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The Holder duality for harmonic functions
by
EWA LIGOCKA (Warszawa)

Abstract. In this paper it is proved that if D is a bounded domain with smooth boundary
in R then the space of harmonic Hélder functions A, Harm (D) can be represented as the dual
space to the space [!Harm(D, |o]*) which is the closure of I2 Harm(D) in I}(D, lo*). The
function ¢ is a defining function for D, ie. D = {xeR" o(x) < 0!, gradpg#0 on #D. As a
corollary we get the following fact. The Holder space A,(AD) can be represented as the dual
space to [ Harm(D, Jgl%).

L. Introduction and the statement of results. In [2] S. Bell constructed a
family of operators I’: C*(D)— C*(D) such that for every ue C*(D), Iu
vanishes on-dD up to order s—1 and the function u— ISy is orthogonal to
the space I?Harm(D) of square-integrable harmonic functions on D. Bell
uses this construction to establish the duality relation between Harm® (D)
= C®(D)(\Harm(D) and the space

Harm™ ®(D) = limind Harm™*(D)  (Harm™*(D) = W ~*(D) n Harm(D)).

“In [6] it was proved that the operators I/ map continuously the space

Harm* (D) = W*(D) n Harm (D) into W*(D) (W*(D) denotes the usual Sobo-
lev space, and W*(D) the closure of C(D) in W*(D)) and that Bells
construction establishes the duality relation between the spaces Harm*(D)
and Harm™*(D). This last space was proved to be equal to the space
I*Harm (D, 0*) of functions harmonic on D and square-integrable with
weight %, where ¢ is a defining function for the domain D and k is an
integer. In Bell’s paper and in [6] it is assumed that D is a bounded domain
with C®-smooth boundary. :

The aim of the present note is to extend these ideas to the H&lder spaces
of harmonic functions. We shall denote by A, (D) the space of functions on D
whose kth derivatives satisfy the & —k Holder condition, k = [«] (the integer
part of a), 0 <a—[e] < 1. Let A, Harm(D) denote the subspace of A,(D)
consisting of harmonic functions. We shall denote by I?Harm(D) the sub-
space of L[*(D) consisting of square-integrable harmonic functions, and by P
the orthogonal projection from L?(D) onto I? Harm(D). If D is a bounded

‘domain in R" then a function ge C®(R") (C*(R") is called defining for D iff
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D ={xeR" ¢(x) <0} and gradg +# 0 on éD. We shall prove the following

ProrosiTion 1. Let D be a bounded domain with C®-smooth boundary.
Then Bell's operators I¥ map continuously A, Harm (D) into A, (D), « > 0. If s
=k+1, k =[al, then for he A,Harm (D), L' h vanishes on D up to order k
and L*h = |o|*m, me L* (D), where ¢ is a defining function for D.

ProposiTiON 2. Let P denote as above the orthogonal projection from
I2(D) onto I? Harm(D). Let ¢ be a defining function for D. Then the mapping
m— P(jo|*m) maps continuously L* (D) onto A, Harm (D). (Note that |g| = —¢
on D)

Propositions 1 and 2 yield the following

THEOREM 1. Let D be a bounded domain with C®-smooth boundary. Then
A, Harm (D) can be represented as the dual space to the space [} Harm D, lel
via the pairing (4, v)s = u, E'v), s = [e]+1. The space I! Harm(D, |o|*) is
the closure of I*Harm(D) in the space L*(D, |g|*) of functions integrable with
weight |o|%, ¢ a defining function for D.

We do not know whether the space I! Harm(D, lel") is equal to the
space of all harmonic functions integrable with weight Jo|*.

The next part of this note is devoted to the case where the boundary of
D is of the Hélder class Ay sy

In this case we cannot take an arbitrary defining function ¢ of D in the
construction of Bell’s operators and Proposition 1 and 2. We shall consider
the function gy, a biharmonic function on D such that 20 = 0 and dgo/n =1
on @D. Such a function is of class C*** on b (see [17).

Then Propositions 1 and 2 remain valid if & < o, and s = [a]+1 and
we shall get the following

THEOREM 2. Let D be a bounded domain with Ay +ag-smooth boundary.
Then for every a < ay, A, Harm(D) can be represented via the pairing

Gy v = u, Lvd,  5=[a]+]1,

as the dual space to the space I} Harm(D, |go|%).

