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On the orthogonal projections onto spaces
of pluriharmonic functions and duality

by
EWA LIGOCKA (Warszawa)

Abstract. In the present paper the connections are established between the regularity of the
Bergman projection B onto the space of square-integrable holomorphic functions and the
regularity of the operators Q and § of orthogonal projection onto the space of square-integrable
pluriharmonic functions and the complexified space of the real parts of holomorphic functions
respectively. It turns out that the regularity of B in a Sobolev or Holder norm is always
equivalent to the regularity of § and in the case of pseudoconvex domains the regularity of B is
equivalent to the regularity of Q. This result is applied to the study of duality between spaces of
holomorphic and pluriharmonic functions.

1. Introduction and the statement of results. Let D be a domain in C". A
function u on D is called pluriharmonic if d0u = 0. If H'(D,R) = 0 then the
space of pluriharmonic functions is equal to the complexification of the space
of the real parts of functions holomorphic on D. In this paper we shall deal
with a bounded domain D and with the following spaces of pluriharmonic
functions on D:

(1) The space L? PH(D) of all square-integrable pluriharmonic functions
on D with L*(D)-norm.

(2) The space I? H (D) of all square-integrable holomorphic functions on
D with L?(D)-norm. )

(3) The real space Re L* H(D) of the real parts of functions from L? H (D).

(4) The complexification ReI? H(D)® C of Re I* H(D).

The spaces (1) and (2) are always closed subspaces of L*(D). If the
boundary of D is very bad then the spaces (3) and (4) can be not closed in
L2 (D).

The necessary and sufficient condition for the closedness of the spaces
(3) and (4) is the following estimate:

Ifll <cllRef] for every fe *H(D) st. glmfa 0.

If this estimate holds for D then we shall consider the following orthogonal
projections from I*(D):
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(1) The projector Q onto L* PH(D).

(2) The Bergman projection B onto I? H(D).

(3) The real projection S. from L?(D) onto ReI? H (D).
(4) The projection S from I?(D) onto ReI? H(D)® C.
The following theorem holds:

TueoreM 0. Let D be a bounded domain with C*-boundary. Then

(1) There exists ¢ >0 s.t. ||f]| < c||Ref|| for all feI? H(D) such that
[Imf=o.
b

() We hae I?PH(D)=(Rel?’H(D)R®C)PE, where dimcE
< dimgH*(D,R) <0, E | ReI?H(D) ®C.
(3) For every feE there exists ue C*(D) s.t.

f=0Q).

Theorem 0 seems to be known, but somehow we cannot find a reference
to it. We shall include a short proof for the sake of completeness.
Part (1) of Theorem O can be obtained from Stout’s estimate
120y <€ IRe fll 2, for f& HA(2D)
(see [19]) but we shall give a straightforward proof of it; (2) and (3) are
consequences of the de Rham Theorem and the topological fact that

dimH' (D,R) < oo if D is a bounded domain with boundary of class C2. Part
(1) of Theorem 1 has the following interesting consequence:

CoroLLARY. For every fel? H(D) there exists ueRe I H (D) such that
f=BW+ifImf.
D

We shall study the connections between the regularity of B, Q and § in
Sobolev and Holder norms. We shall denote by 4, the space of functions
whose kth derivatives satisfy the « — k Hélder condition, k = [«] (the integer
part of @), 0 <o—[a] < 1. W* will denote the sth Sobolev space. We shall
also denote by -

Harm®(D)  the space of harmonic functions from W*(D),
A, Harm (D) the space of harmonic functions from A, (D),

H*(D) the space of holomorphic functions from W* (D),
A, H(D) the space of holomorphic functions from A, (D),
PH*(D) the space of pluriharmonic functions from W* (D),

A4, PH(D)  the space of pluriharmonic functions from A (D),
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'Harm"(ﬂD) the pth Hardy space of harmonic functions,
H"(0D) the pth Hardy space of holomorphic functions.
We have the following

TueEOREM 1. Let D be a bounded domain with C “.boundary. Then

(1) For every s > 0 the operators S, and S map continuously W* into W* if
and only if the Bergman projector B maps continuously W* into W*.

If the projection Q mups continuously W* into W* then S,, S and B are
continuous from W* into W*,

(2) For every a >0, S, and S map continuously A, into A, iff B maps
continuously A, into A,.

