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On bounded biorthogonal systems in some
function spaces

by
A, PLICKO (Lvov)

Abstract. In this paper biorthogonal systems in the space of continuous functions C (K)
(K an infinite metric compact) and in the space B,, 1 <p<co, of almost periodic Besi-
covitch functions are considered. It is shown that there is a separable subspace F < C(K)*
for which there is no biorthogonal system x,, £, x,e C(K), f,eC(K)* with Il =17l = 1 and
[£,1¥ = F. It is proved that under the continuum hypothesis there is a decomposition of the real
line R =JR,, neN, for which the system ¢*e B,, AeR,, is equivalent to the standard basis of

n
the Hilbert space I,(R,) for arbitrary n.

Introduction. Let X be a Banach space, X* its dual and I some set of
indices. A system x;, f;, iel, x;e X, fie X*, is called biorthogonal if filx)=0
for i+ j and 1 for i =j. A biorthogonal system is called fundamental if the
closed linear span [x;: ieI] is equal to X, and total if for any element xe X,
x 5% 0, there is an index i such that f(x)# 0. A fundamental and total
biorthogonal system is said to be a Markushevich basis (an M-basis).
A biorthogonal system is bounded by a number ¢ if sup;||x;|||lfill <ec. It is
known (cf. [10]) that for any separable Banach space X, any separable
subspace F < X* and any & > 0 there exists an M-basis x,, f, bounded by
1+¢ with [f,]{ = F. Although the question whether every separable Banach
space has an M-basis bounded by 1 is still open, we show that in: the result
of [10] quoted above ¢ > 0 is essential in some sense. Let us formulate the
exact statement. Let K be a metric compact and let C(K) be the space of real
continuous functions on K, Its dual is the space M (K) of Borel measures on
the set K with bounded variation. Let §,, teK, be the atomic measur
defined by 8, {t} =1, 6,{K\t} =0. '

TueoreM 1. Let (t,)7° be a dense set in a nice metric-.compact K. The
space C(K) fails to have a biorthogonal system x,, f, bounded by 1 for which
[417 = (3,)%.

This answers in the negative a question from [16, problem 8.2b)], where
it is written that the question was raised by A. Pelczynski. Not every Banach
space has an M-basis [16, p.-691], but if it has an M-basis then it has a



GUEST


26 A, Plicko

bounded one, too [12]. In particular, a weakly compactly generated (WCG
in short) space, ie. a space which is a closed linear span of its weakly
compact subset, has an M-basis [16, p. 693]. Therefore it has a bounded M-
basis. It will be shown that there exists a WCG space X (namely X
=C[0, 1]+¢,[0,1] = 1,,[0,1]) for which sup; |lxdlIfAll =2 for  every
Markushevich basis x;, f. We also present a simple proof of the
nonexistence of universal elements in the class of countable Markushevich
bases. This answers a question of N. J. Kalton [5}.

Denote by B,, 1<p <, the space of almost periodic Besicovitch
functions, i.e. the completion of the complex linear space spanned by the
functions ¢* of the real variable ¢ where the parameter A runs through R in
the norm

r

(x| = hm(?.T)"1 [ Ix(efP de)'r.

The system x; = &, f;(x) = hm @n! j x(t) ¢ dt forms a Markushevich

basis in the space B,. If p= 2 1t is a noncoumablu orthogonal basis in the
Hilbert space B,.

THEOREM 2. Let us assume the continuum hypothesis. There exists a
decomposition of the real line R = U R, into a countable collection of subsets

such that for any n, any finite set (lkeR,,, k=1,
scalars (ag)}

., ) and any complex

1
(Z )72 <||Z a x| < C(Z laf)'",
where the norm is taken in the space B, and the constants ¢, C depend on p
only. Moreover, there are uniformly bounded projections B, — [x;: AeR,]
parallel to subspaces [x,: A¢R,].

In the first section all Banach spaces are assumed real, in the second
they are complex. Many intermediate results are formulated in a nonmaximal
generality. We use the following notation: B(X) and §(X) are the unit ball
and the unit sphere of the normed space X respectively, lin M is the linear
span of the set M and M* is the annihilator of M.

1. Spaces of continuous functions. A subspace F < X* js said to be
A-norming, 0 < 1 < 1, if for its Dixmier characteristic we have

r(F) = inf sup {|f (x)|: feB(F)} = 4,

where the infimum is taken over all xeS(X). The characteristic of the
subspace F equals to the greatest scalar r such that the weak™ closure of the
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ball B(F) contains the ball rB(X*) of radius r [2]. The following statement is
almost evident.

