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On isomorphisms of anisotropic Sobolev spaces
with “classical Banach spaces” and a Sobolev
type embedding theorem

by

A. PELCZYNSKI and K. SENATOR (Warszawa)

Abstract. Let W denote 4 finite nonempty set of partial derivatives in d variables which is
identified with a subset of d-tuples of nonnegative integers. Assume that if (a))e W then (be W
whenever 0 € hy < q for j=1,2,..,d

Turorem B. The space Cy of all scalar-valued functions on the d-dimensional torus
continyous with the partial derivatives belonging to W is isomorphic as a Bunach spuce to the
spuce C of all scalar-valied continuous functions on an interval iff there is («%) such that

W= lweZi: ay<df for L<j<d),
Le i Wois o “parallelepiped”.

Analogous result holds for the Sobolev spaces Ly and L. For 1<p <o the Sobolev
spuces Ly are always isomorphic to clussical IP-spaces.

The proof of Theorem B bases upon the following generalization of the two-dimensional
Sobolev embedding theorem:

THEOREM A, Given positive integers n, m there exists a numerical constant C = C(n, m) such
that for every infinitely differentiable complex-valued function u on the_plane R* with compact
support,

JTIEN =t 1@ (6, midEdn < C []ID%u(x, y)dxdy [f|Dyu(x, p) dxdy
RZ RZ r?
where it denotes the Fourier Transform of u.

Introduction. The present paper deals with anisotropic Sobolev spaces
Cy and Ly flor 1 < p < oo defined either on the Euclidean space R or on
the d-dimensional torus T¢ (cf. Section 0.3 for precise description). These
Sobolev spaces are determined by a nonempty finite set W (called
“smoothness™) of partial derivatives. For a set to be a smoothness we assume
that if a partial derivative, say D, belongs to the set then every partial
derivative which requires no more derivations with respect to each variable
than D also belongs to the set. It is convenient to identify partial derivatives
in RY with d-tuples of nonnegative integers, i.e. with elements of the Cartesian
product Z4..

We consider a typical question in structural theory of Banach spaces:
under what condition on a smoothness W the Sobolev spaces Cy,, Iy for
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1 < p< % are isomorphic to corresponding classical Banach spaces ' and
I7. In view of the isomorphic classification of classical Banach spaces (cf. [B],
pp. 259-274), without loss of generality one may assume that C is the space
of all continuous scalar-valued functions on [0, 1], and I? is the space of p-
absolutely Lebesgue integrable (resp. essentially bounded) scalar-valued
measurable functions on [0, 1].

The answer to our question is given by the following:

Tusorem B. For a smoothness W < Z% the following conditions are
equivalent :

() each of the spaces Cy (RY) and Cy (T%) is isomorphic to C,

(ii) each of the spaces Ly (RY) and Ly, (TY) is isomorphic to L,

(iti) each of the spaces L (RY) and L% (T is isomorphic to L*,

(iv) W is an interval, ie. there is a sequence (a;); < ,s,,eZ‘j. such that

W={b)eZi: 0<b;<a;forj=1,2,...,d}.

Moreover in conditions (i-(iii) ome can replace “isomorphic” by
“isomorphic to a complemented subspace” or by the appropriate boundedness of
the canonical projection (cf. Section 6).

TureoreMm C. For every smoothness W Z¢% the space L&y (RY) as well as
Ly, (T is isomorphic to I? for 1 <p < c0.

Applying Mityagin's technique (cf. [MI], pp. 79-80) it is not difficult to
extend Theorems B and C to anisotropic Sobolev spaces defined on regular
domains of R‘.

Theorem B generalizes some previously known results. First consider the
one-dimensional case. If W is a smoothness in Z., then W is an interval
determined by a nonnegative integer k; W=1{j: 0<j<k} £ (k). Thus a
special case of Theorem B is an old result due to Borsuk (cf. [BO]; [B], p. 168)
that Cy,(T) is isomorphic to C. Next for d =2,3,... and k=1, 2,... put

(k),l = {(aj)eZ‘i.: Zaj < k},
[kl = {(4)e Z4% : maxa; <k},
i

Clearly [k]; is an interval while (k); is not. Thus Theorem B yields (a)
Cpy,(T%) is isomorphic to C, while (b) Cy, (T*) is isomorphic to no
complemented subspace of C. These results are due to Grothendieck. In
[GRa] Grothendieck proved in fact (a) while erroneously claiming that he
proved that C, d(T") is isomorphic to C. Later in [GRb] he corrected the
mistake and anounced (b) giving also some hints how to prove it. The first
complete proof of (b) was published by Henkin [HE]. An alternative proof of
(b) was later discovered by Kisliakov [KI] who used the theory of
absolutely summing operators. Further strengthening of (b), for instance that
Co,(T%) fails to have local unconditional structure has been obtained
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independently in [KI] and [KW-P]; this property is related to the weak
type 1-1 of the canonical projection for the smoothnesses (k),.

Our proof of the “nonisomorphic® part of Theorem B follows
Kisliakov’s approach from [KIJ. It bases on the observation that the
classical Sobolev embedding theorem in the 2-dimensional case for p = 1 can
be interpreted as the existence of a bounded non-absolutely summing
operator from L{;), (T?) into a Hilbert space. The technical difficulty we have

to overcome is the right generalization of the embedding theorem. This is
done in Theorem A (cf. Section 1 for precise formulation) and in Theorem
4.2 where the periodic case is treated. Theorem A, roughly speaking, says
that if a function in R has absolutely integrable “pure” derivatives of orders
n and m with respect to x and y respectively then it has square-integrable
mixed fractional derivative DY~"/2D{"~12 The proof of Theorem A is
rather complicated. It is presented with some strengthening in Sections 1-4.
Sections 5-6 contain the proofs of Theorems B and C.

Acknowledgement. Most of the paper has been written during the first-
named author’s visit at the Faculté des Sciences de Luminy. We would like
to express our gratitude to Professor C. Samuel for arranging the visit and
for mathematical discussion concerning the lemma on oscillating integrals.
We are also indebted to Mademoiselle Bally and Madame Mauvais for their
excellent typing job. We are grateful to S. V. Kisliakov and N. G. Sidorenko
for pointing out an error in the earlier version of the proof of Lemma 5.3.

0. Preliminaries.

0.1. Finite subsets of Z"; sets of smoothness. By Z“ (resp. Z%) we denote
the Cartesian product of d copies (d = 1, 2,...) of the set Z of integers (resp.
Z .. —the nonnegative integers). Z¢ is a group with respect to coordinatewise
addition, 0 = (0, 0,..., 0) denotes the neutral element of the group.

In this subsection we state sorhe particular properties of finite subsets of
Z*. We begin with a lemma on divergent series which generalizes the fact
that Y (pP*+g*+1)"' =0,

(nq)ez?

LemMa O.1. Let W = Z2% be a finite set which contains two points (ny, m,)

and (ny, my) such that
My —m;

(0.1) o= g >0,

0.2) na+m<nyo+mg  for every (n, meW,
Then

(03) T T Y P = o

(na)ez? (mm)ew
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Proof. Denote the left-hand side of (0.3) by S and by k the number of
elements of W. Then

s>3 %

4>l 1 gpag?

2 X

9>l 1sp<g?

>Y X

9> 1 [ S pay®
- - -1~2nga ~
:k 1 Z qmz "11 Hl 2‘
41 1€p=q®
Note that for ¢ = 2 one has

nytny—1 "'1+'"z 1 2n 2m 1
p (2 p
(n,meW
nytng=1 mytmy—l1 2mxt-my - 1
I4 q (X ¢
(m,myeW
nytng—1 qml +my—1 .kh_l q~- 2(nyatmy)

nytauy—1
4

-

g*—1
- +np-1 . nytn
Z pv:1+112 12 “ X" "2 dx = (n, +ny) l(qa__l) Lt
1Sp<g® 0 1y +ng)
aln n
> (cg""

where ¢ =1—27% Thus, taking into account (0.1),

S > k_.lc Z qlmz—~rn1)-a(ul-n2)—1
g>1
=k"leY gt =+x.
g>1

Next we pass to sets of smoothness.

In the Cartesian product Z¢ we have the natural partial ordering “<”
defined as follows: given A = B =(b)<jcq» We write A<B
provided a; <b; for j=1,2,...,

I{A; B)
is called an inrerval.

DermirioN 0.1. A nonempty finite set W < Z% is called a set of
smoothness, shortly “smoothness”, provided

(0.4) if Ae W then I(0; A) = W.

The natural character of condition (0.4) and the reason why we use the
word “smoothness” will be explained in the next subsection. Here we derive
two formal consequences of (0.4).

First observe that we can apply Lemma 0.1 for 2-dimensional sets of
smoothness which are not intervals via the following

Lemma 02. If W< Z2 is a smoothness which is not an interval, then
there exist (ny, my) and (ny, my) in W which satisfy conditions (0.1) and (0.2) of
Lemma 0.1.

Proof. Let Ey = {AeW: if Be W, B > A then B = A}. Observe that E,
has at least two elements, and two different elements of E, have different

(%‘)1 <j€dy
d. The set

={CeZ’ A<C<B)}

icm

Isomorphisms of anisotropic Sobolev spaces 173

both the first cmd second coordinates. Pick (n,, m;)eEy so that n
=sup {n': (n', meEy). Clearly if (1, m')eEy\{(n,, m)) 1hcn n <n; and
m' > my (otherwise (n;, my) % (', m') < (ny, my)). Thus (', m') = (m' —m,) (n,
—n)"!' > 0. Pick (n;, my)e Ey\{(ny, my)} so that
a(ng, my) = sup {o(n, m'): (', m)e Ey\ [(ny, m;)} 33
Put o = a(n,, m,). Then « satisfies (0.1). Assume that (0.2) were violated. Then
there would exist (n, m)e W with (%) no+m > n, a+my. Pick (n', m)e Ey so
that (n, m) < (n', m'). Clearly n'a+m = na+m. Hence (x) would yield n'«
+m' > nga-mg, equivalently m'—my > (n;—-n")a. Since n;—n' >0, we
would get a(n', m') > a; a contradiction.
To state the next result we need more terminology.

Let d 2 2. A smoothness V = Z%4! is said to be simply generated by
a smoothness W < Z4 provided there exists a rearrangement of coordinates
such that V = ¢(W) where ¢: Z% — Z4 ! is in the new arrangement defined
by

(0.5) @A) = (ay, sy, Uz, Qg1 +ag) for A =(a)eZ.

Let 1 <r<d. A smoothness V < Z4 " is said to be generated by a
smoothness W < Z*% provided there exist smoothnesses W= V,, Vi,..., V,=V
such that ¥, is simply generated by V.., for k=1,2,....s

In the sequel we shall need the following fact:

LEmma 0.3. Let d = 3. Let W Z% be a smoothness which is not an
interval. Then W simply generates a smoothness V < Z°% ' which is not an

interval.
Proof. Pick an A% W so that

5(A% = max {s(A): Ae W)

where s(A4) denotes the sum of the coordinates of 4. Clearly A° is a maximal
element in W, e, il AecW and A°< A4 then A = A% Since W is not an
interval, there exists in W an element B such that B« A° Thus after
a suitable rearrangement of coordinates we may assume that B = (b)), A° = (af)
and of < by,

Put V = (W) where ¢ is in the new arrangement defined by (0.5).
Observe that the quantity s(4) does not depend on the particular arrangement

.ol coordinates, and

s(p(4))=s(4) for AeW.
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Thus )
s(p(4%) = max [s(C): CeV}.
Hence ¢(4°) is a maximal element in V.
Let ¢(A), denote the first coordinate of ¢(A) (in the new arrangement).
Taking into account that d >3 we then have

@ (4%, = a} <by = p(B);.