If Q is continuous from A, into A, then so are S,, S and B,

Turorem 2. Let D be a bounded pseudoconvex domain with C*-boundary.
Then if one of the projectors B, Q, S, S, is continuous from W* into W* then so
are the others.

If one of the projectors B, Q, S, S, is continuous from A, into A, then the
others are too. ‘

Note that for pseudoconvex domains with C2-boundary the space E
from Theorem 0 is equal to H* (D, €) = H'(D, R) ® C. It is an open problem
whether B, Q, S are continuous from W* into W* for a smooth pseudoconvex
domain D. The most important classes of domains for which our operators
are continuous from W* into W* for every s >0 are the smooth strictly
pseudoconvex domains and pseudoconvex domains with real-analytic bound-
ary. For a description of a larger class of “weakly regular” domains which
include both previous classes see Catlin [9].

Recently H. Boas [8] proved that the operator B is regular in Sobolev
norms if D is a bounded circular pseudoconvex domain.

It should be mentioned here that for a complete circular bounded
domain the results of this paper are trivial because in this case we have Q
=5,8= 5 ®C and §,(4) = 2Re B(u)—(vol D)™ * [u and thus the connections
between our projectors are quite explicit.

Barrett [3] gave an example of a bounded domain with C*-boundary in
C? for which B is not continuous in any Sobolev or Hélder or I7, p > 2,
norm. Theorem 1 yields that Q and S are also not regular in these norms,

The H&lder estimates for B are known only for strictly pseudoconvex
domajns with the boundary of class C**% o <k (see [14] and [2] for
smooth domains).

The applications of Theorems | and 2 are in duality theory originated
and developed by 8. Bell ([4], [5]).

In [4] S. Bell constructed the following family of operators:

Let D be a smooth bounded domain in R™ and ue C*(D). Let g be a
defining function for D, i.e. ge C*(R™), D = {xe R™ ¢(x) <0}, grad ¢ # 0 on
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¢D. Then
1 ou
Ly =y— 2 P
Lu=u A(eoé?), 00 2|VQ|2’
& 0o 0

[ -2 0 ’, 0 i=15}_i- 5;.
S 2y, ==t
= (an) Yo P
§~1 X
Lu=u—A4(Y 6,6
k=0

¢ denotes here an arbitrarily chosen C*-function equal to 1 in a neighbor-
hood of @D and equal to zero in a neighborhood of the set {Fg =0}. The
fundamental property of the operators I is that for every u, I'u vanishes on
aD up to order s—1 and u—Lu is orthogonal to the space of square-
integrable harmonic functions on D. Denote this space by L Harm(D) and
by P the orthogonal projection of I?*(D) onto I?Harm(D). If
v, ueI? Harm n C*(D) then

{v,u) = (v, Cud = {Lv, u)
S. Bell defined then the sesquilinear pairings
v, udy =<, Fud, s=1,2,...

which extend the scalar product from I?Harm(D) and can be used in the
study of duality relations between various spaces of harmonic functions (see
[4], [7]). The integer s is chosen according to the needs of the study.

In [15] it was proved that I* maps continuously Harm®*(D) into W*(D)
for all integers s and k, k > 0. This implies in particular that <v, ) = <v, >
for every v from L? Harm(D).

In [16] it was proved that I maps continuously A, Harm (D) into A, (D)
and that if s =[«]+1, 0 <a—~[a] <1, then L'u = |g]*¢ for ue A, Harm(D)
where ¢ is bounded on D. Thus the fact that P is bounded from A, - A, and
W*— W* for «, s> 0 implies that

(1) Harm™*(D) and Harm®(D) are mutually dual via the pairing {, d,.
The space Harm™(D) is equal to the space L? Harm(D, |g|*).

(2) The space A,Harm(D) represents the dual space of the space
I Harm(D), |g|) via the pairing <, Y, s =[u]+1; L' Harm(D, |g|*) is the
closure of I*Harm(D) in L'(D, |o*). We do not know whether the space
L Harm(D, [gf) is equal to the space L*Harm(D, |g[).

We can now return to our operators B, § and Q. First we define the
spaces

for every s > 0.

