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Suppose that [v2(f)] > M for some fe & Then for any such f denote
by f;(S) the function f; e §&; for which the LHS of (6) achieves its minimum.
Notice that for any fixed integer s, s <j(n),

Vi ()= (£(8) = Z [R5 )= VR (fi- 1 ()] +7(S)
Jj=s+1
where [t(S) < 2 (f- f}(,,)(S))[ n'/22710 < 1/2, by definition of j(n). From
now on, suppress the § in f;(S) and Just write fy.

Using Z n; <1/2, it follows that either [v3(f) > M —1 or that there
J=r1
is a j>r such that [v{(f;—f- )| > n;.
Using a chaining argument similar to that in the proof of Theorem 1, it
may be shown (with the help of Facts 3.2 and 4.1 and Hoeffding’s inequality)
for the fixed S and for we A%, that

Q= {sup|ve (/) > M} < 6exp(—(M +2)%/5).

Combining this with Lemma 3.1 and replacing M +2 by M gives the desired
result. m
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The Sobolev spaces of harmonic functions
by
EWA LIGOCKA (Warszawa)

Abstract. Let H* be the subspace of harmonic functions in the Sobolev space W*(D) for a
smooth bounded domain D in R". In this paper we prove that the dual of H* can be represented
as the space L2 H(D, ¢*) of harmonic functions which are square integrable on D with weight
o, where g is a defining function for D, ie. g(x) = —dist(x, @D)e!™, he C=(D).

I. Introduction and statement of results. Let D be a' bounded domain in
R" defined by D = {xeR"™ ¢(x) <0}, where peC*(R") and grad ¢ #0 on
aD. Denote by W*(D), s = 0, the usual Sobolev space on D. Now we shall
recall the definition of the negative Sobolev spaces. Let W*(D) denote the
closure of C¥(D) in W*(D). The negative Sobolev space W™*(D) is the
completion of L#(D) with respect to the norm

llull-s = sup |<u, v)|.
veWS(D)
lfolfg=1

The space W™%(D) is a representation of the space dual to W*(D) via the
L?*(D)-scalar product ¢ , >. The expression “a function f vanishes on 8D up
to order k” means that f and all its derivatives D*f, la| < k, are identically
zero on aD. Note that a function feC® (D) belongs to W*(D) iff f vanishes
on @D up to order s—1. For each integer s, let H*(D) denote the space of
harmonic functions belonging to the Sobolev space W*(D). For each s, H*(D)
is a closed subspace of W*(D). We shall also denote by H®(D) the subspace
of ¢ (D) consisting of harmonic functions. We shall prove the following.

Tueorem 1. Let T (u) = ¢*u where k is a positive integer. Then for each
integer 8, —uw <<, the operator T, maps continuously H*(D) into
w* +k ( D)

In [2] S. Bell constructed a family of operators L“ C™(D)— C*(D)
such that for every s > 0 and fe C*(D), L’f vanishes up to order s—1 on
ap and f—Lff LH°(D) in L*(D). Bell used these operators to construct a
nondegenerate sesquilinear pairing

ogdo=[L2f-g for feH™ and geH *c H ™ =limind H™".

D

sron


GUEST


80 E. Ligocka

He proved that H® and H™* are mutually dual via this pairing. (Note that
if geHO(D) then {J, g>o = {f, g)). The statement of Theorem 1 for s> 0
and the construction of L* permit us to prove that for every s > 0, L' maps
continuously H® into W*(D). In fact, L* is an isomorphic imbedding of H*
into W*. This implies the following

THEOREM 2. For each integer s > O the spaces H*(D) und H™*(D) are
mutually dual via the nondegenerate sesquilinear pairing

AL gy =[Lf"G, feH'(D),geH *D).

Boas in [5] proved that [|g*Hl| 5, < ¢llh- for holomorphic functions
h. This estimate can be proved in the same way for harmonic /; it permits us
to prove Theorem 1 for s <0 and the following:

THeOREM 3. For integer s >0, the space H™°(D) is equal to the space
L>H(D, ¢*) and the norm || ||_, is equivalent to the norm || 2 g2 5 this
we have the representation of the space (H*)* as the space L2 H(D, 0*) with un
equivalent norm.

Bell's duality theory was originally invented to study the Sobolev spaces
of holomorphic functions in C" (see [3]). We shall now outline the
similarities and differences between these two cases.