Theorems 1 and 2 yield the following

CoroLLary 1. If Theorem 1 or 2 holds then the Hdlder norm of a function
J from A,Harm(D) is equivalent to the norm

=" sup  |Cu,f>,].
ue L2Harm(D)
Il L 1(p, ey <1

The Poisson formula gives an isomorphism between A,(AD) and
A, Harm(D). Thus we get

CoRrOLLARY 2. The space A,{0D) can be represented as the dual space to
I Harm (D, |g"). |

Theorems 1 and 2 can also be applied to the study of spaces of
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polomorphic and pluriharmonic functions (see [7]). The duality theory was
invented by S. Bell primarily for this purpose [3]. The idea of using duality
between spaces of harmonic functions comes from the paper of S. Bell and
H. Boas [4] (see also G. Komatsu [5]). At the end of this note we shall give
some re.mar'ks concerning duality with respect to weighted scalar products
and indicating some further generalizations of the above results.
2. Proofs.

(a) Proof of Proposition 1. The proof of Proposition 1 is based on
the following well-known fact:

If [ is a function from A, Harm (D) then

Gl flla _ G lif e
(dist (x, OD)AI=TT=E1D ~ (gisg (x, AD)JAI-=
Jor every xeD and |B) > [«].

Since for every defining function @, ¢y dist(x, D) < lo(x)| < ¢, dist(x, ¢D),
it follows that

ID" f () <

C
0 1<l 1> .
Let us now recall the construction of Bell’s operators [fu:
1 ou
L'u=u-~4(000%, 05=>—rm,
u=u=40oe) =50
n —(B. i\
(7] —af@Y 0 =ox ox
0, = v 2(—1:, =
I @11) N

s=1
Lu=u—A4(Y 0,0*?).
K=0

¢ denotes here an arbitrarily chosen C®-function equal to 1 in a neighbor-
hood of @D and equal to zero in a neighborhood of the set {Po =0}

The construction of If yields that If u consists of terms in which u or its
derivatives are multiplied by ¢ to the same power as the order of differentia-
tion in those terms, Thus in order to prove that I maps A,Harm into A, it
suffices to show that if p >|f| then

o"DPucd, lle? D ull, < Cpp el

The Hardy-Littlewood lemma implies that it suffices to show that if Iyl =[]
+1 then

and for ue A, Harm.

ID"@? DPu| < i C lul

Qll—a-f-[a]'
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The derivative on the left can be expressed as the sum of terms of the type

@"""D? D’u-(smooth function) where |6 <[yl —r.

We then have

Cliullalol’™ _ Cllullalel”™"

IQpHrDﬁDdul < IQII[}]+M|—¢ \IQ!|/I|+[xz]+1—u-‘r

Cllulla
= W
since || < 1 near ¢D.

The above considerations and the construction of ! imply that if s = [«]
+1 then Lfu vanishes on @D up to order [o]. Thus in this case Lu = |o|*m
where me L*(D) (jgl = —g@). It can easily be seen that ||m||,, < c|[u|],. This
ends the proof of Proposition 1.

(b) Proof of Proposition 2. The projection Pfis equal to f—A4G, 4f,
where G, is the operator solving the Dirichlet problem

0
A2g=w, g=7i=0 on D.
R

Let me L*(D) and ¢ be a defining function of D. Let u be the solution of the
Dirichlet problem du = |g|*m, u =0 on aD. Now, we have

P(lgl*m) = lg|*m— 4G, A(lg]*m) = 4 (u—~G, 4% u) < 4o,

The function v = u— G, 4%u is the solution of the Dirichlet problem 4%v = 0,
v=u=0 on D and Ay/fn = 0du/én on &D. To prove our proposition it
suffices to prove that veA,,,(D). It follows from the results of Agmon,
Douglis, Nirenberg [1] (especially from Theorem 12.10 and what follows) that
veA;+q(D) iff Aufdn|oped,; 4, (0D). Note that the function u cannot be of
class A;1,(D) if |o*m does not belong to A,(D), but, fortunately, the
restriction of du/dn to the boundary has the needed class of smoothness. This
can be proved in the following manner. Let

= G (x, y))
.be the Green function of the domain D (C ié a constant). We have

Clu@y) = gC“G(y,X)IQ(X)I“m(X)M

= D%’?@m—gm (2 )4V, = ()~ 7).