I2H(D, |o|*) = the closure of I H(D) in I2(D, |o*),
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[2R(D, |o|*)= the
I? PH(D, |g|*)= the
IYH(D, o) = the
L' R(D, [o*)= the

I PH(D, |o|*) = the

closure of ReI2H (D) ® C in L*(D, |o|*),
closure of I? PH(D) in I*(D, |g|*),
closure of > H(D) in L*(D, ||,

closure of ReI2H(D)® C in L'(D, |,
closure of I2 PH(D) in L' (D, |g]).

There is an open problem: is the space [? H(D, |o|**) equal to the whole
space I* H(D, |o|*)? S. Bell proved that I? H(D, [o|*) = LZH (D, |o|*) if D is
pseudoconvex. The similar problems for our other spaces are also unsol-
ved yel.

It will turn out in the sequel that

LYR(D, o)y =Re I H(D, |0 ® €,
IZR(D, |o)*)=Re I2H(D, |o]*) ® C.

Now we can state the following:

TueoKEM 3. Let D be a bounded domain with C*-boundary and ¢ a
defining function for D. Let us consider the following conditions:

I(a) The projectors B and S are continuous from W* to W

I1(b) The projection B extends to a mapping  from
I?Harm(D, |o|*} to I2H(D, |o*).

I(c) The projection S extends
I*Harm (D, |o/*) to L2 R(D, |o|*).

1(d) The spaces [* H(D, |o|**) and H*(D) are mutually dual via the pairing
<" >»“' r

1(e) The spaces I R(D, |¢|*) and Re H*(D) ® C are mutually dual via the
pairing <, Dg.

1(f) The L*(D, |o|*) norm is equivalent to the norm

for ueI? H(D).

continuous

to a continuous mapping from

flull = sup [<u, v)]

veHS

llellg<1

I(g) The W*(D) norm is equivalent to the norm
[Cu, v5|  for uel* H(D).

flull = sup

veLZH(D)
|\uu,‘2w.|a|2s,& 1

L(h) The L*(D, |o|*) norm is equivalent to the norm

lu] = sup |<u,vd for ueReI? H(D)®C.,
veRelP@C

linllgs1
1) The W*(D) norm is equivalent to g‘he norm

|| = sup [u, vy for ueRe PH(D)®C.
veReL2H(D) ®C

ol L2n, ol <1

5 - Sludis Mathematicn 1. LXXXIV 2. 3
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1G) The projection Q is continuous from W* into W*,
I(k) The projection Q extends to a
?Harm(D, [o/*) to I? PH(D, |g|*).
1(l) The spaces I*PH(D, |o|*) and PH*(D) are mutually dual via the
pairing {, ;.
I(m) The L*(D, |o|*) norm is equivalent to the norm
flull = sup [<w, v} for ue I’ PH(D).

ve PHS(D)
olly=1

continuous  mapping  from

I(n) The W*(D) norm is equivalent to the norm

lul= " sup  |<u, o) Jor ue? PH(D).

vstPﬂ(l))
1 “||L2(D,Ia|2*") £1

Il(a) The projectors B and S are continuous from A, to A,.

II(b) The projection B extends to a continuous mapping Jrom
L Harm(D, [ol*) to L*H(D, |o]).

II(c) The projection S extends
I Harm(D, |o*) to L' R(D, |gf).

* X(d) The space A,H(D) represents the dual of I} H(D, lol*) via the

pairing <, >y, s =[a]+1.

11(e) The space Re A, H (D)@ C represents the dual of [} R(D. [o]*) via
the pairing {, D¢, s = [a]+1.

IL(f) The L(D, |o*) norm is equivalent to the norm

lull = sup [<u, v for ueI? H(D).
ved H
llollg<1

1I(g) The A,(D) norm is equivalent to the norm

ulf = [<u, v

to a continuous mapping from

sup
veL2H(D)
Il L3¢, gz <1

II(h) The L}(D, |o*) norm is equivalent to the norm

Jor ueI? H(D).

ul= su ¢ ?F
7] vERMu?ImKu, vl for ueRe PH(D)®C.
fellg<1
1I(i) The A,(D) norm is equivalent to the norm
Il = sup [<u, 03 for ueReI? H(D)® C.
veReLZH(D) ®C

o LYD,je[®) <1

ILG) The projection Q is continuous from A, to A,.