Lemma 1. Let F and G be subspaces of X*, r(F) = A and

o(F, G) = sup inf{|| f—gll: ge B(G)} <,

where the supremum is taken over all feB(F). Then r(G) > A—

LemMAa 2. Let X be a separable Banach space, let geS(X*) be a
functional and H < X* a 1-norming subspace. Suppose that ||h+ ag|| = ||hl| +]al
for any heH and acR. Let f, be a functional from B(X*) such that ||fo—
—g|l <& for some 0 <e < 1/2 and let F = H be a subspace such that the sum
F+linfo is 1-norming. Then the characteristic of F is not less than 1—2e.

Proof. Let xeS(X). Since the subspace H is l-norming, for every
& > 0 there is an element he(l—¢)S(H) with h(x) > 1 —g—s,;. It is easy to
see that ¢(F+lin g, F+lin f;) < . Therefore by Lemma 1 the characteristic
of the subspace F+lin g is not less than 1—s. Hence there is a sequence
Lot ang, || fyt+angll < 1, foeF, a,e R, weakly* convergent to the functional h.
By the Hahn-Banach theorem, there exists an element yeS(X) with h(y)
> ||hlj—¢&; and g(y) = 0. Then

lm|i £l 2 lim £,(¥) = im(f, +a,9) () = h(¥)
2 |[hll—& = 1—8—¢;.

Since 2 Ifit+angll = 1fll +lal, we have |af < 1=||f}l. - Therefore
fim |a,,| P+€1 Hence llmf,,(x) = lim(f,+a,9)(x)—lim a,g(x) = h(x)—
—hmfa,,| 1—-g—g, ~&—eg,. Since g is arbitrary, the characteristic of the

subspace F is not less than 1—2¢ =

LemMa 3. Let K be an infinite metric compact, t,e K, t,— to, t, # to. Let
F be a subspace of the hyperplane H = {pe M(K): p{to} =0} and let o be.a
measure on K such that [juoll =1 and ||Jug—6,|| < ¢ for some 0 <& < 1/2. If
the subspace F+1n po is 1-norming, then the characteristic of F is not less
than 1—2s.

Proof. It is easy to see that for any he H and any aeR

[|h+ad,g|l = Var (h+ad;o) (K \to)+|(h+adeg) {to}l
= ||| +al.

Since H = (4, )7, the subspace H is 1-norming. All the conditions of Lemma

2 are also satisfied if we set g =, and fo = o. This proves the lemma. w

TueoREM 3. Let K be an infinite metric compact, t,eK, t, -~ to, t, # to.
Let x,, tin, Xn& C(K), pn€ M(K), be a biorthogonal sequence such that [u,]$ is
a 1-norming subspace. If 8, &[u,17, then sup, x| 1l > 1.
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Proof. Suppose that
1 sup, [ |l = 15
without loss of generality we can assume thatnoux,,lj =llwll =1. Let 0<g¢
<1/2 and 6, &[m]7.

16, toll < &. This means that

Then for some po= Y. a, i, lloll =1, we have

n=1

&> Var(,, — o) (K) = (5 — o) [to}] + Var pio(K \ o)
Z i(bzo"'ﬂo ) o}l

From this it follows that |ug {to}] > 1—¢ and Var uy(K\ty) <e.

We show that u,{t,} =0 for n > ny. Suppose that p,{to} = h #0 for
some n>n, (it can be assumed that b > 0). Then Var p,(K\1g) = 1~b.
Hence

o= T Ho

Ho {to]

b b
vt s et
=TT #o J(K\to) o Tto] o | o)

b
< Var p, (K \to) + |ﬁZTfo~}'”° (K\to)

<l-btt <1,
1—¢

But the condition (1) implies that for any » and poelin(u: k 5 n), ||, — toll
2 (i~ po)(x,} = p(x,) = 1. Therefore [u,]z+, belongs to the hyperplane
H = {peM(K): p{to} = 0}. Set F = [1,12 11 +([un]1° 1 H). The subspace F
is contained in H and F-+lin py = [u,17° is a l-norming subspace. All the

conditions of Lemma 3 are valid, hence the characteristic of F is greater than
1—2¢. Therefore

Ho &l [unlng+1 +([u]1° A H),

where cl* means the weak* closure. Hence
no o
Z Uy [y = Ho = /“+ ~Z bn/"'m
n=1 n= 1

no
where pecl* (g2, and 3 b,u,eH. Since po¢H, this implies that
n=1
(1,150 A cl* [mdig+1 #0. This contradicts the biorthogonality of the
system Xx,, u,. Thus the condition (1) cannot be true. m

