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Uniform exponential bounds for the normalized
empirical process

by
J, E. YUKICH (Strasbourg)

Abstract. Let (X, 9, P) be a probability space and § a collection of real-valued
measurable functions on X. Let &, &, ... be iid. X-valued random variables with distribution
P. Let P,:=n""(8y + ... +0 ) be the nth empirical measure for P, and let v, := n'*(P,—P).
Using an entropy condition for § we obtain exponential bounds for sup(v,(f)l which hold

1y
uniformly for all n > 1. We show that the entropy condition is essentially the best possible and
cannot be significantly weakened. Applications to classes of bounded Lipschitz functions and to
Fi=lg-le CeCc WA, geL2(X, W, P) and fixed) are considered.

§ 1. Introduction. Let (X, 2, P) be a probability space and § a
collection of real-valued measurable functions on (X, 21, P). For each xe X
let Fi=Fy(x):=sup{|f(x)|: fe &} Fis called the envelope function for §.
Let (X®, A°, P¥) be a countable product of copies of (X, A, P) with
coordinates &; = &(j) so that the ¢; are independent identically distributed
random variables with values in X and distribution P. .

Let P,:=n""(Sgsy+ ... +8yy) where o, is the unit mass at x, be the
nth empirical measure for P. For each fe & let v,(f) :=n'/? | f (dP,~dP); v,
is called the normalized empirical process and this article will be concerned
with the suprema of |v,| over the class & The main results of this article
center around the following concept of entropy for the class §.

DrriNrion. Given §, F, and a finite subset S < X, let
N, 8, § =inf{m: 3 f;, ..., fue & such that
min ¥ (f () —£(x)* <8} (F(x))? for every fe &}
I xeS

i xe5

Let N(5, §:=sup N, S, § and |[Fl,:= {2n)~" T F(E)*}'7 ie. [Fllzn
§ i=1]

denotes the L*(P,,) seminorm of F.

.Key words and phrases: empirical measure, entropy, exponential bounds, envelope
function.
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Note that N(6, & =inf{m: Vn and V values of P,, there are
fir oo fue & such that ¥V fe § 3i< m such that [(f—f)*dP,, < 8*||F||2,}.
As in Pollard [6], N (5, &) will be called the d-entropy of §& for the L*(P,,)
seminorm.

Under “mild restrictions” on the d-entropy, Theorem 1, our main result,
provides exponential bounds for sup|v,(f)| when F = 1; these bounds hold

uniformly for all n = 1. The uniformity in n is entirely new and is the most
significant aspect, especially since it provides possible applications to
estimation problems in nonparametric statistics. An example shows that the
“mild restrictions” on the d-entropy are essentially the weakest possible.
Applications of our main result to classes of Lipschitz functions and to
F=1{g91c: Ce€Cc ¥, geL*(X, U, P) and fixed} are considered.
_In § 3 we prove the main result. In § 4 we use a slightly different form of
d-entropy, essentially d-entropy for the L*(P,,) seminorm, and obtain expo-

nential bounds for sup|v,(f)| for n sufficiently large. For both results the
]
method of proof uses new symmetrization techniques, extending those deve-

loped by Pollard [6].

52 Exponential bounds: the main theorem. The following is the main
result of this article. ‘

TueorReM 1. Let § be a class of real-valued measurable functions on the

probability space (X, N, P). Assume that F =1 and suppose that there are
constants 0 <9< 1, 0<e <1, and C> 1 such that

) N@, ® <exp(C/5*™% V6, 0<d <.
Then

@] Pr{suplv,(f) > M} <8 exp(—=M?¥5) Vnz1,
where e

M= M(e, C, 8o):=2+max(37, (5C)'/2(120(6C)"/%/e)?, 3(C/2Y2 8f5 2+12),

Remark. It is the uniformity in n which makes these exponential
bounds most significant. Clearly, (2) also provides a bounded law of the
iterated logarithm, ie.,

. ¥,
lim sup sup—rl < 00

now reg (log log n)l/? as. (Pr).

CoroLLARY 2. Let § be as above and let N6, &, sup)i=inf{m: 3/, ...
v JmE § such that V fe § 3 f, i < m with |/ ~fillsup < 8}. Suppose that there
are constants 0<d, <1, O<e<|1, and C=1 such that (1) holds with
N(5, §) replaced by N (5, §, sup). Then (2) holds.

Proof. Immediate. w
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The following example shows that the d-entropy condition (1) is
essentially the weakest possible; i.e., the exponent for § cannot be as large as
2+¢ &> 0.