Ii(k) The projection Q extends to a continuous

L Harm (D, gF) 10 1* PH(D, o) mapping _ from
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1L(1) The space A, PH represents the dual of I PH(D, |0} via the pairing
e s=[a]+ 1
I(m) The L*(D, [g|") norm is equivalent to the norm
sup [<u, v for ue L* PH(D).
ve A PH(D)
floligs

II(n) The A,(D) norm is equivalent to the norm
{lul] = sup  [<u,0d  for uel? PH(D).
veL2PH(D)

”"H,‘l(p,'ﬂa)sl

llull =

Then

(1) Conditions 1(a)-1(i) are equivalent.

(2) Conditions 1(j)-1(n) are equivalent.

(3) Conditions 1()-1(n) imply conditions 1(a)}-I(i).

4) If the domuin D is pseudoconvex then all conditions 1(a)-I(n) are
equivalent.

(5) Conditions 11(a)-IL(i) are equivalent.

(6) Conditions IL(}-I1(n) are equivalent.

(7) Conditions Y G)-1I(n) imply conditions 1L (a)-11(i).

(8) If the domain D is pseudoconvex then all conditions 11 (a)-Il(n) are
equivalent,

_This ends at last the statement of Theorem 3. It should be mentioned
that clearly all conditions in Theorem 3 which concern the projection S have
their equivalent real counterparts for the operator S,, e.g. [(c) is equivalent to
the fact that S, is continuous from L2 Harm(D, |o|*) to Re I2 H(D, |o|*%), 11 (c)
is equivalent to the fact that S, is continuous from I2Harm(D, |oY) to
Re L' H(D, |o|*) and the duality relations in I(e) and II(e) are equivalent to
the duality relations between the corresponding real spaces (r always stands
for real).

Some parts of our Theorem 3 are already known. The equivalence of
conditions I(a), I(d), I(f) and I(g) for B on smooth strictly pseudoconvex
domains was proved by S. Bell in [5]. The equivalence of the regularity of B
and the duality theorems was studied also in [7]. In [15] it was proved that
I{a), 1(b), I(d), I(D) and I(g) for B are equivalent.

The fact that the continuity of B in H&lder norms yields the duality
relation IX(d) seems to be known at least for 0 <o <1 and D equal to the
unit ball in C". There is also the paper of S. Bell [6] on a Sobolev inequality
for pluriharmonic functions. The interesting consequence of Theorem 3 is
that our operators B, S, S, and Q behave better. on harmonic functions than
on arbitrary functions. This means that the restriction of B, S, S, and Q to
the space of harmonic functions is bounded in L' (D, |g|*) norm or L*(D, [g|*)
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norm although they cannot be extended to continuous mappings on the
whole space L (D, |o*) and I*(D, |o*).

We want now to signalize other examples of such behavior of B on
harmonic functions. If D is a bounded strictly pseudoconvex domain with
C*-boundary then

(1) B is bounded from L!'Harm(D) into L!'H (D).

(2) Let BHarm denote the class of harmonic Bloch functions, i.e,
functions u for which

[lullg = sulp))lgu(z)l+ sul])) |[eD*u(z)) < oo.
Ze.

ze
laf=1

Then B maps L*(D) onto BH(D), BHarm(D) onto BH(D) and thus the
space BH (D) of holomorphic Bloch functions is the dual of L' H (D) via the
pairing ¢, 3.

(3) The operator B maps the Hardy spaces Harm?(?D) into H*(¢D),
2<p < x.

(4) The operator B maps continuously the space Harm® of bounded
harmonic functions onto the dual space of H'(?D).

Statements (1)~(4) hold also for § and Q. We shall not prove (1)(4) in
the present paper. We shall give a detailed account of this subject in the
subsequent paper “The Bergman projection on harmonic functions” (in
preparation).

2. Proofs.

1. Proof of Theorem 0. A pluriharmonic real function u belongs to
Re[?H(D) iff the differential form ¢ is d-exact. Thus, the first part of
Theorem 1 will be proved if we show that the space of d-exact differential 1-
forms with harmonic coefficients is closed in Wi (D) (W5' (D) is the space
of differential 1-forms with coefficients from W~1(D)). Since du maps conti-
nuously I? Harm(D) to W5 (D), it can be proved that there exists an
operator T from the space of harmonic d-exact forms from Wi, (D) into
L?Harm(D) such that |||l < C||w||-, and dTw = w.