Proof of Theorem 1. It is sufficient to note that if ¢, is a dense subset
of the compact K then {6,,]¢ will be a l-norming subspace. w
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We recall that an M-basis x,, f, is called shrinking if [ f,]¥ = X*. The
space ¢ of all convergent sequences is isometric to C(N), where N is the one-
point compactification of the natural numbers N. Its dual is the space I, (&)
of all absolutely summing sequences and its bidual is the space . (V) of all
bounded sequences.

CoRrOLLARY 1.
by 1.

CoroLLARY 2. The space 1y (N) has no fundamental biorthogonal sequence
Xy, Jfy bounded by 1 such that f,e C(N) <1 (N).

Indeed, the sequence f,, x, would then be a 1-norming biorthogonal
system in C(N) bounded by 1 and [x,]®35,( f) = f(n). This contradicts
Theorem 3. =

A (Schauder) basis x, with biorthogonal functionals f, is called an
Auerbach basis if ||x,)| [|fll =1 for any n. A basis Xus Sy of the space C(K) is

The space ¢ = C(N) has no shrinking M-basis bounded

called interpoluting with nodes t, if for any n we have (Z Fi) %) () = x(t)

for m =1, ..., n. The closed linear span of the functlonals 1, biorthogonal to
an imerpoldtmg basis x, is equal exactly to [4, i [15, p. 11]. Theorem 1
implies immediately

CoroLLARY 3. Let K be a nice metric compact and t, a dense subset of K.
The space C(K) has no interpolating Auerbach basis with nodes t,.

It seems that the answer to the following question is unknown: has the
space C [0, 1] a Markushevich basis bounded by 1. ? But it is not difficult to
construct a fundamental biorthogonal system bounded by 1 in this space. We
give such a construction without proof.

Let a,, t,, T, b,, neN, be numbers such that for any n, 0 < a, <t, <1,
<b,<dy4; <1 and a,—1. Let x4()=1; for n>0, let x,(t) be the
polygonal function with nodes 0, a,, t,, T, b, L X,(a) = %,(0) = x,(b,)
=x,(1) =0, x,(t)=1 x,(z,)=—1. The functionals fy(x)=x(1), f,(x)
= (x(t,) —x(t,))/2 are biorthogonal to x,. For any m>1 let y,(t) be the
polygonal function with nodes 0, @y, tyy Ty bms 1, Yi(0) = ¥ (@) = Y (b,)
= Yu(1) =0, y,(ty) = ynu(t,) =1. We denote by Z the set of continuous
functions vanishing at all points ¢,, 7, (hence at 1 too) and having at any
point of [0, 17 the absolute value of the right and left derivatives less than or
equal to 1. Let (z,){° be a dense sequence in the set Z. We shall label the
sequence (X, f,, n odd) with two indices: (xk, f&2, _,. and the sequence
(X4 s n even, n>0) also with two indices: (x, f,, n even, n>0)
= (%%, F})®, 1, but the even elements will be labelled so that, for every fixed
m, if x, =X%, x, =%% and k' >k, then n' >n, and il x, =%, then n>m.
Put uf, = x& +z,,, & == x% +,,. Then the system (xo, fo) U (4, &, f¥, T2,
is a fundamental biorthogonal sequence in the space C[0, 1], bounded by 1.
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Remark. B. Godun showed the existence of a (not weakly compactly
generated) Banach space with a fundamental biorthogonal system but
without a fundamental biorthogonal system bounded by 1. We give an
example of a WCG space X in which for every Markushevich basis
(i, fi i€])

sup [Ix[lI1£ll = 2.

Recall that the weak* sequential closure of a set F < X* is defined to be
the collection F(;, of all limits of sequences in F that weakly* converge in
X*. By induction, the weak* sequential closure of order o is defined to be
Foy = U (Fg)y, for any ordinal .