Thus ¢(B) is an element of V such that ¢ (B) € ¢(A4"). Hence V is not an
interval.

CoroLrary 0.1. Letd > 3. A smoothness W < Z% is aninterval if and only if

every smoothness in Z% which is generated by W is an interval.

Proof. Clearly every smoothness generated by an interval is an interval,
To prove the converse apply Lemma 0.3 and use the induction with respect
to the number of coordinates.

0.2. Differentiable functions. Throughout this paper R stands for the real
line, C for the complex plane, R? for the Cartesian product of d copies of R
(d=1,2,..). For X =(x)eR% Y =(y)eR* we put

d d
(X.Y)= Y x5 and |IX||= (121 xj).
=1 =

A function is understood to be complex-valued unless otherwise stated;
supp/ denotes the support of an f: R'— C, ie. the closure of the set
{XeR" [f(X)| >0} CFRY) stands for the space of all infinitely
differentiable functions with compact support; (R%)—for the space of all
infinitely differentiable functions on R? rapidly decreasing together with all
their derivatives (cf. [SCH]). The symbols (f, ¢ and fig stand for the scalar
product and the convolution of functions on RY. For f: R~ C we denote (if

they exist) by f and J the Fourier Transform and the inverse Fourier
Transform defined by

F(E) = @m)712 [ £(X)emi %0 g,
#

J(X)=(@2m)™"2 | f(5)eE0 gz,
R

Given an 4 =(a)eZ% by D4 = D;i ... D33 we denote the operator of
partial derivative; we always assume that the mixed derivatives do not
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depend on the order of differentiation with respect to different variables. It is
also natural to assume that if for some u: R — C the derivative D" u exists
then there do exist all derivatives D®u which require no more differentiation
with respect to any variable than D4, In other words we assume that if D4u
exists then D®u exists for every B with 0 < B < A. This is exactly condition
(0.4) appearing in Definition 0.1 of sets of smoothness.

Next we introduce a concept of fractional derivatives which we shall use.

Given o >0 and an index j with 1 <j<d we define operators
Dyt #(RY— Y (RY) and |DL): #(RY— & (RY) as follows: for a ue ¥ (R%,
15?{.1 u is the unique Ve #(R% such that

V(&) = Psign g G (E)  for E= ({4, &an-nn Ga)s

similarly |D‘§j| u is the unique We ./(R%) such that W(E) = [&;1* d (). Let ag;j
denote either D';] or [D%). The composition G2 ... 88 is called an
operator qf fractional derivative and its value for a ue #(RY a fractional
derivative of u. In particular, if all 62 are the operators |D‘;?j'} we write
[ Di|u an absolute fractional

derivative of u.

Di‘:z[ and we call the function |D3! ...

0.3. Anisotropic Sobolev spaces. In this paper we study spaces of smooth
functions for an arbitrary smoothness W. On the other hand we restrict
ourselves to the case where the domain of the functions is either the whole
space RY or the torus T¢

Given a measurable f; R*— C we denote as usual

151, = ([ G0 ax)”
If1l, = esssup{|f(X): XeR?)

for 0 <p< o0,

for p = o0.

Similarly for f: [—mx, n]?— C we put

171, =@n™ | IfX)rdx)e,
0.7) 1= nad ;
/1l = esssup {lf (X)]: Xe[—m, ]}

Next for a fixed smoothness W < Z% we put

(0.8) Il = (X IDAFIDY?, 1 llww = max[ID4 fll,.
AW AeW

By I, (RY) we denote the completion of C&(R?) under the norm ||*||,w
and by Cy (RY) the completion of CZ(R%) under the norm |||, ». Note that
for 0 < p < oo the usual spaces I?(R%) coincide with Ifo (R?) (for the one
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point smoothness {0}) while Ciq (R%) coincides with the space of all

continuous functions on R? vanishing at infinity. The definition of the space

I (RY is slightly more complicated. Consider the Banach space E

= @ L (R% of all sequences (g,)4ar With g€l (RY) for AeW equipped
AelW

with the norm

g aewll = Z [1gall1 -

AeW

Clearly Cy (R% can be identified with the subspace of the dual E* of E
consisting of the functionals ®% with f'e Cyy (RY) where

¥ (Ypaew) = 2, | (DAN)(X)ga(X)dX

AcW gl

for (9w k.

Now we define I3 (RY) to be the closure of this subspace in the weak
star topology of E*. It is not hard to show that I3 (R“) can be identified with
the space of functions f: R?— C having essentially bounded generalized
derjvatives (cf. [AD] for definition) D*f for Ae W with the norm ||f]l,, .

The definition of the spaces Cy (T¢) and 5, (T) for 0 < p < 0 is almost
the same. The role of the class C§ (R%) of “test functions™ is played by the
space 7 (T) of all trigonometric polynomials f: [~n, n]*- C, ic of
functions of the form

S = 3 ape
pezd

with {PeZ": op 5 0} finite. We take completions of .7 (T*) under the norms
defined by (0.7) and (0.8). Clearly the spaces 5 (T“) and Cy (T%) can be
regarded as spaces of functions on the torus T

The spaces I (RY) and Cw(RY, LI (T% and Cy(TY) are called
(anisotropic) Sobolev spaces of smoothness W. They are Banach spaces except
the case where p < 1.

To distinguish between functions on T¢ and R we often use for the

norms of functions on T¢ the symbols ”'”L{’,,(TL') and “'”cwm’) reserving the

symbols [[-{|,w for functions on R“.
04. A lemma on oscillating integrals. The result of this section is

probably known. (For similar results ¢f. [DIE], IV.4). We include it for self-
sufficiency of the paper,

Lemma 04. Let g and @ be functions on a finite closed interval [u, b).
Assume that g is a complex-valued absolutely continuous function, in par-
ticular

b
lglly = flg' @)l dt < +oo.
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Furtherrfwre assume that ¢ is real-valued, three times continuously
differentiable, ¢' has finitely many zeros and ©"(t) # 0 whenever ¢'(t) = 0.

[ Then there exists a constant C(p) = C depending only on ¢ such that for
all ¢ > 0,

b
(09) [fg(t) e di| < Cmin(1, g~ )(lgll o+ lgll,)-

Moreover, 'if ¢ is (b—a)-periodic together with its derivatives, then
Cl@) = Cl@yg) for every toela, b] where g, () = p(t—t,).

Proof. If o <1 then we use the trivial estimate
b
]9 (t) e dt] < |lgllo (b —a).
a

In the sequel we assume that ¢ > 1. Dividing the original interval into a
finite number of intervals determined by the zeros of ¢ and replacing
accordingly ¢ by ¢,, . where

Pene() =01 +0)=s0(c), &= +1, n=+1, ceR
we may assume without loss of generality that
(0.10) 0 =0, ¢'(®)>0

First we consider two special cases:
(i) @(t) =t. Then integration by parts gives

a=0, for 0 <t <b.

b b
Ji(g) = [g(t) ¥ dt = — [¢'(1)(i0)~* & dt +(ie)™* [g (b) €* — g (0)].
o

0
Hence |J4 ()l < 27" (lg'll: + 2119l )-
(ii) @(t) =1t Put F () = je""z du. It is well known (cf. [VAL], p. 160)

t
that this integral called the Fresnel integral exists and obviously
M, =sup{|F,(): 0<t< 40w} < +o0. Substituting ¢ =o"%z, we get
F (1) =@ Y2 F (o"*1). Hence M, <o Y?M,.
Now we integrate our oscillating integral by parts,

b b
J2(g) = [g(0 e di = [¢' () F, (1) de+g(0) Fy (0)~g (b) F, (b).

0 0

Hence

1J29) < (lg'll; +2llglle) M < 2072 M, (llg'lls + g}l o)

Now we pass to the general case. Again it sph’tsAinto two cases:
1°. ¢’ (0) # 0. Hence, by (0.10), there is 6 = d,, > 0 such that ¢'(#) > § for

&~ Studin Mathematica LXXXIV.2
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0 <t <b. We substitute t = ¢~ '(s). Then

p(b)

j‘q(t) ezw(r) dt = j‘ f 5-) eil}s ds = (f)

where
T =gl @)@ )]
Clearly Hwa ’”1||ql|w while
e = L)@ (@ )] 2+ (07 @) ' (@ ()] oo (),
Thus ‘

@(b)
If <8t J lo'(@ " ) [ (0™ ()] ds
0

o(b)
+9"lle [ 9@~ @)l (™" ()] ds
0

=87 lg'll +lle"Nle llglls

“Higlly +b 119"l llglleo -

Combining these estimates with the estimates for J, (f) given in (i), we get
(0.9). Note that b depends only on the splitting of the original interval into
subintervals which was determined by the original function ¢.

2. ¢'(0)=0. By (0.10), ¢ is one-to-one and nonnegative. Thus ((s)
= ¢~ 1(s? is a well-defined increasing function for 0 < s < N) We check

first that ¢ is continnous on [0, /o (b)]. Since ¢'(t) >0 for t >0, it is
enough to check it at the point s =0. Note that ¢(0) = 0. Thus

=10 _ 109 2
————S——-—‘— = lim = \/;p// (0)

#(0) = im
= cp’ (0) yields lim(op@)/t?) =
=0

§=0
the condition 0= ¢(0)

moreover ¢"(0) # 0 because ¢'(0) =
For s >0 we have ¢' )~2¢/(p( ""(s )). Thus

lim ¢ (s) = lim /000 g’) nz\/(% ®

§=0 =0 @' ( (=0 (/;7 (1‘5

L, 8
=272 70

This proves the continuity of t' at O and therefore in the whole interval

[0, /o ().

@" (0)/2;

(because

= t'(0).
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Now, to estimate our oscillating integral, we substitute ¢ = t(s). We then
get

! ! g ios2
i[y(t)cf‘“‘""zlr = ([ Fse® ds = J,(f)

where f(s) = g(t(s))t'(s). Clearly ||fllo, <Ilgllo It = Cy1 (@) llgllo. Next we
have, for s> 0,

T'©) =g (@) 6) +g(t)t"(s).
For the first summand, remembering that ¢ > 0, we have the estimate

Volby

Iq (@I )] ds < 11t f lg (t@) ¥ (s)ds

=1t llg'lly -

To estimate the second summand observe that, for s > 0,
SOV E LAl

[o' (¢~ ?)]°
_ [0 0F=200'()

Lo'(0]®

Thus, using for instance de 'Hopital's rule, we get

lim ¢t (S) [(P ([)]2 - gq) ([) (p" (t) lim ( t )3
§=0 = 0 r t=0 \@ (l)
_T20" 0" . aea_ __207(0)

This shows that ¢ is essentially bounded (in fact continuous) on [0, . /‘ @(b)].
Thus for the second summand we have the estimate

Ig tE) 16 (N ds < liglleo 11" /0 (B) = C2 () gl

Combining these estimates with the estimate for J,(f) given in (ii) we
get (0.9).

The “moreover” part follows from an easy analysis of the dependence
of C(p) on ¢.

We shall use the following simple consequence of Lemma 04.

CoroLLARY 0.2. Let g: [0, 2rn]— C satisfy the assumptions of Lemma 0.1,
let ¢>0, d>0, X =(x,y)eR? with || X|| = (x*+y*)'?> > 0. Then there is a
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numerical constant C independent of X, ¢, d such that for r >0

2n

©11) | ] g ey g < Cmin (L, r=) (lgll., +llg 1) 1212
0

where 2y = min(c, d).