Let D be a bounded smooth domain in C". Denote by Hol*(D) the
closed subspace of W*(D) consisting of holomorphic functions, and by
L*Hol(D, ¢*) the space of holomorphic functions square-integrable with
weight o2

It follows immediately from Theorem 3 that for every (integer) s > 0

Hol™*(D) = L*Hol(D, ¢*), || ||-s=| 210,02
The pairing {f, g = [L°f-7 is a sesquilinear pairing between Hol*(D) and
Hol™(D). It is equal to the pairing introduced by S. Bell in [3]. The main
difference between the harmonic and the holomorphic case is that {0 > can
be degenerate or the spaces Hol' and Hol™* can be not mutually dual via
this pairing. Let B denote the Bergman projection from L2 (D) onto
I?Hol(D) (that means the orthogonal projection from L> (D) onto
L*Hol(D)). Bell and Boas proved in [4] that Hol® (D) and Hol~ = (D) are
mutually dual via ¢, - iff B is continuous from C*(D) onto Hol* (D).
(This fact was also proved independently by G. Komatsu [6]). We can now
prove the following.

ProrosiTioN 1. Let Holg* denote the closure of L*Hol(D) in Hol™*. For
every integer s >0 the following conditions on D are equivalent:

(1) Hol*(D) and Holy*(D) are mutually dual via the pairing { ., >o.

(2) B.is a continuous projection’ from W*(D) onto Hol*(D).

(3) B extends to a continuous projection from H “*(D) onto Hol;*(D).

icm°®
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(4) There exists ¢ > 0 such that for every harmonic function from L?(D)
HB““Lz(D_ezs, < C”“”Lz(D,OZsy

Barrett in [1] constructed an example of a bounded smooth domain
(not pseudoconvex) for which (2) fails for every s > 0.

Note that the orthogonal projection P from L?*(D) onto the space
L? H(D) of square-integrable harmonic functions is continuous from W* (D)
onto H*(D) for every smooth bounded D in R" and each s> 0 (see [2]).

II. Proofs.

1) Proof of Theorem 1 for s>0. Let s>k If ue H*(D) then
A*g*ue W*™* and there exists a constant ¢ such that [|4* g ull,_, < c|lul,-
Denote by Gy the operator which solves the Dirichlet problem 4*G,(f) = f,
G, f vanishes on D up to order k—1. It is well known that for every s = 0,
G, maps continuously W* into W**2 ~ W* (W* = CL (D) = WX) Let F(u)
= Gy (4*(¢*w). Then F(w)e W*** A W* and ||F (w)||s+x < c|lull,, ue H*(D). For
ue H® (D) the function F(u)—g*ue C*® (D) vanishes on &D up to order k—1
and 4*(F(w)—¢*u) =0. Thus F(u) =¢*u for ue H*(D). The orthogonal
projection P from L*(D) onto L2 H (D)= H°(D) is continuous from W*(D)
onto H*(D) for each s > 0, since Pf =I—AG, Af. This implies that P maps
C>(D) onto H*(D) and that H* (D) is dense in H*(D). The operators F(u)
and T,(u) = ¢“u are continuous from H*(D) into W*(D) and equal on the
dense subset of H*(D). Thus for every ue H°(D), g*u = F(u)e W***(D) and
llo* ully+ e < clluly.

Let now ueH°(D). We have 4*g*ueW™*(D) and ||4* ¢*ul|_, < c|jull,.
We shall prove that there exists a continuous operator G, from W™* to W*
such that 4%(G_, f) = f. The scalar product

K g = | |Z_k <D°f, D*g3}

defines on W* a Hilbert norm equivalent to the usual Sobolev norm. Let
fe W™ (D); then < ,f>, defines a continuous linear functional on W*. By
the Riesz theorem there exists an element G_,(f)e W* such that for every
ge Wk (g, [ = (=1)* g, G-, (f)>>.The operator G_, is an isomorphism
between W% and W* If geC®(D) then integration by parts implies that
g, S0 = <4*g, G-, (/)>) which means that 4*G_,(f) = f.

Let F(u) = G, 4*(¢*u). We have Fue W*(D) and ||Ful|, < c||u|l, for each
ue L2H (D). The same consideration as above shows that F(u) = ¢*u for
ue L? H (D), The standard interpolation shows now that g*u maps H*(D) into
Wtk (D) A WE(D) for s = 0 and

Hgku”s-l-k < Csk “u“r

2) Proof of Theorem 2. It follows from the proved part of Theorem
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1 that if weH*(D) for s 0 then for every multiindex a, D*(ug!)e W*(D)
and |D*(uo™)| < C|lull, (D* is the partial derivative corresponding to «). This
implies that also D*(u) "™ e W* and [[D*(w) ¢“||; < Clull;. Now, let us recall
the construction of Lfu:

s=1
Sy= u__A(Z (Jkglvl-l)7

k=0

G 9
[ L, -2 ay ' Iij ". ax, (7)5,-
= | | Lu, o= 3 LT
b =Gz ((M) U T T
1y — o ALB. 52 =.pu
Lu=u—-4(0,0%, 0o 7%

where ¢ is an arbitrarily chosen C*-function equal to 1 in a neighborhood

of 8D and equal to 0 in a neighborhood of the set {Fp = 0}.
The above construction and harmonicity of u imply that for each r > 1,
Lru consists of terms of the type h; Df (u) o™ where 0 < || < jof < r(r+1)/2.
Thus for all r > 1, s> 0, L extends to a continuous operator from H*(D)
into W*(D). In particular, I} maps continuously H® into W* To prove
Theorem 2 it suffices now to repeat the construction from the proof of
- Theorem 1 from [2]. We shall outline it briefly: since ||[Lf|] < Cl|fll,, feH,
we have for every feH® and geH™*

