sigma = \{ S_{k(T)}(t); \ t \in \mathcal{A}_{\gamma}, \ T > 0, \ \int \varphi_T(t-s) \, d\mu(s) > \gamma \}$$

is a substantial family of W. Rudin [1], Definition 8.2, and that every S in Σ satisfies the inequality

$$\mu(S) \geqslant \delta \lambda(S)$$
.

Let K be any compact subset of \mathcal{A}_{γ} and for every natural number p define

$$\Sigma_p = \{ S \in \Sigma; \text{ radius } S < 1/p \}.$$

Then, since Σ_p is an open covering of K, there are S^1 , S^2 , S^3 ,..., S^n in Σ_p such that $\bigcup_{i=1}^n S^i \supset K$. By Theorem 8.5 of W. Rudin [1] we can extract S^{i1} , S^{i2} ,..., S^{im} , a disjoint subcollection of S^1 , S^2 ,..., S^n such that

$$\lambda \left(\bigcup_{i=1}^{n} S^{i} \right) \leqslant 3^{d} \lambda \left(\bigcup_{i=1}^{m} S^{ij} \right).$$

Let K_p be the 1/p-neighborhood of K. Then we have

$$\lambda(K) \leqslant \lambda\left(\bigcup_{i=1}^{n} S^{i}\right) \leqslant 3^{d} \lambda\left(\bigcup_{j=1}^{m} S^{ij}\right) = 3^{d} \sum_{i=1}^{m} \lambda(S^{ij})$$
$$\leqslant \frac{1}{\delta} 3^{d} \sum_{i=1}^{m} \mu(S^{ij}) = \frac{3^{d}}{\delta} \mu\left(\bigcup_{j=1}^{m} S^{ij}\right) \leqslant \frac{3^{d}}{\delta} \mu(K_{p}),$$

so that

$$\mu(K) \leqslant \frac{3^d}{\delta} \lim_{p \to +\infty} \mu(K_p) = \frac{3^d}{\delta} \mu(K) < \frac{3^d}{\delta} \mu(A) = 0.$$

Since the compact subset K of \mathcal{A}_{ν} is arbitrary, the regularity of λ shows that $\lambda(\mathcal{A}) = 0$.

It is obvious that $\Omega_a = A \setminus \bigcup \mathcal{A}_{1/n}$ is the desired set.

The above lemma implies immediately the following lemma.

LEMMA 2. Let μ be a finite measure on \mathbb{R}^d and A a Borel subset such that $\mu(A) = 0$. Then there exists a Borel subset $\Omega \subset A$ such that $\lambda(A \setminus \Omega) = 0$ and for every x in X

$$D_{\varkappa} \mu(t) = 0, \quad t \in \Omega.$$

Proof. Define $\Omega = \bigcap \Omega_{(1+1/n)}$ where $\Omega_{(1+1/n)}$ is defined by Lemma 1. Then, since $\mathscr{K} = \bigcup \mathscr{K}_{(1+1/n)}$, we have the desired result.

Proof of Theorem 1. Let μ be a signed measure on \mathbb{R}^d with the Lebesgue decomposition

$$d\mu(t) = \frac{d\mu}{d\lambda}(t) d\lambda(t) + d\mu_{s}(t).$$

Then, since μ_s is singular to λ , there exists a Borel subset A such that

$$\lambda(A^{c}) = \mu_{s}^{+}(A) = \mu_{s}^{-}(A) = 0$$

where μ_s^+ and μ_s^- are the positive and negative variation of μ_s , respectively. Therefore by Lemma 2 there exists a Borel subset \mathcal{N}_{\bullet} of A such that

$$D_{\mathbf{x}} \mu_{\mathbf{s}}(t) = 0, \quad t \in A \setminus \mathcal{N}_{\mathbf{s}}$$

for every \varkappa in \mathscr{K} . On the other hand, define for every rational number r

$$F_r = \left\{ t \in \mathbf{R}^d; \ \frac{d\mu}{d\lambda}(t) \geqslant r \right\},$$

for every natural number m

$$G_m = \{t \in \mathbb{R}^d; ||t|| < m\},$$

and for every Borel subset E

$$v_r^m(E) = \int_{E \cap F_r \cap G_m} \left(\frac{d\mu}{d\lambda}(t) - r \right) d\lambda(t).$$

Then v_{\bullet}^{m} is a finite measure on \mathbf{R}^{d} and by the same arguments as in the proof of Theorem 8.6 of W. Rudin [1] there exists a Borel subset $\mathcal{N}_m \subset G_m$ such that $\lambda(\mathcal{N}_m) = 0$ and

$$D_{\kappa} \mu(t) = \frac{d\mu}{d\lambda}(t), \quad t \in G_{m} \setminus \mathcal{N}_{m}$$

for every \varkappa in \mathscr{K} .

Finally define $\mathcal{N} = \bigcup \mathcal{N}_m$. Then we have $\lambda(\mathcal{N}) = 0$ and

$$D_{\mathbf{x}} \mu(t) = \frac{d\mu}{d\lambda}(t), \quad t \in \mathbf{R}^d \setminus \mathcal{N},$$

for every \varkappa in \mathscr{K} , which proves Theorem 1.

Proof of Theorem 2. For every signed measure μ on \mathbb{R}^d , every \varkappa in \mathcal{J} and every T>0 we have

$$\int\limits_{\mathbf{R}^d} e^{-i(\alpha,t)}\,\widetilde{\mu}(\alpha)\,\widetilde{\varkappa}(\alpha/T)\,d\lambda(\alpha) = \int\limits_{\mathbf{R}^d} \varkappa_T\left(t-s\right)d\mu(s)$$

and Theorem 1 proves Theorem 2.

References

- [1] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1966.
- [2] H. Sato, Characteristic functional of a probability measure absolutely continuous with respect to a Gaussian Radon measure, J. Funct. Anal. 61 (1985), 222-245.
- [3] H. R. van der Vaart, Determining the absolutely continuous component of a probability distribution from its Fourier-Stieltjes transform, Ark. Mat. 7 (1967), 331-342.

DEPARTMENT OF MATHEMATICS, VRIJE UNIVERSITEIT Pleinlaan, 2-F7, 1050 Brussels, Belgium

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California 91125, U.S.A.

DEPARTMENT OF MATHEMATICS.

KYUSHU UNIVERSITY

Hakozaki, Fukuoka, 812 Japan

Received February 27, 1985

(2035)