Proof. Put g=(x2r¥*-+y*r2)* and define 1,€[0, 2n] so that xr¢
= gcosty, yr! = gsinty. Then xr‘cost+ yrisint = gcos(t —1g). Thus applying
Lemma 0.4 for translates of the function ¢(f) = cost and using the obvious
estimate ¢ = r?’{|X]| we get (0.11) with C = C(cost).

1. A 2-dimensional Sobolev type inequality; elementary case. Our aim is
the following inequality.

THEOREM A. Let n, m be positive integers. Then there exists un absolute
constant C(n, m) such that for every ue C¥ (R%)

(L) ([1DY= 172 D= D21 ufl3 < C(n, m)[[D3ully 1D ul, -

In this section we prove (1.1) in the case when n and m are both odd
positive integers. This is the elementary case when the absolute fractional
derivative [D&~1/2Dm= 12y in (1.1) can be replaced by the ordinary partial
derivative DXDyu where n=2k+1, m =2/+1. In particular, for k=1=0
we get the classical Sobolev inequality.

Note that the quantity ||#%@ ull3 is the same for all four fractional
derivatives. Moreover, if either « or f# or both are nonnegative integers
then the quantity does not change if the partial fractional derivative is
replaced by the ordinary partial derivative.

We begin with establishing a simple identity (1.2) which yields the
classical Sobolev inequality (1.3).

Let R* = {acR; a>0}, R~ = —R". Put

@ =Xp+ wr- T Ag= gt "Xt amt TR«
where y, denotes the characteristic function of a set A.
LemMa 1.1. For u, ve CP(R?) one has
(1.2) 4 L oxD,w, D, vy = {w, v),
(1.3) [<w, o) < 471D wll 1Dy vl -

Proof. (1.2) is an immediate consequence of the identity

<X.:1R+ X:Z“*wa, Dyv) = —gy6; W, )

where ¢) = %1, &, = £1. The latter identity lollows directly by applying the
Fubini Theorem combined with the integration by parts formula (note that
for ue C§ (R?), u(too, ) =u(", o) =0)

@ ©
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. To_ pbtitin (1.3) note that [lo]|, =1 and use (1.2) and the standard
inequalities |<f, g1 < [If 1l llglly and [|fgll, <11/l llglly; indeed,

[<@*Dw, Dy 03| < lloDy Wil 1D, vll; < [|0ll [1Dxwlly 1Dy lly
= [IDx Wil 1D, ol .
Now we are ready for:

PropositioN L1 If n and m are odd natural numbers, then for every
ue CF(R? one has

(1.4) 1§~ 172 D=2 41 < 4~ 1 |[D2ull, || D ully
Proof. We apply (1.3) for w=D%"'y and v=D""'u. Then
<D™, DY~ ud) < 471 Dhull 1Dl

On the other hand, applying twice the Plancherel identity and taking
into account that n—1 and m—1 are even integers, we get

Dy tu, Dy~ tuy = (D), (DI 0)D
= [[& 1y i, n)i*dedn
2

= JJ 1Dy 102 8¢, )2 dn
r2

= JJ 1D 72 D= 72)"12 d dny
r?

= 1D =172 D2y,

2. The proof of Theorem A in the cases n = m = 2k and min(n, m) = 1.
The results of this section depend upon Corollary 2.1 which gives an estimate
for the sup-norm of an arbitrary smooth function of two variables by the I}-
norms of its pure derivatives of the second order. It is a special case of both
Theorem 3.1 and Proposition 3.2 proved in the next section by more
advanced methods. We begin with a known identity (2.1) in the theory of
wave equation which immediately yields Corollary 2.1.

For 7> 0 we put

W, = {(x, e R* 0 <|f| <1a},
W = {(, e R* 0<|uf <t7' B},
Y, = XW,+X—W,"XW§;X—W;- .
Lemma 2.1. For ue'CP(R? and © > 0 one has
(21) u = (8t)"! (D u—1* DJ wpw,.
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Proof. We shall verify that for = >0
u = (21) ' (D2u—1* D} u)xxw,.

The proof of analogous identities for — W, and + W, is the same.
Fix X =(%o, yo)eR? and put s=(xo+1 ' ye)2, t=(xg—1"
Define ve C¥ (R?) by v(a, b) =u(a+b, t(a—b)). Observe that

' yo)2.

(2.2 DiD}v(a, b) = (Diu—~1*DIu)(a+b, t(a—b),
(2.3) Xw, {a+b,t(a—b) = Agt wr+ (@s b).
Next we put

I(Xo) = (20" (DFu—1>DJ upxx, ) (Xo)
= (207 [[(Diu~1*Dyw)(xo—¢, yo—1) xw, (¢, ) dé dn.
RZ

We substitute ¢ = a+b, # = t(a—b). Taking into account (2.2), (2.3) and that
the jacobian J = (&, n)/é(a, b) = —2t we get

I(Xo)= (27! H(Di Dyv)(s—a, t=b)(| | xg+ . g+)(a: b)dadb

o'—>8

= [(J DiD;yv(s—a, t—b)da)db
0
= v(s, t) = u(Xy).
CoRoLLARY 2.1. For every ue CZ(R? one has
24)
@.5)

lfulles < 471 (IDZ ully D3 ully)*/2,

llulloo < 874 (IIDZ ull; +1I1DF ull).-

Proof. Note that |||, = 1 for every © > 0. Thus, combining (2.1) with
the Young inequality we get
(lull, <inf{(87)"'||DZu—12D2ull;: 7 > 0}
<inf{(87)~ ' (IDZull, +<* D} ull,): © > 0}
= 471(IDZ ully |D3 ull,)*'>.
This proves (24). Combining the inequality between the anthmetnc and
geometric means with (2.4) we get (2.5).

Our next result gives a proof of Theorem A for n =m = 2k.

Prorosition 2.1, Let n=2k be a positive even integer. Then for every
ue C¥ (R? one has

. (26) DS~ 72 D=3 ujif < (2m)~* D3 ully (1D} ully .
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Proof. Consider the differential operators depending on the parameter
>0

Q’(cn) =7k

which correspond to the polynomials

k-1
1] k — k—=2j-1 n2j np2k-j—-1
Di—1tDy, P = ¥ g4m2i-1 pki p2t=i=h

j=0

-1
Z,Ek 2j— 152’ 2k—j—1)
i=0

O, )= ~kEn—tkyr, PO, ) =

respectively. Clearly we have the identity
TN PO, )
which yields the identity
T (DI—1* DY) P = O
The latter identity combined with (2.1) gives
874 0P unp, = (87)"* (DF—7* DY) (PP upyy, = P u.

=0 (&)

Hence

NP ull oy < 872 [Isillao 10X ull; < 871 (z™* | D} ul, +7* [ Dy ul )
Thus .
27 [<e ¥ Dhut* Diu, POud < 871 (¢ ™| Dhully + 1Dy ully)>.

Next note that (t™*&"+-1t* 5" PO (&, n) = W, (£, #*) where W, is a polynomial
(in &* and #? with nonnegative coefficients. Therefore, using the inequality
between arithmetic mean and geometric mean, we get

(2.8) W, (& n%) = niénl" "
Combining (2.8) with the Plancherel identity (used twice) we get
GEDRu+ Tt Do, P u)y = (x7* Diu+ D), (PP u) )
| —ﬁWﬁ 2)la (e, ni*ddn

> 55 n(|Enl= 2 @ (g, n))* d dn
R2

=n “D;n-—i)/z Dg"— 1)/2 u”%

Combining the latter inequality with (2.7) and minimizing over all 7 >0 we
get

IDY=2/2 D=2 |2 < 8n) ™ inf {(z™* D}l +* || D5 ull,)*: © > 0}
= (2n)~ I3 uly [1D5ull; -
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For the proof of Theorem A in the case min(n, m) =1, we need the
following one-dimensional inequality which is probably well known but
which also is a consequence of Propositions 1.1 and 2.1.

Lemma 2.2. Let fe CF(R). Then, for every positive integer n,
(2.9) D=2 £115 < 27 Al D" flly -
Proof. Consider ue C¢(R?) defined by u(x, y) =f(x)f(y). Note that

1D =172 D= D2 |3 = [|[D"~ D7) f]l5;

D% ully = IDyull, = i(IIJ"(X)I dx'iID"f(y)l dy = If I ID" 11l -

Thus, using inequality (1.4) for n odd, and (2.6) for n even, we get
IDE=2 (17 < CIIFIFID"SIF

where C(n) =471 for n odd and C(n)=(2n)~! for n even. The latter
inequality clearly yields (2.9) because ./C(n) < 2! for all n.

Now we are ready to establish Theorem A in the case min(r, m) = 1.
This is an immediate consequence of the next

ProposITION 2.2. Let ue C¥(R?). Then

(2.10) IDE= 72| uli3 < (|DRully 1Dy ull; -
Proof. Assume first that u is real and satisfies the condition:

(%) the set of zeros of u is a union of finitely many points and intervals of
straight lines and the exterior of a square {max (x|, | y)) < a} for some
a>0.

It can be easily seen that if a real u satisfies (%) then F(y) = flutx, y)dx is
x
differentiable everywhere except may be a finite set and lim F (y) =0; the

. . 0 . . y=(l)
function |u(x, y)| is differentiable with respect to y almost everywhere and we
have the equality

(2.11) Dy lu(x, y)|dx = [ID,u(x, ydx y-ae.
R R
Thus, applying (2.9) for the function u(-, y), y fixed, we get

‘I.IIDS!"l"Zlu(x, W*dx <27 {lu(x, yldx [ID3u(x, y) dy.
R L3
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Integrating this inequality against dy and making use of properties of real
functions satisfying () we get:

DS 22 uli < 27" [(flu(x, y)ldx | ID2u(x, y)|dx)dy
R R R

<27 [ [ID%u(x, y)ldxdy max F(y)
RR

veR

< 27HIDRully JIF(y) dy.
R
Next using (2.11) we have

JIF (pldy = |
R R

< [ [IDylux, y)l|dxdy = [ fID,u(x, y)dxdy
RR -9

d .
'dj,'flu(x, Wdx|dy = [|{D, lu(x, y)ldx|dy
R RR

= ”Dy u“l .
Thus for a real u satisfying () we get
(212 DS~ 92 ulf} < 27| D3 ull, 1D, ul, -

The set of u satisfying (x) is dense in the space of all real functions in
CP(RY in the topology of quasi-uniform convergence of functions with all
their derivatives. Thus (2.12) extends to all real ue CF(R?). Finally, applying
(2.12) for the real and imaginary parts of an arbitrary ue CF(R?), we get
(2.10). (Note that (2.10) differs from (2.12) only by the “size” of a constant.)

3. Estimates of sup-norms of partial derivatives of a smooth function of
two variables by the I'-norms of its derivatives of higher orders. Theorem 3.1
of the present section gives the essential ingredient which makes it possible
to complete the proof of Theorem A in the remaining cases. In fact it
provides more information than is needed for Theorem A. Our proof of
Theorem 3.1 bases upon Proposition 3.1 where the crucial analytic difficulties
are overcome.

For the sake of brevity we denote in the sequel by D(x, B) each of the
four derivatives D% D¢, |D% D, B%|Df|, |D% D).

TueoreM 3.1, Let n 2 2, m 2> 2 be integers such that at least one of them
is even. Let o, f} be nonnegative numbers such that

(3.1) an" - pmt =1 -l -m L

Then there exists a constant C* = C*(x, B, n, m) such that for every
ue CY(R?