This permits to prove the above fact for forms with real coefficients and
the real space L?Harm(D) and then take the complexification.

Let we W' (D), w = du and the coefficients of w are harmonic. Thus u
is also harmonic, w; = fu/dx,. As was proved in [15] (following [77),

Cu
0L er?(D) and
4 xi .

| fu

u
[l X
0% 12 x|y
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(the C?regularity suffices here because we deal with s = ~—1 only). The
function ¢ is as usual a C? defining function of D.
Let Dy €D be a domain with C®-boundary- s.t.

o
; (nxi

Let zo be 2 point from D;. We can assume now that u(z,) = 0. Then we

2
) +gd¢>C >0 on D\D,.

have
Tl z(ﬂu>z o \? 5
= =0l ) =2 ( (;“) +odo |u?.
Zt: % | lJ)Zi: ax; ig ; X
Thus
¢ [ < lldull- e | lul®
D\D, Dy
Since u is barmonic and ”“”Llwl)QCOH‘J”“wsml) for large s with

s, < €1l -1, we bave

Calltl 2y < (1+cocy) ]y .

Thus the correspondence du«u, u(z,) =0 defines the needed operator T.

The subspace E of functions from L? PH (D) orthogonal to Re I2 H (D) is
the complexification of the space E, of real plurisubharmonic functions
orthogonal to Re I? H(D) with respect to the real scalar product.

Functions Fy, ..., F, from E, are linearly independent if and only if the
cohomology classes of the differential forms w, = Im ¢f are linearly indepen-
dent in H*(D, R). Since D has C2-boundary, we have dimH'(D, R) < o0,
dimg E, < dim H* (D, R) and dim¢E = dimgE,.

Now let uy,...,u, form a basis of E. There exist y,, ..., y, closed
smooth curves in C", y; = y,(t), 7,(0) = y; (1), such that fou;=1for i =j and

i
0 for i j. This is an immediate consequence of the de Rham theorem. We
have

" 1('7u
ffu= ) _f’:,"‘“(?r(l‘))dw(’)
W k=10 CZk

noloon
=X f‘{;%(z)o(2~y,(r))dz A dzdy (1)
k=10

t o
= (u@| Y :e—ﬂ(z-v,(t))dy,(r)dz A dz
D ( (2

Qk=1

for every ue PH(D). 0 denotes here a nonnegative radially symmetric func-
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tion from CE(C") such that [0 =1 and {y+supp0} = D. Thus u, =Q(¢)
vl
where
1 n ﬁ
=[X —9(2 % (®)dy:()e C*(D).
0k= 1 ¢

This ends the proof of Theorem 0.

2. Proof of the Corollary. Let G(z, t) denote the reproducing kernel
of the space ReI* H(D). The function G(z, t) is also the reproducing kernel
of the space Re I? H(D) ® C. Thus B,(G(z, )) = K (z, t), where K (z, t) is the
Bergman function of the domain D. The set of linear combinations
Y. Gz, 1), ¢ real numbers, is dense in ReL? H (D). The closure of the set of

linear combinations ) ¢; K (z, t;) is the real subspace H, of I* H (D) consisting

of all functions f from L2 H (D) for which {Im f = 0. We shall prove that B is
D

an isomorphism from Re I? H(D) onto H,. To prove this we shall show that

IB@)I* = Cllull*  for u=3cG(z t).

We have
IB@I” = Lokt = sup [Taf @)

||f|| <1
= su}p ((Zc Re f () (Z ¢Im f (1))
sl <01 : .
> sup (Zc Ref(t)>=c sup (Zc,u(t‘))
SfeHg ueReL2H(D) 1

s llull <1
= C”; ¢ Gz, tl)nz = ||
The last inequality follows from part (1) of Theorem O.

3. Proof of Theorem 1. We begin with the following
LemMa, Let feI* H(D). Then for every s > 1

B(f) = B(7L:(1).
Proof If fis bounded then clearly for every geI* H D),
J=FE), g> = {1~I(1), fg) = 0.