ExampLe 2.1. Let « > 0, K > 0, and let § be the greatest integer < . Let

DP = dPYox Tt ox3%,  [p]i=pi4 ... + P,

for p; integers = 0, p = (py, ..., pa). For a function f on R? such that D?f is
continuous whenever [p] < f, let
1l = max sup (1D (x): xe R}
[p1<p
+max sup {|{Df (x)—D2f (y)l/lx~yI*~ "},
o =g x#y

where |ul:=(u+... +ud)Y% ueR’ Let I be the unit cube {xeR":
0<x<1, j=1,...,d}. As in [3] let F.x:={f on I |fl,<K,
a=q+r, 0<r<1, ¢ some integer}. Let N;(d, & sup) :=
inf{m: 3f;, ..., ne & for all fe§ there are i, j: i< f<f; and [|f;
~fillup < 6}. In [5] bounds on -entropy in the sup norm are established and
from this it follows immediately that there are constants m,, and M, , such
that :

M, a/8% < log N0, Fiks sup) < M, q/8%.
Choose K =d = 1. Given ¢ > 0, choose o = (2+¢)” 1. Then dju = 2+s¢; ie.,

- the exponent for ¢ in Theorem 1 and Corollary 2 is 2+e.

However, Theorem 1 in [2] implies that there is a y = y(1, a) > 0 such
that for all possible values of P, :
sup {[fd(P,—P)} > yn™*, and
1,1
sup {[fdvy: Iflle <1} =™ 2 = oo,
Bi,0,1
completing the example.
We now give examples of classes of functions satisfying the §-entropy
hypothesis (1).
Examrre 2.2. Let §&:= {all bounded Lipschitz functions f on [0, 1]
satistying [|fll,, < 1 and |f(x)=f (»)] < |x—y[}. Then

N8, § < (2/6+1)31 71,

which may be seen as follows. Consider a grill on [0, 17 x[—1, 1] with grill
width &. Considering the intersection points of the verticals and the
horizontals, construct the class &, of piecewise linear functions f passing
through the intersection points, linear between these points, and satisfying
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the Lipschitz condition |f(x)—f ()| <{x—y|. The cardinality of &, camot
exceed (2/6+1)31*12. Clearly, for any fe & there is an fie §; such that
lf=filly <6 for some i < (2/6+1)3"+17°.

ExampLe 2.3. For this cxample we first recall

DeriNiTioN. Given a class € of subsets of a set X and a finite set T < X,
let A4°(T) be the number of different sets T C for Ce €. Forn =1, 2, ... let
n(n):= max {4%(T). T has n clements}. Let

) __ finf{n: m*(n) <2"}
vi=0(®):= +oo if mi(m)=2" Yn.

If v <o then € is called a Vapnik~»Cfci.onnenkis class (VCC(),

Let geL*(X, !, P), € a VCC, and §:=[g-1c: Ce€). As shown in
(61, N(5, % < A5~" where A4 and W are constants depending only upon .
If llgll, =: L and if ||gfl,,,=:D < co then a slight modification of Theorem 1
gives

Pr fsupl (/) > M+2L} < K exp {~(M+2/5D%),
for all n 2 1 for M > M,, where K and M, are constants depending only
upon v and D.

§ 3. Proof of Theorem 1. The techniques of the proof center around
those developed by Pollard [6] and generalize those used by Alexander [1]
for the case when § is a class of sets. It will be convenient to use the
following method of randomization.

Givenn=1,2,...and §,, ..., {5, as the coordinates on (X", A", pn),
let o(1),...,0(m) be random variables independent of each other and
.the & with Qo (i) =2)=Q(c()=2i—1)=1/2,i=1,2,...,n Let t(i) =2
if o(i) =2i~1 and t(i) = 2i—1 otherwise. Let £(i) = &. Then the £ (o(j)) are
iid. P. Let

n n
Pri=nt Y Oy and  Pri=n"'Y Seyye
=1 J=1

Finally, define v, :=n'2(P,~P), v :=n"2(Py—P) and vQ:=v,—v"
Note that v, and v, are two independent copies of v, and that v0 is the
symmetrized empitical process. Let Pr:= P* xQ™ and P:= P*. Throughout
we shall assume that sup]vl(f)| and sup|v;(f) are measurable, Before

¥

% 7
presenting the proof, we collect a lemma and two facts. The following is
adapted from [6], Lemma 2.3.