(3.2) 1D (@, Bull < C*(ID%ully +1I1D5 ulls)-
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Theorem 3.1 is an easy consequence of the next proposition. Define
e Z—1{1, —1} by
(3.3) g(r)=—1 for r=2mod4

Prorosition 3.1. Let n, m, a, B be as in Theorem 3.1. Then, for each of
the four derivatives D(a, ), there exists a locally absolutely integrable function
E: R* - C such that
34) Ex(D}+¢eD})u = D(a, B)u
(3.5) E = C log(IxI"+|yI")+f
where fe I (R*) and C; = C(«, B, n, m) is a numerical constant and ¢ stands
Sfor e(m—n).

First we show how Proposition 3.1 implies Theorem 3.1.

Proof of Theorem 3.1. Assume the existence of an E: R*—C
satisfying (3.4) and (3.5). For © >0 put E.(x,y) = E(x,t"'y). Then

(3.6) E.—E,eI*(R%)

Indeed, by (3.5),
X"+ )" ( AN ( y
CIIOg]x[’"+(r +f x, = -f x,a .

and &(r) =1 otherwise.

for every ue C§ (R,

for 0 <o <1< 00.

(Ez _Eu) (xa y) =

i
X"+ y" I
Note that nl < log—————=— <0 be of the identit
ote that nlog(a/t) oglxl'"+ff“"|Jf|" < cause identity
b D G 0 &
X"+ " L+|x™(a |y~ )"

Thus “E‘t —Ea”uo <n IIOg (U/T)l +2 “f“w
Next observe that (3.4) yields

(37 ' D(a, f)u = ExDiu+et"ExD"u  for ueC$(R? and © > 0.

To this end put v(x, y) = u(x, ty). Then D(a, f)v(a, b) = * D(a, Bu(a, th).
Hence using (3.4) with u replaced by v for arbnrary (a, b)e R* we obtain
*D(a, Bu(a, th)

= (EXD%+et" DM v)(a, b) = {[E(a—x, b—y)(Di+er™ DMYyu(x, tyydxdy
x2

i )(D;Her"’ DY) u(x, ty)dxd(zy)

= ‘IHE(a =X,

L (E MDY+ T D;") u)(a, tb).
The latter identity is obviously equivalent to (3.7).
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Now fix | <o <17 Put in (3.7) 1 in place of 7 and substract “by sides”
the new identity from the original one. Then

(38) @t '=1)D(a, Pu = (E,—E)xDiu+e [t —1) E,+ (E,— E,)]+D™ u.

Divide both sides of (3.8) by t™—1. Put in the obtained identity ¢ in
place of t and substract from (3.8) divided by " —1. Then one gets

.cl}+1 1 a./] +1 —1
(39) [;,-; R ] @ B

E.—E, E,—E
|_ ,.‘l.ﬂm;,;n_‘«]*D"u-i-r [(E —E,)

™= 1

E~E, E,—E .
ey o

Clearly the function = — (z** —1)/(z"—1) is not constant because a > 0,
p =0 and (3.1) imply that S+1 % m. Thus we can fix 1 <o <7t so that
T G T

#0.

-1 "1

(In fact a simple calculus argument shows that for 1 <+t the function

- (t?" 1 —~1)/(x™—1) is monotone; thus every choice of ¢ and t with 1 < 4
B+ A+1
<t is good.) Dividing both sides of (3.9) by ————ll—g—am—~1— # 0 we see
that

D(a, p)u = g,*Diu+g,*xDj'u
where g, eL*(R?) and g,eI®(R% are independent of ueCZ(R?). Thus
1D (e, BYullw < lg1llo IDEull1 +11g2ll o 11D ully

which obviously yields (3.2).

Proof of Proposition 3.1. We define E to be a function which
represents the distribution being the Fourier transform of a certain
regularization of the function K: R*\{0} — C defined by

(3.10) K (E) = kyp (B)- (@& +ei"n™ ™1 for B=(&,n)

where ¢ stands for &(m—n) and k, , denotes the symbol of D (x
the functions

D ER Il sign (&), (€ |l signn, |5 sign &, 1€

First we define the tempered distribution ¥ being a regularization of X.
We put V = V,+V, where for pe #(R%,

Hle> = ”I K(E)[¢(B)—o(0)]dE,

Klpd = ‘I K(&)p(8)dE

, B), i.e. one of

(3.11)
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- (the symbol (Ulg> stands for the evaluation of a distribution U at a function
g). We check that the Fourier transform (2m)~' ¥ satisfies (3.4) in the
distribution sense, ie. given ue Cg(R? we have
(312)  (2m)~ ' KPHDL+eDy)uly ) = <D (e, Buly)

Indeed, by the definitions of the convolution of a distribution with a
function and of the Fourier transform of a distribution (cf. [SCHJ) we have

for every Y e.%(R?).

(PHDL+eDMulyy = (PILDE+EDT) ulwp >
= V(D2+eD ulxp) "
= 2n (VI[P DDy ul ™ >
Note that if n, m > 1, then ([(D2+eDP)u]l *¥)(0) = 0. Hence

VLD +eD)ul ™ = IK E)(i" &' +ei"n") (@ ) (B) dE
=J ke (B)A(E) P (B)d
»2

=D AHul", ¥
= (D(a, Byu, ¥> = D(a, Buly>.

This completes the proof of (3.12).
Next we shall show that (21)~! ¥ is represented by a locally integrable
function, say E, ie. for every y e (R,

3.13) @2n)~ 1 Py = (E, ¥

We shall show (which is slightly easier) that there exists an E such that
it satisfies (3.13) for Y e C¥(R?); next we shall show that this E satisfies (3.5).
The two facts together yield that E satisfies (3.13) for all y ¢ #(R?). Clearly
(3.12) and (3.13) imply (3.4).

First we consider V;. Then for e CZ(R? in view of (3.11) we have

ADERA
= [ (K@En™ [ ¢X) (e EN-1)dX)dE.

i <1 o)

— — phim g : a(é’ '7) —— 7] 24

Put ¢=rcost, n=r""sint. Then the Jacobian 5(77; = P cost t
+—::l-sin2 t) and, in view of (3.10),

Pt wp(cOSt, sint)

r"(i" (cos £)"-+&i™ (sin £)")

K@, 0, n(r, 1) =
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Thus using the rule of changing variables in the integral and taking into
account (3.1) we get

1 n
WD =[rt [g@) [ (@~ 1)y (X)dX dt dr
0 0 X2 .

where
coszt—f—%sinzt
(3.14) g(t) = (2m)~ "k, s (cost, sint) Fleos L S
(3.15) (X, r, 1) = —(xrcost+yrmsini).
Note that Jeh—1) < |h < CPn"m  for O0<r<1 and for all
(t, X)e[0, 2n] xsuppy, where C=2sup{||X|: Xesuppy). Thus the

function r* ' g (1) (™ ¥ — 1) (X) is absolutely integrable in the strip [0, 1]

x[0, 2n] x R%. Therefore one may change the order of integration. Hence
12n
Py = HI(X Hr"

(B (e"*r0 —1)dt dr)d X

Thus
(2m)"" V> = <E,, ¥y for YeCF(RY

where the function E;: R*— C is defined by

1 2rn
{ [rtg@e*ed —1)drdr
00

(3.16) 2rE,(X)= for X =(x, y)eR%
The case of V, is more subtle. Similarly as for ¥; we have
2n

[t gy [ e™*rdy(X)dX)dtdr

0

Rr2

Pl =

o
o

f
1
2n ;
= {r7t [ (X)) [ g drdX dr
1 suppy 0
where ¢ and h are defined by (3.14) and (3.15) respectively.
Using Corollary 0.2 we infer that
n
[fgmeidi| < Cmin(l, [ X)17 1277
[¥]
where 7 = min(2” L n(2m)"’) and the constant C; depends only on «, f3, n,
m (via the function g).
Hence the function

(r7 X)—‘*"ll// ‘g(r lﬁ(/\"l)d[
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is absolutely integrable in the strip

A =[1, ) xR? > [1, co) xsuppy.
This is obvious for the set A A {(r, X): 1 > ||X||""?r™7} because the function
X1~ Y24 (X)r~ 177 is absolutely integrable in A. For the set

Ay =An{r, X): 1<|IX|72r7)

it follows from the absolute integrability of the function r™ ! (X) on this set.
Indeed,

[ 1dXdr

Xl €r— 27

‘- [ty (X1 dX dr < |[W]lo " rt
Ay et

o0

=Wl [ mr='"*dr
(=0

=n(@4)" Wl < co.

Thus the changing of the order of integrals in the formula for <Py is
rigorous and we get

w 21
Py = fuX)(f [rtg)e"™n0drdr)dX.
&2 10
Thus
Q)" > = (By > for YyeCP(RY)
where the function E,: R* - C is defined by
o0 27
2nEy(X) = [ [r™ g (1) "m0 gt gy
10
Thus E = E, +E, satisfies (3.13) for e CT (R?).
Next we show that E satisfies (3.5). To this end for fixed X = (x, »#£0
consider the function r(g, X) defined for ¢ > 0 by

(3.17) for X =(x, y)e R%

Qz = rZ x2+r2n/m y2'

It can be easily verified that r(:, X) is increasing and differentiable and
r{I1Xll, X} = 1. Clearly h(X, r(g), t) = g cos(t —t,) where h is defined by (3.15)
and t, = to(X, r) is the unique number in [0, 2r) such that ~C08 1o =rxp !

and —sinty = r""yg~ !, Thus substituting in the integrals (3.16) and (3.17)

r=r(g) we get

1 2n w n
MEX) = [r" [g@)("—1)drdr+ [r* fgededr
0 0 1 0 '

il -1 r igoos(t ~1g)
= gr Eajg(t)(e ~1)dtdg
0
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¥ -1 dr 2 igeos(t —1q)
+ fr 7 fo@e O dt do
[Bdl Q0
= fi(X)+1(X)
where
l' éll‘ ZI! igeos(t —
SilX) = [r" 1. f g(t)(e™ 40 1yt do
0 do §
- d’. 2 igeos(t =1 g)
+ [rtefgne dtdg
iodep
and
[Rel 2n

di
(X)y=~ [ r 1= [gy(t)dtdo.
1[ de g f
First we show that f; e L (R?). We have

dr n -1
- 2 2nim~1
= o rx* 4 .
do Q( m )

Thus

o -1
rot fl{’" =0 (r2x2+%r2”/'"y2> < max (1, m/n)o™".
do

Hence to estimate the first summand of f; observe that for 0<p < |,
an
[Tg (™™ ~1)di] < 2mg(e~1)llgllo-
0
Thus
! d" 2n fgeos(t—~1tq)
Jrtos oo ~1)dt| < 2nllgllos (e~ 1) max(1, m/n).
0 0
To estimate the second summand we use Lemma 0.4 which for ¢ > 1 yields
2
[ (™™™ di| < Cleostyo™ "2 lglly +Ilgly)-
19

Therefore

© n

. Cl" \ frcost—1q)
prte fg(t)e dt
"

< CcosD(lgll +llg'll,) max (L, m/n)- 1!9'3/2 dp < .
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examine the integral [(X). Put

n
Finally we Cilg) = (j;ﬂl(')dt-

Remembering that r(||X]|, X) =1 we get

1
—Ci(g) [ ¥ tdr=Ci(g)logr(l, X).

r1,X)

I(X)=

Now we use the identity
r(e. X)=2r(g, (x2, pa~"")
in the special case ¢ =1 and A = (|x|"+|y""™. Then
log(r(1, X)) = m™ " log (IxI" +[ yI") +/2(X)
where
S2(X) =Tlogr (L, (x(bxl™+ y1") =Y, y(x]™+] p") =)
Clearly the function r(1, X) restricted to the compact set
(X =(x, eR? |x"+|y" =1}

is bounded and bounded from below by a positive number. Hence
foeI?(R?). Thus

1(X)=m™" Cy(g)log (1xI"+| ¥+ Cy (9) /(X)

Hence
2nE(X) = m™' C, (g)log (IX|" +| }I") +J (X),

where [ = f,+C,(g) fre L*(R?).