[, @20l = IKES, g0l < cllf1lsllgll -

Thus for every feH’, <f, Yoe(H™*)* and for every ge H™", (-, gdoe(H)*.
Every continuous functional on H* has the form ¢:, v),. If 4 and v are in
C™(D) then

‘ <u’ U>s = Z <Dzu, D¢U>o = <u, E*"'v>0

x| <5
where E°v = P( Y (- 1)* D*L* D*v).
Jof S5

The operator E° extends to a continuous operator from H* into H™* and
v = (¢, E*v)o on H'. Every continuous functional ¢ on H "* extends by
- the Hahn-Banach theorem to a continuous functional on W"* and thercfore
can be represented as -, @),. Then it can be proved that ¢ (u) = {u, Pdd
and P®, = PP, for two different representations of ¢.

To prove this we shall consider the operator L** acting from W* into H,
We have <L u, v), = {u, L*v),. There exists an isomorphism F* of W"™*
onto W* such that

I+ Y 4P (=1 =u.
k=0
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Thus the operator L#* F* maps H™* into H* and for all he H™® and ge H*
Chy gdo = <y LPgho = KF°h, Lg)y = CKL* FPh, g,
Thus ¢h—E L* F'h, g, = 0 for every ge H*. Since the pairing <:, Do I8
nondegenerate on H ™% x H® ([2]) we have h = E* [** F*h. This means that
E* is an isomorphism between H* and H™*. Since E°(H*) « H®, it follows
that H* is dense in H™* for every s > 0. Note that it ¢ (4) is a functional on
H™* and &,, ¥, its two representations in W* then @) = (u, P>,
= u, PP, for all ue H®. Thus PP, = P®, and ¢ (u) = <{u, PP, for all
ucH™*
3) Proof that T;(u) = ¢'u maps continuously H™*into L?(D) (see
Boas [5]). Let ue H* (D). By the Sobolev inequality we have

llo* ulld < fjull s lo® ulls < cllull -4 114° 0™ ull -
By the generalized Leibniz formula and the harmonicity of u
450> ully = sup [<4°¢™u, Dyol = sup | Y <foe" D u, )|

ocWs  lalSss

[
ellgs1 llellgs1

<Y sup [KD*(fid®)u, @)l

le| <5 @l

+ ¥ sup [{fy0u, D*P)ol < clig*ullo-
o S5 H@llgS1
This last inequality follows from the fact that D*®e Ws—ll and from the
following inequality valid for every ve W, r=1:
llo/ello < ellvll,
This implies that ||g°ullo < ¢|lul|, for ue H®. Since H* is dense in H™%, this
ends the proof. ‘

4) Proof of Theorem 3 and Theorem I for s<0. In [5]
(estimates 2.6) we can find the following estimate: |jul|-, < c|l¢"ullo for all
real r <0, r # (2k—1)/2, and all smooth u. It implies that for each integer
$>0, ||g°ullo is equivalent to the norm [[ul|-, on H™*, The norm {|g°ul|y is
equal to the norm ||ull 2., 25 This implies that H™* = L*H(D, ¢*) and
Theorem 2 shows that H* is dual to the space L*H(D, ¢*) via the pairing
{, d>o. Now we shall return to the proof of Theorem 1. If s >k then for
every ug H™* ‘
llQ* ull -5+4 < clie*ue* o = cllg*ullo < ¢y [lul] -

If k> s then for every ue H®, ¢fueW*™* and
Il ully-s < c”Ak——SQku”—k-Ps = Ssup < Z .f;QM-M D?u, (])>0
PeWk—s  af <k-s
ol <1

< e llefullo < ez llull-s
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by the same reason as in the proof in 3). Thus if k > s then T; (1) = ¢“u maps
continuously H™* into W*~%. This ends the proof of Theorem I.
5) Proof of Proposition 1.
(1)=(2). Let ueW=. (1) implies that
IBulls < ¢ sup [<Bu, hyol =c  sup [<u, h)ol < cllull;
heLZHol(D) heL2Hol(D)
bl — <1 a8 o<1
by the Sobolev inequality.
(2)=(3). Let he H™*n L*(D). Then