Consider the domains D, = {zeD: ¢(z) < —&}, 0 a defining function for D.
Let I3 denote the sth Bell operator constructed for the domain D, and ¢, = ¢
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+¢. It follows from the construction of Lf that L{— I§ if ¢ — 0. Then for
every gel? H(D)

J=Teq), gy = ling F=TLi(1), gdp, = 0.

Thus B(J) = B(fL(1)).

From the results of [13] it follows that the mapping f — FI(1) imbeds
continuously I2 H(D) into W*. Suppose B is continuous from W* into W?*.
Let u be a real function from W* Then

2B() = B(S(w)) = B(S, () = B(S? () = B(S° (1) + 57 ()

= 89 (u)+ B (ST () = SO (w)+ B(SY () L5 (1)).

5% (u) denotes here the holomorphic function such that ReSC(u) =S, (1)
and [ImSY () =
D

Thus S, u = 2Re B(1)—Re B(S? (u) (1)) maps continuously W?*(D) into
W*(D). Since § =S5, ®C, it follows that S is also continuous in the sth
Sobolev norm.

Now let § be continuous in the sth Sobolev norm. Let ¢ = u+ive W*.
Then we have

SIS0 T
B ((p._:".:.,(l’l%‘sr_ﬂ L’(n) =B ((P _Sr (U)';lsr (u))
= SO () +iS? (v).

It is well known that ||Re f||, and ||f]|, are equivalent on the space of
holomorphic functions s.t. {Im f= 0, s > 1. The above fact and the continui-
ty of S yields that the mapping ¢ — S° () +iS%(v), @ = u+iv, is continuous
with respect to || ||,, and thus the mapping

S°(v)+LS°( E(l)

F(g) =
is a Fredholm map on W* (this follows from Theorem 1 [15]) and therefore
has continuous inverse. We have already proved that BF maps continuously
W* into W*, Thus B must also be continuous.

If the operator Q maps continuously W* into W* then all elements of E
must belong to W* as the images of smooth functions. Thus the projection §
is also regular in the sth Sobolev space.

The proof of the equivalence (2) is the same as (1). It suffices only to
find, for every a, an s so large that the mapping fL}(1) maps L?H (D)
compactly into A, (Sobolev imbedding theorem) and the rest of the proof
will be the same.
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4. Proof of Theorem 2. We must prove that each element of the
space E from Theorem O belongs to W*(D) if D is pseudoconvex and if the
projector S maps continuously W*D) into W*(D).

Let ueE. Consider the cohomology class [ou]e H' (D, €). It is a well-
known fact from differential topology that all cohomology classes of D have
representatives from Cg) (D) (the space of differential 1-forms with coefficients
from C%(D)).

This means that there exists ¢ € C™ (D) such that du+dep = we Cg, (D).
We can write w = w;+w, where w; is a <l, 0>-form and w, is a <0, 1)-
form. Then fu+0p =w, and dp =w,. By the J.J. Kohn estimates there
exists f € C* (D) such that ¢f = w,, Then ¢ = f+h; with h; holomorphic on
D and h, e I*(D) because dpe W' (D) and thus ¢e L*(D). Similarly we can
find ge C*(D) such that dg = w,. Thus

@ =f+g+h+h,
where

fogeC®(D) and hy, hye I H(D).

Since S(p) =0 we have hy+h, = —S(g-+f)e W (D). Thus ¢ is also in
W*(D).

In exactly the same way we can prove that all elements of E belong to
A,(D) if § is a continuous map from A,(D) to A, (D).

5. Proof of Theorem 3. Theorem 3 will be proved if we show that

(i) Conditions I(b), I(d), I(f), I(g) are equivalent to the continuity of
B: W¢(D)— W*(D).

(ii) Conditions I(c), I(e), I(h), 1(i) are equivalent to the continuity of
S: WH(D)— W*(D).

(ifi) Conditions I(k), I(l), I(m), I(n) are equivalent to the continuity of
Q: W¥(D)- W*(D) (to condition I(j)).

The relations between the regularity of B, @ and S are already estab-
lished by Theorems 1 and 2. Thus we shall get a proof of statements (1)-(4)
of Theorem 3.

() was proved in [15]. The proofs of (i) and (iii) are exactly the same,
and we shall not repeat them here.

In the case of Holder norm we must prove that

() Conditions I(b), II(d), IL (f), X (g) are equivalent to the continuity of

B: A,(D)— A, (D).