This completes the proof of the proposition.

Added in proof (May 1986). Proposition 3.1 can also be extended
to the case where both n and m are odd integers > 2. The proof requires
only a minor modification, namely the function r — &(r) should be defined by
ery=i*1forr=1,2,... (cf. A. Pelczynski and K. Senator, Addendum
to the paper “On isomorphisms of anisotropic Sobolev spaces with «classical
Banach spaces» and a Sobolev type embedding theorem”, this volume,
pp. 217-218).

We end this section by presenting an alternative argument in the case
n=m=1,2,...

THEOREM 3.2, Let n>
k=0,1,...,

(3.18)

2 be a positive integer. Then for every
n—2 there are constants. C,,; such that for every ue Cg(RY)

D% D52 ully, < o (1D ully + 1Dy ul,).

The proof of Theorem 3.2 requires some preparation.
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Recall that the lunction E =(4n)"'log(x?+y?) is
solution for the Laplacian 4 = D2+ D2, ie.

a fundamental

(3.19) Exdu=u for ue C¢(R?).

Combining (3.19) with an appropriate affine transformation of
coordinates we obtain

Lemma 310 Let S(&, n) = al2+2bén+cn® be an elliptic polynomial,

precisely « > O and the discriminant b*—ac < 0. Put

Eg = (4n/~(b*—ac)) ' log S (y, —x).

Then Eg is o fundamental solution for the differential operator § = aD?
+2bD. D, +eDE, ie.

(3.20) Eg«Su=u for ueC¥(R.

Note that the left-hand side of (3.20) is a convolution of a C®-function
with bounded support with a locally absolutely integrable function; hence it
is well defined.

We shall also use some algebraic properties of polynomials.

Fix an integer n 2 2. Let m=[n/2]for t>0and for j=1, 2,..., m put

1
n+12n?,

2
Sua (& 1) = &34 2éncos -

n)]'l.

elliptic” polynomial

T n) = (é”+f"n")'[Sr,j(€,

Limma 3.2 (i)
. ] 2

S,y is an with  discriminant

—{Tsin-

(i) S, is a factor of the polynomial &"+1"y" hence T, ; can be identified
with the homogeneous polynomial of degree n—2 such that

(3.21) (Sey TN(E, ) =

(ili) For each k=0,1,...,n—2 there exist scalars a;, and b, for j
=1, 2,..., m such that for t >0

m m
= Z ayy Tp 5 )+ > by Ty (& 1),
/= =1

fn +T" nn;

(3'22) ,Cn—mlw«k[fknn-dwk

Proof. We ‘omit the straightforward proof of (i) and (i) By a

homogeneity argument it is enough to prove (iii) for v = 1. First we show
that the polynomials T, Ti,.... Ti,n are linearly independent. Let 0

m

=Y ¢ T, Fix jo with 1 <jo <m and multiply both sides of the identity
C A

6~ Studin Mathemagicn LXXXIV.2
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by 84, Then
0= ;o (E"+n)+ X Sijo TrylCom) = €1 (€1 +[S1 4o 1P (€ n) - P& )
F#in
for some homogeneous polynomial P, because if j # jo then Sy ;,|71,;. Since
the polynomial x"+ 1 does not have multiple zeros, the latter identity implies
that ¢;, = 0. Hence the T,j's are linearly independent and the space spanned
by them is m-dimensional. Therefore this space coincides with the space of

all homogeneous polynomials
-2

Z a (fk ',,11”2 -k

k=0

such that a, = 4y, for k=0,1,..., n—2 (because the coefficicuts of each
of the T, /s satisfy this relation). Thus for each k=0,1,..., n—2 there
exists a linear combination, say X,, of the polynomials Tj ¢, Ti2....; Ty m
such that
(3.23) ékr’nwz—k+én—2—k L3 Xk'

Similarly we infer that there is a linear combination, say Y, of the
polynomials T, ;, T33,...» To,m such that
(324) LJr:k;,’n-—z—k+221;-»-?2';:71*2-"!4 LI Yk

Solving for k # n/2—1 the system of equations (3.23) and (3.24) we get

ék"n—-z—k — (1 —p2knt 2)~1 (Yk___zzkwn'ﬁz Xk)
while for k = n/2—1 (this is possible only in the case where n is even) we get
6»:—1,1»1—1 — 2-—1 Xm—~l'

This completes the proof of Lemma 3.2.

In the sequel it is convenient to denote by S%¥; the polynomial defined by
S¥i(x, ) =S, (y, —x) for t>0and j=1,2,...,m.

Proof of Theorem 3.2. Fix ue C¥(R?. It follows from Lemmas 3.1
and 3.2 (i) and (ii) (more specifically, from the formulac (3.20), (3.21)) that for
, >0 and for j=1,2,...,m one has

1 2j"”1 ! sk ‘ n H R
T u= 47rsm»—;1~-'-n log 8% |* (DY +1"Dj)u,

2i—-1 \! )
Tl U = [<8nsin—{71—-~n) logSQ,JJ*(D;+2"r”D;)u.
(Recall that for a polynomial T by T we denote the corresponding
differential operator.) Thus, by (3.22)

(325) " TUTEDEDYT 2Ry =, aDlu+tg xDiu for k=0,1,..., n—2
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where
) m ) j__ -1 m 21_ 1 -1

foi = 'Zl 4msin T} dlog S+ Y (81csin n) b log S,

j= j=1

m . 21_ -1 m 2] — -1

Goe = o, |4msin n)  ajlogS¥+2" Y (8nsin n) b logS%, ;.

=1 Jj=1

Note that the formula (3.25) is an analogue of (3.7). From this point the
proof of Theorem 3.2 is the same as the proof of Theorem 3.1, because we
also have an analogue of (3.6), namely:

(326)  fx~fok€LP(R?),  Gex—Goue L°(R?)

Indeed, f;,—~f,. and g.,—g,, are linear combinations of the functions
log [S¥;(S*¥)""] and log[S%;(S%,)""] for j=1,2,...,m; the Ilatter
functions are uniformly bounded because the exponent of each of them is a
quotient of two homogeneous polynomials of the same degree (= 2); each
polynomial is positive and bounded away from zero.

Now by the same manipulation as in the proof of Theorem 3.1 we infer
that for each k=0,1,..., n—2

for 0 <o <.

DEDY ™% 2y = my Dy u-+myxDyu
where my,el*(R?) and m,,el*(R*) are functions independent of
ue CZ(R*. This clearly implies (3.18).

4. Estimates of the I?-norms of derivatives by the I'-norms of derivatives
of higher orders. In this section we complete the proof of Theorem A and at
the same time obtain a more general result in the cases of pairs (n, m)
discussed in the previous section.

THEOREM 4.1. Let n =2 and m = 2 be integers such that either at least
one of them is even or n=m. Let a, b be nonnegative numbers such that
(4.1 an”t4+bm™t =1—02n) ' —(2m) "L,

Then there exists a constant C = C(a, b, n, m) such that for every
ue C3(RYH
(4.2) 1D Dyl ull, < CIDYully +11D5 ully).

Proof. Case 1: at least one of n and m is even. Fix ue CF(R?. Put
A =n(l=2n) ' ~(2m)"'). By the Plancherel identity
NIDA1ul3 = [f1E1741aE, ni*dE dn.
r2
Un the other hand

(J1E2412(E, mI2 dédn =] D, (24— n}w)", (Dyu) |
Rz


GUEST


196 A. Pelczynski and K. Senator

where
. . pX-"  if n is odd,
Dc124—nj = D24~ if 0 is even.

Thus, using again the Plancherel identity
1D ull3 = |<D. {24 —n}u, Diudl < ||D; (24 —njull,, [ID% ull;.

Next observe that the quadruple (24—n, 0, n, m) satisfies (3.1). Thus, by
Theorem 3.1,

(4.3) IIDA w13 < CHIDLully +1ID5 ull ) IIDZull, -
Similarly, putting B = m(1—(2n)~* —(2m)" '), we obtain:
(4.4) IID3 i3 < C*(I1D% ully +11Dy ull YNDY ul}, -

Now fix nonnegative a and b so that the quadruple (a, b, n, m) satisfies
(4.1). Then, for t =aA™! we have a =14, h=(1-1)B and 0 < < 1. Thus,
combining (4.3) and (4.4) with the elementary inequality

[ 200 < 1e2+ (1~ EeR. neR,
one gets
DS D3l = [[IEP > 1 (E, m)l® dé dn

R

b 01
<2 ST aE, mi? dédn= [Tl |a. mi?dédn
A ) B R2

i

a b
ZHIDQI HII%+-EIIID,€’I ull3

£ CHDYL ] DR ull)?.

Hence we get (4.2) with C = (C*)!/2,
Case 2: n=mz= 2. The argument is cssentially the same as in Case 1.
Combining the Plancherel identity with Theorem 3.2, we infer that

DL ulf3 < Co (1D%ully Dy ull ) 1D ul
103~ ull3 < Cpan- 2 (1Dl 4 1Dy | ) 1Dy ]
Now “interpolating between the points (n--1, 0) and (0, n—1)" onc gets
for (a, b, n, m) satisfying (4.1)
1D% D3| ull3 < Cyo (IDFully +11Dy 1l ).
Thus we get (4.2) with C =(C, o)/ (Note that by the symmetry reason the
constants C,, and C,,., appearing in (3.18) are equal)
The next result is a slight improvement of Theorem A.
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CoroLLARY 4.1. For all positive integers n and m there is a constant C
= C(n, m) such that for every ue C®(R?

4.5) 1D~ 172 D= D02 w2 < ClID%ully 1Dy ully,
(4.6) DY~ 172 DY~ D72, < 271 {/C (D3 ully +IIDy )

Proof. For n, m both odd we obtain (4.5) using Proposition 1.1. For
min(n, m) = 1 we also obtain (4.5) using Proposition 2.2. In the remaining
cases Theorem 4.1 yields (4.6). Clearly (4.5) implies (4.6) because

(ID%ully +11D5 ull,)* = 411D% uliy 11D ull -

Finally assume that (4.6) holds for all ue C@(R?). Fix a ue C¥(R? and for
>0 define u,e C®(R? by u.(x, y) =u(tx,t"'y). A simple computation
gives
([1DG=DI2 D= D02y || == 7l =mI2 || D= 12 D= D72y ;
IDZully = =" IDzulle; DY udlly =~ ™|IDF ull; .