B<a

ExampLe. Let I, [0, 1] be the space of all bounded functions on the
segment [0, 1] with supremum norm and let ¢o[0, 1] be its subspace
consisting of functions x(t) having a countable support and such that for
some numbering t, of this support, x(t,) » 0. The space ¢, [0, 1] is weakly
compactly generated [1, p. 143], hence so is the space X =¢,[0, 1]
+C[0, 11 I, [0, 1] 1, p. 154]. Let (x;, f;: iel) be some M-basis of the
space X. Since the subspace F =[f: iel]< X* is total, for the first
noncountable ordinal w; we have X* =F,,= U Fy [11, p. 507. By

induction it is easy to verify that for any countable olrdinal o the subspace
F, is contained in the subspace G = Jcl*[f;: jeJ] where the union is
taken over all countable subsets J = I. Therefore G = X*. The annihilator
¢ [0, 1]+ = X* is. dual to the separable quotient space X/co[0, 1]
~ C[0, 1], hence weakly* separable; let (g,) be a weakly* dense sequence
in ¢o[0, 1]+ Then, for some countable subset J, <1, cI*[f;: jeJ,J5¢,.
hence ¢, [0, 1]+ < cl*[f;: jeUJ,]. Thus there exists a countable subset

J<1I for which ¢ [0, 1] < cl*[f;: jeJ] and C[O0, 1] < [x;: jeJ]. Let
io#J. Then x; e¢,[0, 1], f;,eC[0, 1]* and

[l gl 1l fooll = 113 gll/dist (xo, fig) = [1;fl/diist (x;, C 0, 1]).
It is very easy to check that for xec[0, 1]

dist (x, C[0, 17) < |Ix]l/2.
Thus
gl figll =2 m

A Markushevich basis (x;, f;; iel) is called universal in the class of
Markushevich bases of the same cardinality as I if for every M-basis
(y;» 952 jeJ) with card J =card I there exist a subset I; I and a map
@: J— I, for which the linear embedding, mapping y; to x,q. is an iso-
morphism.

Tueorem 4. The class of countable M-bases has no universal element.
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Proof. Let X be a separable Banach space with a universal
Markushevich basis (x,, f,)¥. Put F = [f,]¥ < X*. Then for some countable
ordinal « the weak* sequential closure F, of the subspace F of order o will
coincide with X* (see for example [41). On the other hand, for any countable
ordinal f# there exist a separable Banach space Y and a total subspace
G <« Y* such that G, # Y* [4]. It is known that in the space Y there exists
an M-basis (y, g)° with g,eG [16, p. 224]. Let (x,4) < (x,) be a subset
equivalent to (y) and T: Y— X an isomorphism which determines this
correspondence. Then T*F < [g,]F hence

Y*¥=T*X* = T*(F) < ([0:]P)w = G © Gy # Y*
if f > oa. Contradiction.

2. Spaces of almost periodic functions. The density character of a Banach
space X (written dens X) is the smallest cardinal m for which X has a dense
subset of cardinality m.

Derrmvition 1. Let X be a Banach space and a, the first ordinal of
cardinality dens X. A projecrive resolution of the identity operator I is
defined to be a set of uniformly bounded projections P,: X — X,
® < o < op, where o is the first infinite ordinal, such that for w,< o, f < oy
we have

1) P,Py=PyP, =P ips

2) P,X =[P,.; X: y<al;

3) dens P, X <& (& is the cardinality of the ordinal o) and P, = I.
Put

Xw‘:PmX and Xu=(Pa+1_Pu)X

for w <& <ay. A projective resolution is said to be unconditional if the
following property is satisfied:

(#) There exists a constant K, called an unconditional constant of the
projective resolution P,, for which

12 ool < K|S 5

for every finite choice xy, ..., X, X, €X,,, o # o When k# 1, and every
choice of signs g = 1 1.

DreriniTioN 2. Let X be a Banach space and «, the first ordinal of
cardinality dens X. A transfinite sequence of closed subspaces X, c X is
called an unconditional decomposition of the space X if

1) dens X, <&, [X,;: o €a<ap]=2X,

2) condition (&) is satisfied.
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The number X is called an unconditional constant of the decomposition
X,. From condition () it follows that the condition (#) remains true if in
place of g = +1 we write ¢, =0 or 1. Hence there exist projections P,: X
— [X;: B <a] parallel to the subspaces [X,: > ] constructed for the
unconditional decomposition X, which are all bounded by the unconditional
constant K and form an unconditional projective resolution.