(i) Conditions XI(c), 11(e), I (h), 1L (i) are equivalent to the continuity of
§: A4,(D) — A,(D).

(ilj) Conditions X (k), 11(I), I(m), 11(n) are equivalent to the continuity
of Q: A,(D)— A,(D) (to condition 11 ().
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Thus we shall again use Theorems 1 and 2 to get a proof of statements
(5)-(8) of Theorem 3.

The proofs of (j), (j), (jj) arc also the same and very similar to the
proofs of (i), (i), (iii), with one significant difference. The spaces A, H are not
reflexive and thus we cannot have the mutual duality via ¢, ),. Instead we
must use the fact that a Banach space F imbeds isometrically into its second
adjoint space F**. We shall now prove (j). The proof of (jj) and (jjj) will be
the same.

In the proof of (j) we shall constantly use the following facts from [16]:

(a) The space A, Harm(D) is the dual of £! Harm(D, |o) via the pairing
o e 8= [a]+ 1

(b) The projector P: L*(D) - L* Harm(D) is regular on A, (D) for every
o > 0.

(¢) If u is harmonic then

o T osup [ o)l Jully =
Lhalel® v AgHarm(D) ' ’ ‘ veL2Harm(D)

Hollg<t B LI(D,IQI“JS
1. The continuity of B implies 11(b). We have for ue I? Harm(D)

sup

[<u, v

Buy x sup [<Bu,v) = sup [<u, Bv)| < cllull Byl
I HI-I(D.MI“) va Agllurm(D) ’ v& AgHarm(D) ’ h LD fol®y 11
llellgs1 lloflg <1

\<- ¢y ”u“Ll(DrlUIu) “v”at S Cl ”u”Ll(D,!al“)'
Thus B extends to a continuous mapping from [! Harm(D, lo%) into itself.
2. 1(b) implies the continuity of B in A,.

[1Boll, =~ sup |, Bo)| = sup  |<Bu, v
ug L Harm(D) ue LZHurm(D)
| “HLI(D,Mm)s H“NLl(D,lmm)QI

s C”B““Ll(n.mm vl < €4 1ol

3. The continuity of B implies I1(d). Let ¢ be a continuous functional on
IYH (D, |oP). By the Hahn-Banach theorem it can be extended to a conti-
nuous functional on £! Harm(D, |o*) and therefore can be represented by a

. harmonic function h,eA, Harm(D). For every ue*H(D) we have o(u)

= (U, h,» = <u, Ph,» and
Ku! Phtp)l S c”“”Ll(D‘laa,”Phcp”a’
Since L' H(D, |gI*) is the closure of L* H(D) in L*(D, |g*), Ph, represents ¢
via , D (¢, >=<, >, on L} H(D) xL* H(D)).
4, 11(d) = 11(0) and 1I(g). 1l(g) follows from the very definition of the

dual space and 11(f) follows from the fact that a Banach space F imbeds
isometrically into its second dual F**,
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5. 1L(g) implies the continuity of B. Let ve A, Harm(D). We have

iBoll. ~  sup  |[u, Bupl=  sup  [<u, )|
ueLZH(D) we L2H(D)
Ml 1, g < Wl 1 gy <
< sup [, v Rl
uELZHurm(D)<
“l 2, g !
6. 11(f) implies 11(b). Let ue [* Harm(D). We have
Byl = su Bu, v) = sup [<u, v
” ”LI(D»MI“) veA,,I?(D)|< >! va GPD) y
llellgs1 lHellg=1

< sup
ve AgHarm(D)
llellg < 1

[<u, 03 < ellull 1 -

3. Remarks.

1. The main obstacle to establish the continuity of the operator Q is the
fact that we do not know whether the elements of the space E
= I’ PH(D)ORe[* H(D) ®C are smooth. If B and § are continuous in the
sth Sobolev (or ath Holder) norm then Q is also regular iff the space
W*n L2 PH (D) (A, L* PH(D) respectively) is dense in L* PH (D).