Thus writing (4.6) for u, we get

o2 || DY 2 D=2y, < 271 /C e IR ully + 7 DY ully).
Thus

(11D =2 D= W12 yjl, < 271/ C inf (™ || D3ully+1 ™72 1D} ully)
>0

= /DLl Dy ul)*
This completes the proof of Corollary 4.1 and of Theorem A.
It is convenient for us to state explicitly the following trivial
consequence of Corollary 4.1.
CoOROLLARY 4.2. Assume that we are given two pairs of positive integers
(ny, m) and (ny, my) such that (ny—ny)(my—my) <0. Then, for every
ue C§ (R,

@7) (DT plratmaT U s < KDY DY ull, 1D Dy ull;,
(48) “ [1);"1 +my - 1)2 D;"Z"""Z' 1)/2| u”z

<27 /K (1D D ully +(1DF Dy ully)
where K = C(|ny~ny|, |my—myl) and C(-,*) is the constant appearing in
Corollary 4.1.
Proof. Put v = D}""""¥ p}"™™2y and apply Corollary 4.1 for v and
for n=|n,—nyl, m=|my—my.
Our next resull is a version of Theorem A and Corollary 4.2 for
periodic functions.


GUEST


198 A. Pelczynski and K. Senator

TueoreEM 4.2. Let W < Z2 be a smoothness, (ny, m))e W, (ny, my)e W
and (ny, m;) # (ny, my). Then there exists a constant C = C(ny, Ny, My, my)
such that for every trigonometric polynomial f =Y w, ,eP¥ i

e

(49) Z !plnl—hlz"l'lq’nu'i-mz"l]ocp,q|2 Czllf”l (12)
(p.g)eZ?
Proof. Let ¢(x, y) = (2n)~ 'exp(~4(x*+y*). Regarding f as a (2, 2n)-
periodic function on R* we consider the function ¢f: R* - C. We note first

that there is a numerical constant K, independent of f such that

(410 ol < Ko 13,02
To prove (4.10) fix Ae W and use the identity
DY@ =% [ 1D pg(x, yldxdy
(p)ez? [~mm?

where @,,(x, y) = ¢(x+2np, y+2ng). Now we fix (p, g)e Z% Using the
Leibniz formula for the derivative of the product of functions we infer that
DA(fppg (%, ) = @palx,¥) 3, Pplx+2mp, y+2ng)(D*f)(x, y)
- 0<Bs4
where Py is a polynomial in two variables which is independent of f and the
pair (p, ). Thus

” [DA (f(Pp,q) (X, ,V)I dx dy

[~mm?
< Y sup
0<BSA (x,y)e~n,n}2

S CAN+D" e N2 f]| 4

Py (x+27p, y+219) @p,q (%, MIID S 1 2,

w2

where N = max([p|. |gl}, d is the maximum of the degrees of the polynomials
Py. and C,4 is a numerical constant depending only on A via the polynomials
Pg. Next observe that for fixed NeZ, there is at most 8N+1 pairs
(p, 9)€ Z* such that max(|p|, |g) = N. Thus

DAl < Co 3 (N+DMEN -+ D2 7] Ly

N=0

Hence we obtain (4.10) with

Ki=Y Cqi Y (N+DMEN+1)e ™2 < o,
AeW N=0
Let G, = |DY*D}*|(0f,s) Where n=ny+n,—1, m=m +my~1, f,p(x, ¥)
=/[(x+4a, y+b). Combining Corollary 4.2 with (4.10) and the identity
”Ia b“L1 (1-2) ||fI|L1(.,.2) we get
(4.11) [1Gabll? < 4

K ll@funllt < K312y o
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where K is the constant appearing in (4.7) and (4.8) and K, = 2“‘\/12 K;.
Next we compute ||G,,||3. By the Planchere] formula we have

[Gasll3 = [{1E" ™ (@ fo)” (€, > dEdr.
R2

Put e,,(x, y) = exp(ipx+igy), for (p, q)e Z%. A straightforward computation

gives
(peng) (€ 1) = @(&—p, n—0).
Thus
(0fp) & m) = Z % g €T M (E—p, n—g).
Hence

(Gubll = §TIE" 1™ [ 0y €7 ™ (&~ P, n—aq)f* AL dn.
R2 p.q .

Integrating the latter identity against dadb over the square [—m, m]* and

using the Fubini theorem we get

§f 11Gasll3 dadb

[-nm?

= filf\"lﬂl"‘ If X apqer*™ @& —p,n—q)|*dadbdidn.
R

[-mm2 P4
Since
[ o er*®ap(E~p, n—q)* dadb = (2m)* 3 loy, o 9 (& — P, n—a)%,
[~nn]2 P p:q
we obtain

§§ 11Gasllzdadb = H(21t)2 lél"lnl"‘ZIfX,,qI2

[-mm2

On the other hand (4.11) ylelds
[{ 1Gasli3dadb < K34w If124 s

é p. n—q)* ddn.

[-nm?
Thus
(4.12) 3l jjlél"lnl"‘f/)(é p,n—-aq)*dédn < IIfII, L2y
mi
Finally observe lhal
@.13)  [f1E" " (&= p, n—a)* dldn

e

11 v
[ [ 1E=pI"In—gl"exp(—&*—n*)dEdy

-1 =1

= clpl"lgl™

>(2m)"?
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where ¢ is a positive numerical constant independent of p and ¢. Combining
(4.12) with (4.13) we get (4.9).

5. Nonisomorphism of spaces of smooth functions of several variables with
C(K) and I (u) spaces. We begin with recalling some concepts in Banach
space theory.

Let E, F, G be Banach spaces and T: E—~F, T;: E-» G, Ty G- F
(bounded) linear operators. We say that T factors through G if T = T, T,; the
diagram

T ESG3F
is called a factorization. Note that if the identity operator on a Banach space
E factors through a Banach space G, then E is isomorphic (= linearly
homeomorphic) to a complemented (= a range of an idempotent on )
subspace of G.

An operator T\ E— F is absolutely summing provided there cxists a
C >0 such that for every finite sequence (¢) = E

{5.1) YTl < Csup {[Ye;e: lef =1. j=1,2,..].

J i
An operator §: H; — H, acting between Hilbert spaces is Hilbert--
Schmidt provided Y'||ISej|* < +oo for every orthonormal family (¢) in H,

J
(equivalently for some complete orthonormal family). An operator S: H,
— H, acting between Hilbert spaces is nuclear provided

Y1CShy, 6,5 < + 00
]

for all orthonormal families () in H; and (3) in H,.

Now we are ready to-describe the isomorphic invariants essentially
discovered by Grothendieck [GR] which play crucial role in this section.

A Banach space E is said to have the Hilbert-Schmidt Factorization
Property, shortly E has HSFP, provided every operator between Hilbert
spaces which factors through E is Hilbert-Schmidt,

A Banach space E has the Nuclear Fuctorization Propert y, shortly E has
NFP, provided for every absolutely summing operator 7' E - F and all
bounded operators §,: H, » E and S,: F- H, the composition

N
S;TS;: Hy SES FP3y,

is nuclear for every Banach space F and Hilbert Spaces H,, H,.

Note that if a complemented subspace of a Banach space E fails to have
HSFP (resp. NFP) then so does E. '

Grothendieck [GR] (cf. also [L-P]) discovcred the important fact:
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Turorem GR. Every L'(u) space has HSFP. Every C(S) space has both
HSFP and NFP.

Now we are ready to prove the nonisomorphic part of Theorem B.

ProrosiTioN 5.1. If W < Z% is a smoothness which is not an interval, then
Ly (T%) and Ly (R%) do not have HSFP while Cy(T%, Cy(R%), L5 (T% and
I%,(RY) do not have NFP.

We begin with the two-dimensional case.

Lemma 5.1. If W < Z2% is a smoothness which is not an interval, then
Ly (T?) and Ly (R? do not have HSFP.

Proof. By Lemmas 0.1 and 0.2, there are points (ny, m)e W and
(n,, my)e W such that

ny— mog—1 n o am\—
(52) LT MR p ) = oo,
Prgez? (n,myeW
By Corollary 4.2 the operator which assigns to every ue CF(R?) its deriva-
tive DU 2T V2 DY ™27 2y extends to the bounded linear operator, say Q,
from L}y (R?) into L?(R?). Now we define the operator §: I% (T?) — I*(R? by
the factorization

§: Gy(T%) 5 Ly (T9) 2 Ly (R) S B(R?),
ie. S =0QM,I where I is the natural injection (precisely for f e I3, (T?), If is
the same function regarded as an element of Ly (T%) and M,, is the operator
of multiplication by the function ¢(x, y) = (2n)~* exp(—%(x*+y?)).
The boundedness of M, has been established in the proof of Theorem
4.2 (formula (4.10)). The boundedness of I is well known. In fact ||I|| < \/IE

where k is the number of elements of W. Indeed, the inequality lg||, < |lgll»
for every measurable g: T? — C combined with the Schwarz inequality yields

g = /e
Wlen = T 1041 < VR(E 1041
<VK(E, D13 = /el g ra

Thus § is a bounded linear operator.
To complete the proof we shall show that S is not Hilbert-Schmidt. To
this end observe first that the functions

2n ,2m\~1/2
‘{ep,q( Z ryq m) ! }(p,,ﬂgzz
(mm)eW
form an orthonormal system in L, (T%), where e,,(x, y)=exp(ipx+iq:v).
Next, as in the proof of Theorem 4.2, we estimate from below the quantity

2

g = 1)2 nimytmg=1)/2
D" pim T (ge, .

1ISe, i3 =
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Since (e, ) (&, n) = @{p—¢, q—mn), using the Plancherel identity we obtain
1Seplf = ] pepal (€ mI1E"™ ™" ™" "2 d
Rr2

+axtx

=@2m72 [ [ [&-=pl

— =L

nytny-1 lt[’ml +nig-1

ny+ny-1 my +my -1

74 e 8ty
n

2 clpl

where ¢ is a positive numerical constant independent of p and g. Thus

5 lstensl T pae)

(ra)ez?

>c Z 'p!n1+r|2—lIqlml-l-mz--l( Z ]72"612"')“ (- oo,
() ez2 (nym)eW

Therefore S is not a Hilbert~Schmidt operator.

The similar lemma for Cy (T?), Cy(R?, L% (T?) and L% (R?) is more
complicated.

Lemma 52. If W < Z% is a smoothness which is not an interval, then
Cw(T?), Cw (R, 1% (T? and L3 (R do not have NFP. )

Proof. We consider only the case of Cy; the argument for I3 is the
same. Pick again (n., m;) and (n,, m,) to satisfy (5.2). Next pick a sequence
of positive numbers (4,,) . so that '

(mg)eZ
"2 .
Y =1
(pyez?
(ny tny= 12 (my+my—~1)/2 -
(53) Z 'lp,qlp, 17"z Iql 1 2 ( Z p2nq2m) 1/2= + 0.
(p.g)cZ? (mm)ew

We consider the operator §: I3 (T% - 2(Z% defined by the
factorization

. M
S: By(T)2Cp(1y) &7 Cp(RY

T »
— Ly (R = Ly (1) 5 12(22)
where C,, is the operator of convolution with the function
Q=Y d,e,,cl(TY,
(po)ez?