Obviously, if X, is an unconditional decomposition then any transfinite
sequence x,eX,, x,# 0, will be an (uncountable) unconditional basic
sequence in the sense that for any finite choice x,, ..., X,,, any scalars (a,)}

and any signs &,
n n
[ 2 o x| < K HRZI @ %)
flem =

A subsequence (Poy: @ < B < Bo) of a projective resolution is said to be
a subresolution if it is a projective resolution itself. Any subresolution of an
unconditional projective resolution is unconditional too; moreover, its
unconditional constant is not greater than the initial one.
Lemma 4. Let a space X of density character N, be isomorphic to the
o,
Lsum @ Y X,, 1<p< o, where every space X, has an unconditional
Ip n=1
decomposition X3, with the unconditional constants all bounded by a number K.
.Then X has an unconditional decomposition.
Proof. Since the property of having an unconditional decomposition

o0
is preserved by isomorphisms, we shall suppose X = @ Y X,. Then, for

Iy n=1
any finite choice (x;';)?‘;ﬁj;;;,;"m, Xu€ Xy and any signs gf" ’
ky ko ky
@ el =1 e P+ T e? 2+ . g DAL
im i=1 i=1 i=

ky k2 kp |
<K(IZ R+ 5+ +1 3 e
=E[X x.
Lm

We arrange X into one transfinite sequence (X,: © < « € w,). Property
(2) follows from inequality (2). Since the density character of each subspace
X, equals N, this is the unconditional decomposition. m

LemMa 5. The space L,{—1, 1}*' has an unconditional decomposition;
here 1 < p <o and {—1, 1}"" is the cw,-th power of the dyadic set with the
standard cylindrical o-algebra and measure,

Proof follows as a matter of fact by inspecting the paper [3]. The space
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L,{—1, 1} is the set of complex functions of variables £ =(z,, ..., by +o2)s
o <w;, each variable taking the values +1. Put ro(f =1, ra(f)=t, and
Wy = Tay (D7, (E)A..ran (7). The notation is not accidental here. If we fix’
a sequence (o), then (;“,,%),‘?"=1 is equivalent to the Rademacher sequence
() in the space L,[0, 1] and Way, -y, 1O the Walsh sequence wy,
=Ty Tig ey . Put b "

Xm = [rO, wal..‘m": o ga)’ n= 1> 2: "']

and for « > w
X, =[w,l_“a": G =o,u<aifli>1, n=12..].

The subspaces X, form an unconditional decomposition: this follows in
fact ffom the unconditionality of the Haar basis in L, [0, 1], more exactly,
from the unconditionality of - the finite-dimensional decomposition
X, = [W"’il'“"in-l: fy < n] in the space L,[0, 1] [3]. :

Lemma 6. Let (¢;: iel) be a Markushevich basis in the space X = L,,(/z),‘
I a finite measure, 1 < p < oo, card I = Ny. Then there exist an unconditional
resolution (Py: 0 < f< w,) and a decomposition of the index set I = Ul,
0 < B <wy, such that for any o < B<w, X;=[e¢: ielg].

Proof. By the Maharam theorem [71 the space X is isomorphic to
(I-B Zl L,{~1, 1} where y, either = ®; or < . From Lemma 5 it follows
o

that the space L,{—1, 1}*! has an unconditional resolution; for y, < w the
space L,{—1, 1}’ has the trivial projective resolution P, = I. Hence, by
Lemma 4, the space X has an unconditional projective resolution
(Pt @ < o < w,). Besides, since ¢; is a Markushevich basis of the reflexive
space X, by using it ‘we can construct a projective resolution P,: X — X,
o <o < w, for which there exists a splitting I =(JI;, o < a < w,, into
countable subsets such that for every a > o, (Pyy1—P)X =[¢: iel!] (and
Py X =[e: iel,]) (see, for example, [123. . )

It now remains to apply Theorem 1 and Corollary 2 from [13] to
obtain a subresolution.(P%: o < f <o) of P, with P,p = P'p. ™

Remark. Instead of the Maharam theorem and Lemma 4 we can apply
Lindenstrauss’ result [147] from which it follows that the space L,(u), p a
14

finite measure, of density character N; is isomorphic to L,{—1, 1},
Lemma 7. Let (¢;: iel) be a (perhaps uncountable) unconditional basic
sequence in the space L, (S, o, y), u a finite measure, 1 < p < oo, for which
le:(s) = 1 on the set S for any i. Then there exist numbers ¢, C depending only
upon p and the unconditional basic constant K of the sequence ¢; such that for

3~ Studia Mathematica LXXXIV/1
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every finite choice (i k=1,..., ) and complex scalars (a,)}
1

1 1
) (X 12 < || T aney]] < C(T o).
k=1 k=1 k=1

Proof. This result is essentially known. Its proof is a simple
modification of an idea of Orlicz [8]. We write Khintchine’s }nequahty [6, p.
66] in a convenient way: There exist constants d, D depending only upon p
such that for any sequence (%)} from L,(S, o, ) and any ses