The function u, is the harmonic extension to the domain D of the function
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. cu
ty|sp- Then in order to prove that =
lap

€Ay,,(éD) it suffices to prove that

o u
uy]op € Az, (¢D) and ‘1—1 €Ay 4, (D).
n |ap
Since
x)*m(x
ul(y)=j|£(—)I "fz)de,
b 1x—jl

the boundary values of u, are the same as the boundary values of the
function

lo(X)*m(x)dV,
=y +e(x)o(n)y?~1

and the boundary values of fu,/én are the same as the boundary values of
the function

W](y) = g(

lo (x)F** * (Bo/en) (y) dV,
Ix—y*+e(x)e)"*

2
w(y) =5 W+ |
! D

The classical gradient estimates for integrals of the above type show that
Wi(Y)€A242(D) and  wy(»)—(¢/Pn)wi(3)€ A11n(D). Thus

. uy u .
€A24,(¢D) and —;—’ = Wy|ap€d; 1, (CD) and so —| € A;.4.(?D).
n |ap (N|;p

Uglap = wilzp

Hence for every me L*(D), P(jg|*m)e A, (D) and by the closed graph
theorem the operator P(|g/*m) maps continuously L=(D) onto A, (D).

(c) Proof of Theorem 1. Let ¢ be a functional from the space adjoint
to I}Harm(D), |o/*). The functional @ can be extended to a continuous
functional @ on L'(D, |g|*) and thus there exists a function me L®(D) such
that @(k) = [hmlg]*. If he I Harm(D) then

@(h) = [hmtlel* = [h P(m|o]*) = [h L P(m|g*) = <h, P(mlgl®)),,
' s =[a]+1.

Since I?Harm(D) is dense in [!Harm(D, o), the correspondence ¢
— P(m|g|*) is independent of the choice of the bounded function m represent-
ing @. Propositions 1 and 2 imply that this correspondence defines a con-
tinuous one-to-one mapping from the space (! Harm(D, [g)}* onto
A, Harm (D). By the open mapping theorem this mapping is an isomorphism.
This ends the proof of Theorem 1.

(d) Proof of Theorem 2. We shall begin with the following
LeMMA. Let u be a biharmonic function on D (i.e. A%u=0) such that
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ue A, (D). Then

Cpllull.
dist (x, OD)PI*

By the definition of the spaces A, and the fact that the derivatives of a
biharmonic function are biharmonic, it suffices to prove our lemma for 0 < o
<1

Let xoeD and & = dist(x, aD)/2. Without loss of generality we can

assume that x, =0.
Let K (0, 0) denote the ball centered at zero with radius J. Since 4u is

harmonic, the mean value theorem implies that
(| Ux>—~8%)14u(O) =| | du(x)(xI*~52?
K(0,3) K(0,9)
=| [ ()40 =8%7 = | [(u(x)~u(0) 4(x|>~ 5%
K(0,8)

< 8 f|4.(x*~ 6% llully-

This implies that |4u(0)) < c(n){|u}|/6>* and therefore there exists a constant
¢ such that

[DPu(x) < iIf 1Bl > a.

¢/l
[dist (x, D)~

We can repeat the same procedure for Df Au, 'tvaking the function (6%
—|x|?)#1*2 and prove that

[du(x)| <

cg llull.
dist (x, aD)#I+2-e

Now u|y 0,5 = h+uy, where h is a harmonic function equal to u on 7K (0, ),
du; = Au and u; =0 on 0K (0, §). Since (14l gpxco,0m S A1l gymy» there exists

¢(n) such that
oh ¢ (m) Jlull,
(‘;vc,(o)'< gt ”

[ Gx, ) du(y)ay,
K(0,8)

where G(x, y) is the Green function of K (0, 8) and thus

ID? 4u(x) <

We have
uy(x) =

Ouy d
—(0) = —G(0, y) du(y)dV,
ax,( Kﬂ{é) 5, (0, y) du(y)ay,
Yi Y
=c(n =——== ) Au(y)dV,.
()x(éf.a) (M" 5") 0 Y
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Then

Oy cméijull,  c(mlull,
}7?;1-(0)‘ < Tee s

This implies that there exists a constant ¢; such that

Ou ¢ llul
'Tx,(x)‘ < @t D)=

Now we can apply this procedure to the functions du/dx; and prove in
the same way that all second derivatives are bounded by
C|ull/(dist (x, @D)>~* any by induction prove our lemma for derivatives of
arbitrary high order.