M‘”I/2 is the operator of multiplication by the function @Y2(x, )

=(2m)~ Y2 gxp( —%(x*+y%), T is again the operator of multiplication by the
same function but regarded as acting between other spaces, P is the Poisson
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summation operator defined by

(BN, p) = Y  [(x+2np, y+2mng)

(ma)ez?

for (x, yye[—m, n]

and Q@ is the operator which assigns to each fe L}, (T?) the sequence

(ny+ny—1)/2 (m1+m2-1)/..2
(ap,q ’pl |ql (p.q)EZZ
non

where a,,=@2m)"* [ | f(x, y);m(x, .\VIzlxtly is the (p, g)-th Fourier

coefficient of f. It follows from Theorem 4.2 that Q, is bounded. The
boundedness of P follows from [S-W7, Chap. VII, § 2, Theorem 2.4 where it
is proved that for every gel’(R?, |Pgl, <llgll,, in particular,
IP(DAf)l; < IDAS]l, for every Ae W and every f'e Ly (R?). The argument for
the boundedness of M 120 Cy(T?) = Cy(R?) is similar to that for the
boundedness of M,: Ly (T? — Ly (R? presented in the proof of Theorem
4.2. The fact that T Cy (R*) — Ly (R?) is absolutely summing (and therefore
bounded) is easy. To this end note first that if a finite sequence ( f) < Cy(R?)
satisfies

“Z‘ﬁﬁ”cwn% <l
J

for every sequence () with |¢ =1 for j=1, 2,..., then for every BeW,
I 1Dl <1 where (DEf(x, y) = (D*f)(x, y)| for (x,y)eR% Next fix
o

Ae W and observe that the Leibniz formula for the derivative of the product
of functions yields

DA(fo'?) = ¥ k(B, A)D*"F(@!?) DS

0sB<A

where k(B, A) are real numbers independent of /. Thus

2 DA M3 dxdy
R%

SUDAf ")), =
/

< 3 kB, A [[IDA (o) Y ID¥ £ dxdy

0€REA R2 ]

< 2

0€hs4
< k(A),

Jle (B, AP (@' )y [ 1Dl
J

where |k (B, A)|IDY ®(@"Y¥), is a numerical constant

kidy= 3
0£hsa » o )
independent of the choice of the sequence (f). Hence T satisfies (5.1) with

C = max (k(A4): AeW].
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To complete the proof of the lemma we have to show that § is not
nuclear. To this ‘end, remembering that

2 g2m)=112)
lnal X P ) Siparez?
(n,m) e

is an orthonormal basis in I3, (T?), it is enough to show '
(54) |<S €pa Z p"g*m)” 1/2 M>I

(p» qlel2
where (6 .z2 1§ the unit vector basis in 2 (Z%.

F"')(p.q)

We compute the scalar product {S(e,,,), (5;,,q>. First note that
TM 12 Coley) = Apg 0y

next note that for ge Ly (T?),

$01(9), 85,00 = 54l

where a,, is the (p, g)-th Fourier coefficient of g.
By Theorem 24 of [S-W), Chap. VII, § 2, if g = Pf, then a,, =f(p, g).
Thus remembering that (e, ,)” (£, #) = ¢(E—p, n—q), we get

(ny +ny—1)/2 |ql(m1 +my=1)/2

. A - (g tny—1Y2, (my-+my=1)/2
(Sepas 3pa> = g (@end (0, @) g™ T"2™ V3 g1+ 2= VY

ny—=1)2 m =12
= g @(0, 0)pf" 7" g T
- (27'!)‘ 1 ,{p’q !P’("l +ng—1)/2 Iql(ml g~ 1)/2'

The latter formula together with (5.3) yields (5.4). This completes the proof of
Lemma 5.2.

Now, Proposition 5.1 follows from the next lemma which reduces the
general d-dimensional case to the two-dimensional one.

Lemma 53. If W Z% is a smoothness which is not an interval, then
there exists a smoothness V < Z% which is not an interval and such that the
space Ey is isomorphic to a complemented subspace of E.

Here Eyy stands for one of the spaces either Cy(RY) or Cyy (T or L5y (RY)
or Ly (T% for fixed pe[l, ] and Ey, stands Jor the corresp(mdlng space
Jor the smoothness V.

Proof (suggested by S. V. Kisliakov and N. G. Sidorenko). The rela-
tion of being isomorphic to a complemented subspace is transitive. Thus, in
view of Lemma 0.3 and Corollary 0.1, it suffices to show that if d > 2 and
V<Zi! is simply generated by a smoothness W < Z4 then Ey is
isomorphic to a complemented subspace of Ey. We consider the case of
R?; the argument for T is similar.

Order the coordinates of R* so that V = ¢ (W) where ¢ is given by (0.5).
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Let x4~y =u, X; =0, ys., = w; denote by "2z the first d—2 coordinates of
a vector z. Fix he CF(R) with
(+) fR*()dt = 1.
R .
For feEy and geE, put

(Jg) (= =g(*"2x, u+n)h(u—v)2) for x =(x)eR’,

(PN 2y, w) = [ f(*" 2y, t, w—t) h(w/2+1)dt =(y)eRN
R

2x, u, v)
for y
Clearly, by (+), PJg=g¢g for geCF(R*"?). It remains to establish the

boundedness of the operators J: Ey — Ey and P: Ey — Ey.
Fix A=(C,a,bleW; CeZ{ % Put r =a+b, Dig=g™. Then

(D*Jg) (" 2x, u, v)
AV fm-r \b=m C (b m) d—2
=3 X ( N S VL o) (" 2%x, u+v)

n=0m=0 \1 m
« Hr=n=m vy
2 A
r

oy (u)(h)( |D‘ @ (@d=25 Y 4p)
4=0ntm=q n R" 2 Rz
xchie=0 (=2 dudvd (*2x)) "

Thus for | < p < o0, by the triangle inequality,

”D IUHI p(ntl)

Since
[ k(o) h{(u—0v)/2)dude =
Rr2

for k, he C§ (R), we get

fk(s) ds [ h(r)dt
R

||DA,]g||",,md) <2 ZOHDc 9(‘"”wn‘"‘)W’(“"’”wmv

[[:::

The latter inequality is also valid for p = oo (by letting p— ). This proves
the boundedness of J because if Ae W then (C, q)el for 0<g<r.

Fix feCo(RY and B=(C,r)eV. Then B = (C,u,b) for some
(C.a,heW. Put G =D Pf = P(D" (). Dilferentiating the integrand of G
h-times with respect to the variable w, then substituting ¢ = w—g and again
differentiating the interzmnd a-times with respect to w we get

(D, G 2y, w) = 3, Z ( )( )7'3
e om= 0

% j‘l)(('.u,m)f(u - 1,\’, w—3§, 8 Jir—n=m (%W'—S) ds.
R
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Thus for fixed p with 1 < p <o, by the triangle inequality, we get

b a

”DB Bf”Lp(RdWI) <239 Z Z ( " ”J‘D({_‘,n,m)‘/'(d - 2),1 Ww—2, )
R

m=0n=0 pd~2 R

x hr=rm 3y, g ds|"dw d (“~2y)) "
Estimating by the Hélder inequality the integral Hcls[ we get
R

b u

“DB Pf”Lp(Rd“‘ " < or 3¢ Z Z “D((',n,ml /‘med) ”/l‘" e "”Hl,l’ "

m=0n=0

Letting p— o0 we infer the validity of the latter inequality also for p= .,
This shows the boundedness of P because il Be |’ then (C, n, me W for
0sn<a 0Smgh,

6. Sobolev spaces isomorphic to classical Banach spaces. In this section
we complete the proofs of Theorems B and C stated in the Introduction,

We begin with a natural representation of Soboley spaces as subspaces
of certain If-spaces and spaces of continuous functions.

In the sequel by S we denote either R or T Given a smoothness
WcZi and p with 1 < p< oo we denote by Yy 1208% the I"-sum of w
copies of I7(S%) where w is the number of clements in W. Clearly the space
}:WE’ (8% can be naturally identified with an If-space on a measure space
depending on W but independent of p- Next we define the isometric
isomorphism

Jwi By(S)— Y, 12(S%)
by
Iw(f)=(D"aaw for fe Iy (S
The map Jy, is called the canonical isomorphism of 1%, (S%) and the range
of Jy is called the canonical image of 5, (89
Similarly we define ZWC(S"), the canonical isomorphism and the

canonical image of Cy (S%). Note that for § =R, C(R) denotes here the
uniform closure of all scalar-valued continuous functions on R with compact
supports.

The orthogonal projection
Py ZWLz(Sd)"' JW(LZW(S,I))
onto

is called the canonical projection.
Next we introduce some notation.

e ©
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Given E =(¢)eR’ and 4 =(a)eZ% we put

d d

B =1& and (4=Y a.

i=1 i=1

For a nonempty finite set W < 2% we define the function Q(W): R?
— R, by

QB = 3 B>

Now we are ready for

ProPOSITION 6.1, Let W Z% be a smoothness. Then the canonical
projection Py 3w I2(RY) — Ty (I3, (RY) is given by the formula

(6.1) Py [(fﬂ)lisw] = (BZW 7:4,1: (fB))AeW,
where Ty IF(RY) ~ B (RY is for A, Be W defined by
(6.2) Ty.p(g) = (MBI EA*EQ (W)~ 1 ).

Proof. If (f)pew = (DPf)pew for some fe &(R? then, for every Ae W,
Z T, H(DB‘/‘) = 2 (ilA\-IBI E’HBQ(W)"I I8l EBf'*)"

BeWw BeW

=(Mg4 Y ZPQW)'])

BeW

= (I 54])" = DAf.

Next pick (fp)gar 50 that fye (R for all B in W. Then a similar
calculation gives Py [(fo)pew] = Jw(f) for

f=(3 i PME QW) )
BeW

Thus Py takes a dense subset of ) I*(R%) into the canonical image of
it i identi anonical image. Hence Py,

%, (R%) and it is the identity on a dense set of the c:momf:a'

iswa( bounded projection from ZWL?(R") onto Jy (B (RY); the boundedness

of Py follows from the boundedness of each 7.;1,,,‘; the operators T, p are

bounded because they are induced by the multipliers

iIAl-IBI EA-I-BQ(W)~1 el® (Rtl)
Finally the projection Py, is orthogonal because it is self-adjoint. Indeed, the
adjoint P, is given by

P [(fa)pew] = ( Z 73’,‘4 (fB))AeW

BeW

where Ty = Typ.
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The analogue of Proposition 6.1 for T differs only by the form of the
Fourier Transform for this group. Precisely we have: Wi
ProposiTioN 6.1”. The canonical projection of

Py: Y, B(TY) — Ty (B (TY)
is given by (6.1) where the operators T,y are defined by

(62/) 7;‘” Z pr’Ml iB| PA I-I!Q W) 1 P) ep,
rezd

where for PeZ' and for Xe[—mn, ],
(X) =P ap =m0 | g(X)ep(~X)dX.

[~ mm]d
Recall that an operator, say U, defined on some space of measurable
functions on a measure space is called p-bounded for some p with 1 < p<
provided there is a positive constant K = K, such that |[Ugll, < K|ly||, for
cvery g in the intersection of the domain of the operator with the
corresponding IP-space.

ProrosiTioN 6.2. For an arbitrary smoothness W < 2% and for 1 <p
< oo the canonical projection Py, is p-bounded.

Proof. By 2¢ we denote the subset of Z% consisting of all characteristic
functions of subsets of the set {1, 2,...,d} of indices; the characteristic
function of the one-element set {j} is denoted by EW,

First we consider the case of R. In view of Proposition 6.1 it is enough
to show that for every Ae W and Be W the multiplier m, 5 = E4*#Q(Ww)~!
induces via the Fourier Transform a bounded operator in IP(R. To this end
it suffices to check that m, 5 satisfies the hypothesis of the multidimensional
Marcinkiewicz Multiplier Theorem (cf. [ST], Chap. IV, § 6, Theorem 6').
Since |m, 4l < 1, we have to show that there exists a numerical constant K
= K (A, B, p) such that for every 0+ Ee2,

(63) sup JIDF my ) d;, déy, ... dEy, < K
L

where j, <j,< ... <Jj:: E is the characteristic function of the set

{JisJ2s- s Ju}; the supremum is taken over all dyadic parallelepipeds in R~

In fact the integral in (6.3) is a function depending on the variables whose

indices belong to the complement of the set |/, j5,..., ji!; inequality (6.3)

can be regarded as an inequality between functions.