2. The construction of Bell's operator I* can be improved by taking,
instead of an arbitrary defining function g, the function 2o defined as follows:
0o is the unique solution of the Dirichlet problem 42 2o =0, 0o = 0on D and
(é/0mygo =1 on @D. If the boundary of 8D is of class C*** then Qo is also of
class C*** (see [1]). Such a choice of g, permits us to minimize the loss of
smoothness in the construction of I since if 42u=0 and ued; then
Q‘éuEAﬂHc-

3. In the present paper we restricted our attention to the domains whose
boundary is of class C™. However, there exists an important class of
bounded strictly pseudoconvex domains with C***-smooth boundary for
which the Hélder regularity of the Bergman projection B is already estab-
lished for 0 <a <k ([14]). It is a natura) question whether the operators §
and Q are also regular in A, norms (0 < a < k). The answer is affirmative
although the proof is different from those given above since we can use only
L!(1) in the proof that B(S° L} (1)) is compact, To overcome this difficulty we
must use the following facts:

1) If D is a strictly pseudoconvex domain with C*-boundary then the
projector B maps continuously I7(D) into L (D) for every p > 1.

This fact is a consequence of the representation of B given in [14). The
nedeed IP-estimates can be done in the same manner as in [18]. In fact we
shall only need that B maps I? (D) into L7~*(D) for ¢ > 0. These estimates are
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far more elementary and follow directly from the results' of [14] and the
Riesz-Thorin theorem., ‘ )

2) If u is a harmonic function from I?(D) then oue W,! (D).

To prove this fact it suffices to observe that dgueW, ' (D) since it
contains only the first derivatives of u.

It follows from [1] and especially from [17], Th. 5.4, that the operator
G solving the Dirichlet problem dg =f, f=0 on D is an isomorphism
between W,”'(D) and W, (D). For ueW_ (D) we have G(dgu)= gu. The
functions from Harm) (D) are dense in L? Harm(D) since the projector P
maps (D) onto L Harm(D) and W,}(D) onto Harm}(D). This last fact
follows again from [1] and [17]. Thus gue W} (D) for every ue IF Harm (D).

3) The third fact is the Sobolev imbedding theorem: W,! (D) is compactly
imbedded in L#(D), g < 2nmf(2n—m) for.m < 2n and in A,(D), « < 1—2n/m,
m > 2n.

These three facts permit us to prove that

B(STuL'())eW; since L'(1)=1-}4(c3) = —}eodeo

and thus

Suew;D el q= 8,

-2
so that S, maps If into I (as in the proof of Theorem 1). This implies that

SOuL'(eW} e, ‘
and thus S, maps L' into M, After a finite number of such steps we shall
prove that S, maps A, into A, for some « >0, and continuing this process
we find that S maps A, into 4, for every a.

The proof of Theorem 2 is the same as in the smooth case. It suffices to
use the well-kknown Hulder estimates for the solutions of the d-problem for
strictly pseudoconvex domains (see [10] for the best estimates). Thus we get
the following

TueorREM. Let D be a strictly pseudoconvex domain with boundary of class
C**4, Then the projection Q maps continuously A, (D) onto A, PH(D) and the

qy = 2ng/2n—q)—e¢

" projection 8 maps continuously A, (D) onto Re A, H(D)® C for o < k. If the

boundary of D is of class C* (or more) then S and Q map continuously l:" 'imo
Lf for p > 1 (for p < 2 it suffices to use the fact that S and Q are selfadjoint).

If we use the construction of I from the preceding remark and carefully
count the derivatives then it turns out that if D is of class Ct** anq
ue A, Harm(D), o < k, then I¥(u), k = [¢]+1, has the f?[:m |e|*m where m is
bounded, |pm|,, < cljull,- Since the estimates for the Dirichlet problem used
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in [16] are valid in our case (see [1]), the duality theorem holds for
A, Harm(D) and’ thus we get the following

ProposiTION. All conditions Tl (a)-1L(m) from Theorem 3 are satisfied if D
is a bounded strictly pseudoconvex domain with the boundary of class C*** and
0<a <k (We can take o <k since if A>u =0 and ue Ay then ughe Ay, k
=1,2,...)

We would like to inform the reader that the representation of the
projector B can also be found in the works of . Lieb and M. Range ([11],
[12], [13]) who made some improvements in the formulae from [14] to make
them work in the case of domains in hermitian manifolds. They got the
integral representation for the Kohn solution of the /-problem on <0, q>-
forms and the Hélder and L” estimates for this solution.
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