Now if we use the biharmonic function Qo in the construction of the
operators L then Proposition 1 remains valid if o < oo and can be proved in
the same manner as in the case of C®-smooth boundary. We must only
observe that g§ D g, € Agtuy-p+s, that after each differentiation we get a sum
of terms in which u or its derivatives are differentiated and terms in which 0
or its derivatives are differentiated and that A, (D) is a Banach algebra.

Since the estimates from [1] remain valid when D is of class Agrggs @
< g, the proof of Proposition 2 is the same as before. Thus we get our
Theorem 2 as a consequence of Propositions 1 and 2 in the same way as in
the C™-smooth case. :

3. Remarks.

Remark 1. Propositions 1 and 2 and Theorems 1 and 2 remain valid if
we replace the usual scalar product in I?(D) with a weighted scalar product

S, 9o = gfgew,

where w is a real function from C®(D). In this case the operators IFu must
be replaced by the operators L3, u = ¢™* I} (e*u). It is obvious that Proposi-
tion 1 remains valid for L, u.

Proposition 2 can be proved in the same way as Theorem 1 in [8]. Let
P, denote the projection from I*(D) onto I?Harm(D), orthogonal with
respect to the scalar product {, ),. We have P(e"f) = P(e” P, (f)). In
order to prove that P,, maps |o*m, me L* (D), into A, Harm(D) it suffices to
show that the operator Ag = P(e”g) maps isomorphically A, Harm (D) onto
A, Harm (D). We can extend 4 to the whole A,(D) by putting

Ag = e"g—AG, 4e¥ Pg = e*[g—e™ " AG, Ae” Pyg].

The operator in square brackets is Fredholm since de* Pg is a differential
operator of order 1. It is then easy to show that ker A = {0} and A= and 4
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map A, Harm(D) onto A, Harm (D). Thus Proposition 2 and Theorems 1 and
2 hold in our case.

In the same manner we can also show that the results of [6] hold for
weighted scalar products ¢ , ,.

We take this opportunity to rectify an error in [8]. At the end of the
proof of Theorem 3 of [8] we wrote by mistake that the Sobolev space H* is
dense in A, H for large 5. This is clearly not true. However, Theorem 3 of [8]
remains valid since the operator P,(e" f) can be extended to a Fredholm
operator on the whole space and thus is invertible as in the proof of
Theorem 1 of [8] (or as above).

Remark 2. Let A,(D) denote the subspace of A,(D) consisting of
functions from A, which vanish on AD up to order [a]. (A, (D) is not the
closure of C¥ (D) in 4,.) Let D be C*®-smooth. Bell’s operator L, s = [o]
+1, can be extended to a continuows projection from A,(D) onto A, (D). This
fact can be proved in exactly the same manner as its analogue for Sobolev
spaces W* (see [6], Remark 1). First we can prove that there exists a
uniquely determined decomposition of fe A, (D),

f=hotohy+ ... +¢"hetu, where s=[a], hye A, ,Harm and ued,,

and define If (f) = Y I (g" h)+u.
k=0

The details of przyof are the same as in the case of Sobolev spaces and
therefore can be omitted. Clearly we have P(f) = P(E().

Remark 3. It is easy to observe that if L? Harm™(D) is the space of
m-polyharmonic square-integrable functions (i.e. such functions f e I? (D) that
4" f = 0) and P, is the orthogonal projection from I? (D) onto I? Harm™(D)
then it is possible to construct for every ue C*(D) a function L, u such that
L, u vanishes on AD up to order s—1 and P, (L5,u) = u.

We put

1 ou
L}n =u—-A"(0 2"', 0y = =t
u u (OQ ) 0 '2“79]2'”,
¢ —omf O
0 = 2mf 7. 1

$~1
Lyu=u—A"(Y 6,02
k=0 -

Since the statement of the Lemma in the proof of Theorem 2 remains valid
if “biharmonic function” is replaced by “m-polyharmonic function”, Propo-
sition 1 holds for the operators I, and Proposition 2 for the projection P,,.
Then we get the following analogue of Theorem 1: The space A, Harm™(D)
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is the dual of the space I} Harm™(D, |g¥), where I Harm™ (D, |g|*) is the
closure of L*Harm™(D) in I}(D, |o]), via the pairing (u, v) = <u, 5,0,
s=[a]+1.

Theorem 2 remains valid if 4D is of class Aam+ay- The results from [6]
on Sobolev spaces also have their analogues for spaces of m-polyharmonic
functions. The detailed study of the duality theory for such spaces will be
given in a subsequent paper.
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