IBH|-s< ¢ sup [<Bh, udo| =c sup |<h, Bu|
ugHS ueH®
llullg1 Ilully €1
Sc osup Al ]1Bully < cq[lh]] -
ueHS
Nullg<1
since B is continuous from H* onto Hol*. H® is dense in H™* for each s (see
[2]) and thus B extends to a continuous projection from H™* onto Holg*.
(3)=(2). For every fe W, PfeH® and Bf = BPf. Thus, it suffices to
prove that B is a continuous projection from H* onto Hol".
Let he H*. Then

IBHll, < ¢ sup [(Bh, udol<c sup [Ihll,l|Bull~, < ¢ [|Hl,.
neH ™% ugH™*S
llull-g%1 full - g1
(2) and (3)=(1). We have Holy® = B(H™*). Every continuous functional
¢ on Holg* can be extended by the Hahn-Banach theorem to a continuous
functional on H™* and therefore for every feHol;*

@(f) = {fs udo = {f, Bu)o.

Analogously every continuous functional on Hol* can be written in the form

0(f) = g f 30 = Btgs 50, Uy H".
The equivalence (3)<>(4) follows immediately from Theorem 2.
HII. Remarks.

Remark 1. Bell's operator L* can be extended to a continuous operator
from W* into W* via ['u = L* Pu. We have P([*u) = P(Lf Pu) = Pu and thus
u—L'ul H°= L*H(D). It is possible also to extend the operator L to the
continuous projection [* from W* onto W*, To do this we need the following

Tueorem. Let g denote a fixed defining Junction for a smooth bounded
domain D in R". Then every fe WD) has a wuniquely determined
decomposition in .the form

f=hotohi+...+0"" ' he_ | +u,
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where
heH™ k=0,.., 5—1,

and ue W*(D). The operators Sy (f) = h, map continuously W* onto H*™* and
the operator R(f)=u is a continuous projection of W* onto W°. In other
words, W* is a direct sum of We and the spaces T,(H*™", k=0, ..., s—1,
where T, (h) = ¢*h. .

Proof. Let fe C*(D). Let u, be a solution of the Dirichlet problem Av
= 4f, v =0 on 8D. Then hy = f—uqy and [[hyl|; < c|if]l; for every s > 1. We
have ug = ofy, f;eC*(D).

As before we take the harmonic function sy on D s.t. b, = f; on 8D, and
obtain f = hy+ohy +0*f; = hy+oh, +u,. We also have

" do [0

hy == 3 ) on 0D
5 G)

and thus ||hll;-; < c||flls for s = 2. Theorem 1 yields ||oh|; < c||fll; for
s22 and therefore |lu,]|, <cl| f]l,, Now we can continue this process
inductively. We have

f = h0+Qh1+ +Qr hr+ura ||hr”s—r < Cr”f”s for s zr+1

and by Theorem 1, [ul; < ¢, |f|ls. Since feC*(D) we have u, =g+ f,,,
fir1€C®(D). We can take as h,,, the harmonic function on D such that
h+1 = firq on éD. We also have

ag r+1 ar+1
L) st
hr+1 = 6@ 2r+2
2(z)
on D and thus
M illsmrmt S a1l Nt ally S ot Lfllss s 272,

This implies that our operators S and R are well defined and continuous on
the space of smooth functions in W?*. Since smooth functions are dense in
W*, 8, and R can be extended to continuous operators on W Now let

s—1
fE Wxa f= Z hké’k'H‘-
k=0
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We can define

- s=1

Lf =Y Ll oY+u.

k=0
We have Pi‘f: Pf If he H* then Trh=1h and if ueW* then Fu=u.
Theorem 1 implies that
1L (e @ Wls < cillills— < il f 1l

Thus I is a continuous projection from W* onto W*

Remark 2. The operator Q(u) = P(¢*u) maps continuously L*(D) onto
H*(D), because

1P(@*u)ll; = sup

hell’
Nl —g€ 1

[<P(g*u), h)| = sup

hett0
[laf] - g1

[{e*u, h)|

< sup [l 2 oAl 2y < Cllull, 2y -
hel®
1Al - g<1

Since éLs(f)eLz(D) for feH*(D), it follows that Im Q = H*(D). In the

same way we can prove the following

ProrosiTion. Let D be a smooth bounded domain in C". The Bergman
projection B maps continuously W*(D) onto Hol*(D) if and only if for every
defining function ¢ of the domain D the operator Qu = P(o*u) mups
continuously L*(D) onto Hol (D).

Remark 3. The operator P cannot be extended to a continuous
operator from W™* into H™* for any s, k > 0.

Suppose that P is continuous from W™* into H™*. That implies that the
operator P(4°u) maps continuously W* into H™* For every ueCg, A4%u is
orthogonal to the harmonic functions. Since CP (D) is dense in W*, P(4*u)
=0 on W’ 4° maps W* onto W™* and thus P = 0. Contradiction. For the
same reason the Bergman projection B cannot be bounded in negative
Sobolev norms.
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