Lemma 3.1. For all M > 0 we have

Pr {sup|vy (/)] > M+2} < P’suplv ()l > M}.
¥
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Proof. " For xeX™, let w(x):=(x;,..., X, and  w,(x):=
(*nr 1> ---» X2, By Chebyshev’s inequality and since E(v;(f))* = [f2dP—

—~(ffdPy* < 1, we have P{{v;(f)| <2} > 3/4 for all f in §. Therefore,
P {supva (f) > M} = f P2 {supv) ()l > Mlo(&y, ..., &)} dP™
r j 15up|v0(f)|>MdP (w1) dP™(w,).
xn xn
Suppose w,e{|vy (/) > M+2} and fe & is arbitrary. Then

[ Laghv0ni>mdP"(@1) 2 [ 1y ) <2dP" () > 3/4.
Xn

. xn
Since [ is arbitrary, this implies that

P{suppv)(f)l > M} < | $dp

sup[v;;(f)] SM+2

n(wl)a

and the lemma follows. m

Facr 32. If y =9/8 and if M > 37 then
M4y —(M—-1)?*2 < —(M+2%*4y and M*4y=(M+2) )2/5.
Fact 3.3. Let y be as above and r:=r(M):=[(2—r-,)‘1log2 M?¥4yC]

where [ -] denotes integer part. If M = M (e, C, §,) then
(1=27923)712=e T D2(216C)Y2 <1 and 27" < &,.

Dermvition.  Let #;>0 be such that
myi= N2, § <exp(C2?279),

We are now ready for the )

Proof of Theorem 1. Suppose that we are given the realization of

&y, oony Eapy 1, we are given the values (xy, ..., x,,> which we will call S.
Then Vj =1 we may find &;:= {f;, ...,fjmj} such that

®  min ([ dPay) 2 < 27

n? =27%(216C) and let

for all fe & From now on consider any M such that M > M(e, C, ). Fact
4]

J=rt+1

Suppose that [vd(f)| > M for some .f € § Then for any such f denote
by f;(8) a function fje & for which the LHS of (3) achieves its minimum.
For any integer §

3.3 and the definition of r and n; show that

V()= (£(8) = Z [v,(f, (8)=ve (fi-1 ()]
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o0
From now on, suppress the S in f,(S) and just write f,. Using Y. ;<1 it
J=r+1

follows that either [v3(f)—vS(fj-1) > n; for some j>r or vy (f) > M~1.
Using the standard chaining arguments, it follows for our fixed S that

(4) Sup'V,, (f ‘ > M‘ m, mdem I!v (frl ] > M_l\(
i<my
L=<
+ Z mj mj—l max’ ® 'Ivn (/Jl ﬁj— l)k}l > 7’_]}‘7
j=r+1 iSmpk<my g

where max’ denotes max subject to || f5—fy-1ullds <927

n
Now v0(fi—fy-1y) can be written as n™*2 3" h; where
A=1

hy = (fji—f(i—-l)k)(é:u)_(fji— (j-l)k(fﬂ.—l)'
By Theorem 2 of Hoeffding [4],

n

Q= {Ive (fy—Sfy- il > m;} < 2exp(=2nmf (4 3 B3)™1).

i=1
By (3) we have Y h? <36 n2~% and therefore the second term on the RHS
i=1
of (4) is
<2 Y exp(2C20-%)exp(~ n?22/72)

j=r+1
=2 Y exp(—C2G79),
Jj=rt+1
Applying Hoeffding [4] to the first term on the RHS of (4) we get
0% (v (fu)l > M=1} < 2 exp(—(M—1)/2),

which holds for all i, i < m, Now m, < exp(C22~™) < exp(M?/4y) by the
way r was chosen. Using Fact 3.2, the first term on the RHS of (4) is thus
bounded by 2exp(—(M+2)%/5). The second term is bounded by

o0
2 Y exp(—C2@7%) < dexp(—~ C227 ) < dexp(— M?/4y)
J=r+1
< 4exp(—(M+2%5).

So on S we have Q% {sup|vy(f)l > M} < 6exp(—(M+2)%/5). Integrating
over X?" and applying Lemma 3.1 gives the desired result. m

§4. A variation of the main result: If the metric entropy condition (1)
holds for all values of P,, except those in-a set 4,, with P®(d,,) = p,, then

©
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(2) takes the form
(5) Pr {sup|v,(f)] > M} < 8exp(— M?/5)+4p,/3.
i

The importance of (5) lies in the fact that if p, satisfies Y. P < o, then the
k=1
standard subsequence techniques show that sup|v,(f) satisfies a bounded

¥
law of the iterated logarithm. The following theorem, which uses an L!(P,,)
seminorm to define d-entropy, embodies the above ideas.

TueoreM 3. Let (X, U, P) be a probability space and § a class of real-
valued functions on (X, W, P). Assume that § has envelope F = 1. Given n, let
J(n) :=[(log, n)/2] + 2. Suppose that for all values of P,, (except those in a set
Ay, with P®(A,,) =:p,|0) and for all j, 1<j<j(n), there exist functions
Sits s fim€ & m=m{()), such that for all fe & there is an i < m such that

“f"fji'dPZn <274
Assume for some &, 0 <e <1/2, and C > 1 that
m=m() <exp(C24™%), j=1,2, ...

