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A direct proof of van der Vaart’s theorem
by

J. BOURGAIN (Brussels and Pasadena, Caly and H. SATO (Fukuoka)

Abstract. The aim of this paper is to give a direct and simple proof of van der Vaart's
theorem [3] determining the absolutely continuous component of a signed measure on R from
ity characteristic functional.

1. Introduction and results. Let

diQt) = dilty, ty,..., ty) = (2n)" 2 dt, dt, ... dt,

be the modified Lebesgue measure on RY for a l-integrable function f on R?
define the Fourier transform by

J = [&® f(dA(), «eR,
x

where (x, 1) is the inner product of RY let 2 be the collection of all i-
integrable functions » which satisfy the following conditions:

() fxydity=1.
(2) There exists « > 1 such that

Q () = sup(L+]]¢l|")

Te

where ||#]} is the Euclidean norm on RY and define
H={xed; Zcl(1).

Furthermore, for every » in # and T >0 define xp(f) = T3 (Tt). Then
evidently we have for every T > 0,

frr(NdA() =1 and %Zp(0)=Z(yT).

Let u be a signed measure on RY Then we have the Lebesgue
decomposition

x(t) < + o0,

d
du(t) = ;—f{(z) dA () +dpss (1),

where f, is the singular component of pu.
In this paper we shall prove the following theorems.
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Tueorem 1. Let p be a signed measure on R'. Then we have for every
in A

Ei-/i(r)= lim [ xp(t—s)du(s), ae. (d2),
d/-t T->+cund

and the exceptional null set does not depend on the choice of x.
As an application of Theorem 1, we have the following theorem,
THEOREM 2. Let p be a signed measure on RY and [i(o) the characteristic
Sunctional of u defined by

H) = [ “du(t), aeR’.
R

Then we have for every x in X

du .

[ e D f) 7o/ T)dAw), ae (dA),
K

and the exceptional null ser does not depend on the choice of x.
CoroLLARY. For every A-integrable function f and every » in & we have

f@)=lim [e™®f(2)7(a/T)dA(2),

T—H-uond

a.e. (dA),

and the exceptional null set does not depend on the choice of x.

The above theorems were first proved by van der Vaart ([3], Lemma 2.6
and Theorem 1) for a slightly more general class of kernel functions. J,
Bourgain gave a direct proof for the kernel function »(r) = exp(—4/[¢]|?) (see
H. Sato [2], Lemma 3). Combining the idea of J. Bourgain and the
arguments of W. Rudin [1], we shall give the direct proofs in simplified
formulations. The authors consider that the class # of kernel functions is
sufficient for the practical use.

2. Proofs of theorems. For any signed measure y on R? and any » in A
define

(Dw(®) = lim [ sep (=) du(s
T-'+aoRd

if the right side converges. Then, since we have D,=c*D

—c DU/D_)”- where

/ety

x=xT—x", ¢t= fx*dd, ¢ =[x"di and c*—c"=1,
without loss of generality we may assume that %x(t) 2 0, a.e. (d4). Therefore in

the remaining part of the paper we always assume that every kernel function
% in . is nonnegative.

icm®
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Fix a positive number a > 1 and define
Hp=lne A Q) =sup(1+[ld*)%(1) < +o},
t

1
o(1) ZW’

and @ (f) = T @(Tt), te R, T > 0. Then for every finite measure x on R’ the

function

Dy (1) =limsup [ @r(t—s)du(s)
T+ w R‘I
is Borel measurable since for every Ty >0

sup | or(t—s)du(s)
T>Tg Rd
is lower semi-continuous.
LEmMMA 1. Let p be a finite measure on R® and A a Borel subset such that
u(A) = 0. Then there exists a Borel subset , = A such that 2(A\Q,) = 0 and

(Dx/‘l)(t) = 05 tEQﬂ’
for every » in A,.
Proof. For every x in ¢, and every ¢ in R we have
0 < liminf {»7 (t —s)du(s) < imsup [y (t—s)du(s)
T T

< Q(q)limsup [or (t—s)dp(s) = Q (<) Du ().
T

Therefore, if we show that Du(f) = 0 for A-almost all ¢ in A, then we have
D u(t)=0, teQ,={ted; Du@) =0},
for every » in X, B
Without loss of generality we may assume that p is a probability
measure and define ./ = {te 4; Du(t) > 0} and for every positive number y,
o, = {re A; Du(t) > v}. Then in order to show that 1(«#) = 0 it is sufficient

to show that A(s#) =0 for every y > 0.
For every t in 7 there exists a sequence of positive numbers T, = T, (t)

7 +c0 such that
for t—s)du(s) >

for every k in N=1{0, 1, 2, 3,...}.
Assume that for t in o, and T >0 we have

fort—9s)du(s) > v,
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and define