1
@ d(k‘;l % (S)?)M* < (j;[ 3 1 () %, ()] du

k=1
< ([T @l an < D(E b,
0 k=1 o=

where r, (u), ue[0, 1], is the Rademacher sequence. Since the integra]s ip the
second and third terms of (4) are simply finite sums and L, is a K&the
functional space, all terms in (4) belong to the space L, (S,. o, ) when s runs
through the set S. Utilizing the monotonicity of the norm in the space L, we

have

1 1
4ICE, b 0P < 1], e 0l
k=1 0 k=1

1 ]
< {13 n@x @l an < (| T sl
[\ 0 k=

k=1

k=1

= []’(g |3 () x (9P ) du] P

(change the order of integration)

7 (1) X, (S)|p d“)llpn
1

™M~

=K

1
<DI(X .

k

[

Put gee;, in place of x,. Since le;, ()} =1 we obtain
1 1 1 L
(Y a2 < || T nwace)|du < D(kz lad 22,
\

k=1 0 k= =1

Write the middle term in detail:

11 2’1 1 . .
IE neae = 3 31T ey,

icm

Bounded biorthogonal systems 35

where &f, = £1. But for any choice of signs &

l 1 1
KX aae)<|| Y aey| <K|[ T aaey.
k=1 k=1 k=1

Hence

1 1 1 1 1
K I T naey)du<|| 3 ace)| < K [|| S nw) oy ey|du.
0 k=1 k=1 0 k=1

Therefore (3) is valid with constants ¢ =dK~*, C = DK. u

THEOREM 5. Suppose the space X =L,(S,0,p), 1 <p<oo, dens X
=Ny, u a finite measure, has an M-basis (¢;: i) such that Vi le; ) = 1.
Then there exists a splitting of the index set I = U I, into countably many

n=1
subsets such that for every n, every finite choice (i,el,: k=1,...,1) and
complex scalars (a)}

' 1

1
o( X 1l <[ X aven| < (X Iy

k=1 k=1

moreover, the constants ¢, C depend only upon p and p.

Proof. Let P; be the unconditional projective resolution constructed in .
Lemma 6 for the M-basis ¢;. Since X is separable, each set | 5 is countable:
Iy =(if)y. Put I, = {if: 0 < f < w,} for every n. Each set {¢;: iel,} is an
uncountable unconditional basic sequence; moreover, unconditional basic
constants” of the sequences (¢: iel,) are bounded by the unconditional
constant of the projective resolution P,. To finish the proof it remains to use °
Lemma 4. u i

Remark 1. Let the conditions of Theorem 4 be satisfied and suppose
the M-basis ¢; is an orthonormal system in the sense of inner product, i.e.
biorthogonal to e are the functionals defined by the formula f(x)
= [x(s)e;(s)dp. Then there exist a constant b depending only upon p and

s

#(S) such that the projections P,: X — [e;: icl,] parallel to the subspa
[e: i¢l,] satisfy ||P,)| <b. '

The proof is standard. Let first p > 2. Then

1Py xil, < ClIPyxllz < CliPl2 IIxll; = Clixll; < Cu(8)2~ 12 |ix]l,.
Hence ||P,Jl, < b = Cu(S)">~ /7, The case p < 2 reduces to the preceding one
by passing to the dual space. w
Remark 2. Specifically, the Walsh functions Wy,..«, in the space

L,{—1, 1}*', described in the proof of Lemma 5, satisfy all the conditions of .
Remark 1 (see [3]). :

Proof of Theorem 2. It is known that there exist a measurable space
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(S, 0, 1) -with the finite measure p and a map ¢: R— § for which the
operator I: L,(#) - B, defined by (Ix)(1) = x(p(1)), teR, xeLy(u), is an
isometry (see, for example, [9, Chapter 17). It is obvious that |x(v)| =1 iff
|(Ix) (1)} = 1. Since we assume the continuum hypothesis, the space L »(1) has
the density character ¥y, the inverse images I~ 1(x,) form an M- basw in
L,(w) and |I~* (x;)| = 1. Therefore using Theorem 5 we obtain the required

splitting of the real line R = U R,. The same observations as in Remark 1

prove the boundedness of the projections P,: B, [x,1 AeR,]. It is
sufficient to consider the inner product

T

(x,y) = lim 27)"! j

T -0

x () y(r)dt

with respect to which the system x; is orthogonal =
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