If M3> M, C):=2+max (37, (5C)"/2 (480(C)"*/s)!"), then for all n suf-
ficiently large

Pr {sup|v, (/)| > M} < 8exp(—M?/5)+%p,.
Proof. Define v,, v/, v2, Pr, and P as in the proof of Theorem 1. We
will need the analog of Fact 33:
Facr 4.1. Let y=9/8 and r:=r(M):=[(1—&) 'log, M¥4yC]. If
M = M(e, C) then
' (1_2-—8/2)-12—-c(r+1)/2 12(C)1/2 < 1/2

DeriniTioN. Let 7; > 0 be such that 5} = 27144 C and let m;:=m(j)).

With these preliminaries we proceed with the proof, following the
general method of the proof of Theorem 1.

For we A5, suppose that we are given the realization of &y, ..., &y, i€,
we are given {Xy, ..., Xz,», which we call S. Then forallj, 1 <j <J(n find
&=l Sm} 8 uch that '
(6) min [|f=fyldPs, < 27/

i<my
for all fe . From now on consider any M such that M > M (e, C). Fact 4.1

00
and the definition of » and #; imply that Y. 7;<1/2.
: . J=r+1
Henceforth, as we still have we 4%, all equations will hold except with

probability P®(Az,) =:p,.
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Suppose that [v2(f)] > M for some fe & Then for any such f denote
by f;(S) the function f; e §&; for which the LHS of (6) achieves its minimum.
Notice that for any fixed integer s, s <j(n),

Vi ()= (£(8) = Z [R5 )= VR (fi- 1 ()] +7(S)
Jj=s+1
where [t(S) < 2 (f- f}(,,)(S))[ n'/22710 < 1/2, by definition of j(n). From
now on, suppress the § in f;(S) and Just write fy.

Using Z n; <1/2, it follows that either [v3(f) > M —1 or that there
J=r1
is a j>r such that [v{(f;—f- )| > n;.
Using a chaining argument similar to that in the proof of Theorem 1, it
may be shown (with the help of Facts 3.2 and 4.1 and Hoeffding’s inequality)
for the fixed S and for we A%, that

Q= {sup|ve (/) > M} < 6exp(—(M +2)%/5).

Combining this with Lemma 3.1 and replacing M +2 by M gives the desired
result. m
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The Sobolev spaces of harmonic functions
by
EWA LIGOCKA (Warszawa)

Abstract. Let H* be the subspace of harmonic functions in the Sobolev space W*(D) for a
smooth bounded domain D in R". In this paper we prove that the dual of H* can be represented
as the space L2 H(D, ¢*) of harmonic functions which are square integrable on D with weight
o, where g is a defining function for D, ie. g(x) = —dist(x, @D)e!™, he C=(D).

I. Introduction and statement of results. Let D be a' bounded domain in
R" defined by D = {xeR"™ ¢(x) <0}, where peC*(R") and grad ¢ #0 on
aD. Denote by W*(D), s = 0, the usual Sobolev space on D. Now we shall
recall the definition of the negative Sobolev spaces. Let W*(D) denote the
closure of C¥(D) in W*(D). The negative Sobolev space W™*(D) is the
completion of L#(D) with respect to the norm

llull-s = sup |<u, v)|.
veWS(D)
lfolfg=1

The space W™%(D) is a representation of the space dual to W*(D) via the
L?*(D)-scalar product ¢ , >. The expression “a function f vanishes on 8D up
to order k” means that f and all its derivatives D*f, la| < k, are identically
zero on aD. Note that a function feC® (D) belongs to W*(D) iff f vanishes
on @D up to order s—1. For each integer s, let H*(D) denote the space of
harmonic functions belonging to the Sobolev space W*(D). For each s, H*(D)
is a closed subspace of W*(D). We shall also denote by H®(D) the subspace
of ¢ (D) consisting of harmonic functions. We shall prove the following.

Tueorem 1. Let T (u) = ¢*u where k is a positive integer. Then for each
integer 8, —uw <<, the operator T, maps continuously H*(D) into
w* +k ( D)

In [2] S. Bell constructed a family of operators L“ C™(D)— C*(D)
such that for every s > 0 and fe C*(D), L’f vanishes up to order s—1 on
ap and f—Lff LH°(D) in L*(D). Bell used these operators to construct a
nondegenerate sesquilinear pairing

ogdo=[L2f-g for feH™ and geH *c H ™ =limind H™".

D
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