Bo= fse R e 3 p(TG—5) > @), ke,

Then we have

+ 0

YT < {@(T(t—9)du(s) Z
Let 1 =1(T) be the maximal natural number which does not exceed
log [2¢*/(e—1) y]+d(log T). Then we have
-1

) <5
e " = s
5 -1 ZTrl
so that

E

YT < Z e u(By) < Z ek u(By)+ Z ek
= kel

k=0 k<l
< Y e Fu(By+/2TY
k<l
and consequently
2 eTF (B = 92TV,
k<l

Define b =(u—1/(2a) >0, L=
exists k(T) < I =I(T) such that

(1 —e"")"‘ and M = y/(2L). Then there

M
/‘L(BA(T)) > rﬁie(l I)k(l‘)'

For assume the contrary. Then we have
: M MLy
,—k B, —- )‘bk e
AP

which is a contradiction.
For every k in N we have

Cy(t) = {seRY; (p(T(tm )>e—(k+1)}

= (Se R (14 T|[t =g )1 > ¢=th+ 1)

{seR“, fit—s|| < —l«exp [k_;lJ} = §,(1),

{k+1J
exp - Y
a

s,0) =200

icm
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where V is the unit ball of R and

S

(1 —bk(T)

1(Suy (1) = #(Coany () = 1 (Bury (1) = Ta€

Since we have

_.o Mexp[l-b)k] . M a-1, 1
2= Wyexp ikt D/l ~ 327 P [ 2~ a] >0
therefore
1 (Sicr) (t_)) = u(Byry (1) = 62 (Skry (1)

On the other hand we have

. 1 k(T)+1 1 (T+1
radius Sy (t) =—fexp[ (?a ]S?e p[ (7:1)(1 ]

a-1
2 \ @
<2 (1) S0 as T 40,
ye-)\T

Thus we have proved that the collection of open subsets
I = {Sun(); ted, T>0, [or(t—s)du(s) >y}

is a substantial family of W. Rudin [1], Definition 8. 2, and that every S in ¥
satisfies the inequality

w(S) = 84(S).

Let K be any compact subset of . and for every natural number p
define

X, ={SeZ; radiusS < 1/p}.
Then, since Z, is an open covering of K, there are S, S2, §3,..., 5" in X,
such that {J) §'> K. By Theorem 8.5 of W. Rudin [1] we can extract S',
i=1
$2 ..., 5™, a disjoint subcollection of S, §

(0 8)<32(0 8.
i=1 =1

Let K, be the 1/p-neighborhood of K. Then we have

., 8" such that

AK) < /1(01 §)< 3“»(,U1 §) =3¢ (Zl A(8Y)
i= J= =
<1305 ey = (0 8 < Sy
‘ \5 i=1ﬂ —5uj=1 \5” L

2 — Studia Mathematica LXXXIV.2
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so that
' 3¢ 3¢ 3
pK) << lim p(Kp) =+ u(K) <5 p(4) =0.
8 poteo 6 5

Since the compact subset K of .o, is arbitrary, the regularity of 1 shows
that 1(ef) = 0.-
It is obvious that Q, = A\{J #, is the desired set. m

The above lemma implies immediately the following lemma.

LemMA 2. Let p be a finite measure on R* and A a Borel subset such that
u(A) = 0. Then there exists a Borel subset Q = A such that 1(A\Q) = 0 and
Jfor every % in A

Dou() =0, re®.

Proof. Define Q = (\Qq+qm where Q. is defined by Lemma 1.

n
Then, since A" ={) H{j+1jm» We have the desired result. w
n

Proof of Theorem 1. Let u be a signed measure on RY with the
Lebesgue decomposition

du(r) = %(f) dA(1)+dp (1)

Then, since p, is singular to J, there exists a Borel subset 4 such that
A(AY) = p (A) = pg (4) =0

where 4" and y are the positive and negative variation of U, respectively.
Therefore by Lemma 2 there exists a Borel subset .4 of A4 such that

Dop () =0, ted\A,
for every » in . On the other hand, define for every rational number r
du
F = {teR"; E%(f) > r},
for every natural number m
G = {teR'; |it]l <m},

and for every Borel subset E

dy
"(E) = - _
v ) EnF!nGm (d/l ® r)di(t)

icm
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Then V7 is a finite measure on R‘ and by the same arguments as in the proof
of Theorem 8.6 of W. Rudin [1] there exists a Borel subset ./, = G,, such
that A(A4;,) =0 and

d
Do) =L, teGu\ by

for every »x in X"
Finally define A4 = |J.#,,. Then we have A(4") =0 and
m

Do) =5, teR\A,

for every » in J#, which proves Theorem 1. w

Proof of Theorem 2. For every signed measure x on RY every » in
A and every T >0 we have

‘- e F() 7 (o) TYdA () = [ ny (t—s)du(s)
o R

and Theorem 1 proves Theorem 2. =
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