To verify (6.3) one may assume without loss of generality that £ is the
characteristic function of the set {1, 2,..., k] for some k with 1< k< d. Let
us denote by ®,(4, B) the family of all sequences

© =(Eo. Ey,...p Eygys A+B, Ay, Ay, Ayy)

h that Ee2' for 1=0,1,...,5(9); 0<Ey<E,<..<Ey=E;
1 ,<A+B; E-E_;<AeWfort=1,2,...,s(¢); 0<s(p) <k Let
s(p)

C(p)=A+B+ Y A-E.

t=1
Clearly C(p)e Z* because

s(op)

Clp)=A+B— E0+Z( —(E,—E )=

t=1

We have
(64) DEmyg= Y B, EC@(Q(W)) st
Pe®y(4,B)

where B, are scalars.

Formula (6.4) can be easily verified by induction with respect to k
(= the number of elements of the support of E) using the standard formulae
of differentiation:

(PQ™ 1)y = Q™" Py~ PQ™*Qy,
(Q(W))ij = Y 2aj(A.)EZA—-E(i)’
ED s Aew
where a;(A) denotes the jth coordinate of A.

In view of (64), to establish that DFm,, satisfies (6.3) it is enough
to show

(65 [IEZCPHQW)"@ " dL dE, ... dE < (log2)*
b

for ped, (A, B).

Fix ¢ =(Eo, E,..., Ey,; A+B, Ay, A,,..., s(‘,,,)ecb,‘(A B). Note that for
every Ae W, E24 < Q(W). Hence |5473| < 271 (524 + 525) < Q(W). Thus

(59 = e T 221 <1292 (o
t=1

Therefore for E % 0,

k
|E@] (@ (W)@ < |88~ = [T 1)

J=1
Hence, by the definition of a dyadic parallelepiped in R* (cf. [ST] Chap.
IV, § 5)
k
JIEZCOHQ (W)@t d¢, de, ... d&, < JITIE)™* dE d, ... d&, = (log 2).
b bj=1

This completes the proof of the proposition for RY.

7 ~ Sludin Mathemutica LXXXIV.2
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The proof for T¢ reduces to the case of R*. In view of [S-W], Chap. VI,
§3, Theorem 3.8, the fact that the multiplier m,, induces a p-bounded
operator in [Z(RY)~ I2(R% implies that the sequence (myg(P)), . i a
multiplier which induces a p-bounded operator in I7(T%) A L2(T%. Thus in
view of (6.2) the canonical projection Py: Yy I(T%) > Jy (By (TY) is p-
bounded for 1 <p < .

In contrast with Proposition 6.2 we have

THEOREM 6.1, Let W < Z% be a smoothness. Then the following conditions
are equivalent:

() Wis an interval,

(i) Py is 1-bounded,

(iii) Py is oco-bounded,

(iv) Py restricted 1o Yy I2(S") N Yy C(8*) extends 1o a bounded operator
from Y C(S%) onto Jy (Cw (59).

Proof. Clearly (ii)=(iii) by a standard duality argument. (iii)=>(iv)
because

Py «fn)asw) = Jw(‘(/](Rd)) cJy (CW (Rd))

whenever fy € % (R%) for all Be W (resp. Py ((fa)sew) < Jw (Cw(T*)) whenever
all the fg’s are trigonometric polynomials): such sequences (f,)z.w are dense
in Yy C(RY (resp. in Y C(T%). The implication (iv)=(i) follows from
Proposition 5.1 combined with Theorem GR stated in Section 5§ and with the
fact that a complemented subspace of a space with NFP also has NFP. Thus
to complete the proof of Theorem 6.1 we have to show that (i) = (ji). To this
end we first prove

LemMA 6.1, For 0< k< 2n and for n=0,1,... put

ren@=28Qm™  QmE) = 252’

t=0

((eR).

Then r,, is an (inverse) Fourier Transform of a finite Borel measure on R.

Proof. Note that if for some fe ! (R), the derivatives /* and f” belong
to L}(R), then f is the Fourier Transform of a function belonging to
I} (R)n I2(R). Next observe that if P, Q are polynomials with Q > O then
PQ " 'e}(R) iff degQ > deg P+2; thus PQ 'eI!(R) implies that all the
derivatives of PQ~! are in I*(R), hence PQ"" is the Fourier Transform of
a function belonging to L'(R)~ I2(R). Using this criterion we infer that
(ro,1) EIJ(R) and (r) €eL(R) for 0<k<2n~2 and for nz 2. Cleatly
(roo is the point mass at zero. A direct computation shows that (r; )

n/2 isignxe™™. Thus (r,,,)" e L} (R). The identity

n-2
an—l,n_rl,l = _Jzzoézj+1(Q(n)Q(1)) EL’I(

icm
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combined with the criterion mentioned at the beginning of the proof and
with the formula for (r, ;)" implies that (r,-;,) €L (R) for n> 2. Finally
the identity

n—1
Tann = To,0— Z rlj,n
=0
implies that (r,,,) is also a finite Borel measure.

Now we compiete the proof of the implication (i) = (ii). First we consider
the case of R'. Let W < Z% be an interval, say W = I(0; C) with C =(c)).
Pick A =(a)eW and B=(b)eW. Clearly a;+b; <2, for j=1,2,...,d
because A < C and B < C. Combining Proposition 6.1 with [S-W], Chap.
VII, § 3, Theorem 3.4, to prove that Py is 1-bounded it suffices to show that
the inverse Fourier Transform (EA“’ (Q(W))“‘) is a finite Borel measure.
Note that if W =1T1(0; C) then

OW)(E) =] Q&) for E=(¢)eR
i=1

Thus

EA+B( ) Hraj-Hz 5 (é}
Now using Lemma 6.1 we infer that the inverse Fourier Transform of the
function 4*#(Q(W))~! is the product measure

d

j@l (raj+bj.cj) .

The case of T¢ reduces to the previous one via [S-WJ, Chap. VII, § 3,
Theorem 3.8.

To complete the proof of Theorems B and C we also need

ProrosiTioN 6.3. For an arbitrary smoothness W < Z% and for
1< p< oo the space Iy (8%) (resp. Cy (S%) contains a complemented subspace
isomorphic to IP(S) (resp. C(S)).

Proof. Combine the next two essentially known results.

LemMMA 6.2. Let V = Z, be a smoothness generated by a smoothness
WeZ4. Then for 1<p<K oo the space I%y(S%) (resp. Cy(S%) contains
a complemented subspace isometrically isomorphic to I, (S) (resp. Cim(S),
where m+1 is the number of elements in V and (m) denotes the unique
smoothness in Z. possessing m+1 elements.

The proof of Lemma 6.2-is a nonessential modification of the proof of
Lemma 35.3.
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ProrosiTion 64. Let m = 1, 2,... Then the space Com (S) (resp. 1%, (S) for
1 < p < oo) is isomorphic to C(S) (resp. I2(S)).

Proof. Let E, (m=0,1,..) denote either I, (T) for fixed p with
1<p< oo, or Cyy(T). We shall show that the operator

Uf =f'+(2mr)~! 7jf(s)ds-l

is an isomorphism from E,, onto E,_, for m=1,2,...
Pick f and a sequence (f,) in E,, so that f, 7/ Then

[fi=[f and fn/E”T_: 1f',
hence Uf,,E';-:1 Uf as n— oo. Conversely, if Ufna‘llg for some ¢ in E,_,
‘ then [Uf, — [g. Note that [Uf, = [f, for all n because for k& with ¥ periodic

| I(s)ds = 0. Hence our assumption yields that for p which determines E,,

Ifi—gll,»0 and [f,> {g

as n— oo. This implies that there is a periodic f such that || f,—f||,~ 0 and
f'=g. Thus feE, and JoppS as n—co. Hence U is continuous and has

closed graph. Moreover, U is an algebraic isomorphism on the trigonometric
polynomials of degree <k for every k =1, 2,... Since the trigonometric
polynomials are dense in E,, (except the case of L, (T) where they are weak-
star dense), we infer that U is the desired isomorphism.

Now let F,, denote the closure of all algebraic polynomials restricted to
the interval [—mn, ] either under the norm

1 lleom = max [If 9],
o0<j<m

or under the norm
Wl =( % IrOp)e
LEFES
for 1 < p < 0, or the closure in the weak-star topology of the closure of the
algebraic polynomials in the norm |||}, ,. Clearly F, is isomorphic to a
subspace of finite codimension of the suitable space E,, xC"*!. Hence F,, is
also isomorphic to the corresponding IZ(T) (resp. C(T)). Thus the same is
true for the spaces ) F,, where Y F, denotes the infinite /"~sum (resp. ¢,-
sum) of copies of the same F,, (m and the p determining F,, are fixed). Using
a simple version of the Whitney extension theorem for the interval (cf. [ST],
Chap, VI for a general result) one can easily see that the space > F,, can be
decomposed into the direct sum I%,, (R) x /" (resp. Cim(R) Xco). Now the
standard decomposition technique yields the desired conclusion also for the
Sobolev space on R.
Now we are ready to prove Theorems B and C.
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Proof of Theorem B. Let W< Z% be a smoothness. Since a
complemented subspace of a space with HSFP (resp. NFP) has the same
*property, combining Theorem GR with Proposition 5.1 we infer that if W is
not an interval then I, (8%, L5 (5%, Cw(S%) are not isomorphic to
complemented subspaces of L!, I, C spaces respectively. If W is an interval
then combining Theorem 6.1 with Proposition 6.3 and using the standard
decomposition method (cf. eg. [MI] and [P]) we infer that the spaces
Ly (89, I5(8%), Cw(S%) are isomorphic to I!(§%), L*(8) and C(S%
respectively.

Proof of Theorem C. Combine Proposition 6.2 with Proposition 6.3
and use the standard decomposition method.

Remark 1. The analysis of the proof of Theorem C and Propositions
6.2 and 6.3 shows that the isomorphisms in question have been constructed
in the same way for all p with | < p < o0 using operators which coincide on
the common dense subset of all the scale I. Thus we have in fact established
the following slightly stronger result.

TueoreM 6.2. For an arbitrary smoothness W — Z% there exists an

operator

T N IE)-

1€psw

N Ly(s)
1<p<ow
which is p-bounded for every p with 1 < p < co and which for each such p
extends to an isomorphism from IZ(S) onto L% (S%).

Moreover, if W is an interval then the operator in question is also 1-
bounded and co-bounded, and it extends to an isomorphism from I!(S) onto
Ly (8% and L*(S) onto L% (S?) respectively; the latter isomorphism (in the case
of I[*(S)) carries C(S) onto Cy(S%.

Remark 2. B. S. Mityagin (private communication) observed that the
desired isomorphism for 1 < p < oo can be defined explicitly by

T(f) = (@ (W)~ "2f)

-
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Added in proof (May 1986). 1. After this paper had been submitted for publication the
authors learned from B. S. Kashin that the case “n, m both odd” of our Theorem A is already
contained in paper [SO] by V. A. Solonnikov. Solonnikov's method which is different fron
ours can also be adopted to prove other cases of Theorem A (cf. the very recent preprint
[K-S], Section 11).

2. The case of our Theorem B concerning Cy spaces has been obtained independently
by N. G. Sidorenko (cf. the forthcoming paper [SI]).

3. Very recently 8. V. Kisliakov and N. G. Sidorenko [X~S] have proved that if W is
not an interval then the space Cy does not have any local unconditional structure.
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