Suppose that $|v_{\bullet}^{0}(f)| > M$ for some $f \in \mathcal{R}$. Then for any such f denote by $f_i(S)$ the function $f_{ii} \in \mathcal{F}_i$ for which the LHS of (6) achieves its minimum. Notice that for any fixed integer s, s < j(n),

$$v_{n}^{0}(f) - v_{n}^{0}(f_{s}(S)) = \sum_{j=s+1}^{j(n)} \left[v_{n}^{0}(f_{j}(S)) - v_{n}^{0}(f_{j-1}(S)) \right] + \tau(S),$$

where $|\tau(S)| \leq |v_n^0(f - f_{i(n)}(S))| \leq n^{1/2} 2^{-j(n)} \leq 1/2$, by definition of j(n). From now on, suppress the S in $f_k(S)$ and just write f_k .

Using $\sum_{j=r+1}^{\infty} \eta_j < 1/2$, it follows that either $|\nu_n^0(f_r)| > M-1$ or that there is a j > r such that $|\nu_n^0(f_j - f_{j-1})| > \eta_j$.

Using a chaining argument similar to that in the proof of Theorem 1, it may be shown (with the help of Facts 3.2 and 4.1 and Hoeffding's inequality) for the fixed S and for $\omega \in A_{2n}^{c}$ that

$$Q^{\infty} \{ \sup |v_n^0(f)| > M \} \le 6 \exp (-(M+2)^2/5).$$

Combining this with Lemma 3.1 and replacing M+2 by M gives the desired result.

Acknowledgement. I would like to thank my thesis advisor. Professor R. Dudley, for his guidance and help in preparing this article, originally a part of my Ph.D. thesis.

References

- [1] K. Alexander, Some limit theorems and inequalities for weighted non-identically distributed empirical processes, Ph.D. thesis, M. I. T., 1982.
- [2] N. S. Bakhvalov, On approximate calculation of multiple integrals, Vestnik Moskov. Univ. Ser. Mat. Mekh. Astronom. Fiz. Khim. 1959, no. 4, 3-18 (in Russian).
- [3] R. M. Dudley, Empirical and Poisson processes on classes of sets or functions too large for central limit theorems, Z. Wahrsch, Verw. Gebiete 61 (1982), 355-368.
- [4] W. Hoeffding. Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13-30.
- [5] A. N. Kolmogorov and V. M. Tikhomirov, ε-entropy and ε-capacity of sets in functional spaces, Amer. Math. Soc. Transl. (Ser. 2) 17 (1961), 277-364 = Uspekhi Mat. Nauk 14 (1959), vvp. 2 (86), 3-86.
- [6] D. Pollard, A central limit theorem for empirical processes, J. Austral. Math. Soc. Ser. A 33 (1981), 235-248.

DÉPARTEMENT DE MATHÉMATIQUE, UNIVERSITÉ LOUIS PASTEUR 7, rue René Descartes, 67084 Strasbourg CEDEX, France

The Sobolev spaces of harmonic functions

by

EWA LIGOCKA (Warszawa)

Abstract. Let H^s be the subspace of harmonic functions in the Sobolev space $W^s(D)$ for a smooth bounded domain D in \mathbb{R}^n . In this paper we prove that the dual of \mathbb{R}^s can be represented as the space $L^2H(D, \rho^{2\pi})$ of harmonic functions which are square integrable on D with weight ρ^{2s} , where ρ is a defining function for D, i.e. $\rho(x) = -\operatorname{dist}(x, \partial D) e^{h(x)}, h \in C^{\infty}(\overline{D})$.

I. Introduction and statement of results. Let D be a bounded domain in \mathbf{R}^n defined by $D = \{x \in \mathbf{R}^n : \rho(x) < 0\}$, where $\rho \in C^{\infty}(\mathbf{R}^n)$ and grad $\rho \neq 0$ on ∂D . Denote by $W^s(D)$, $s \ge 0$, the usual Sobolev space on D. Now we shall recall the definition of the negative Sobolev spaces. Let $\mathring{W}^s(D)$ denote the closure of $C_0^{\infty}(D)$ in $W^s(D)$. The negative Sobolev space $W^{-s}(D)$ is the completion of $L^2(D)$ with respect to the norm

$$||u||_{-s} = \sup_{\substack{v \in \widehat{W}^{s}(D) \\ ||v||_{s} \leqslant 1}} |\langle u, v \rangle|.$$

The space $W^{-s}(D)$ is a representation of the space dual to $\mathring{W}^{s}(D)$ via the $L^2(D)$ -scalar product \langle , \rangle . The expression "a function f vanishes on ∂D up to order k" means that f and all its derivatives $D^{\alpha}f$, $|\alpha| \leq k$, are identically zero on ∂D . Note that a function $f \in C^{\infty}(\overline{D})$ belongs to $\mathring{W}^{s}(D)$ iff f vanishes on ∂D up to order s-1. For each integer s, let $H^s(D)$ denote the space of harmonic functions belonging to the Sobolev space $W^s(D)$. For each s. $H^s(D)$ is a closed subspace of $W^s(D)$. We shall also denote by $H^{\infty}(\overline{D})$ the subspace of $C^{\infty}(\overline{D})$ consisting of harmonic functions. We shall prove the following.

THEOREM 1. Let $T_k(u) = \varrho^k u$ where k is a positive integer. Then for each integer s, $-\infty < s < \infty$, the operator T_k maps continuously $H^s(D)$ into $W^{s+k}(D)$.

In [2] S. Bell constructed a family of operators $L^s: C^{\infty}(\overline{D}) \to C^{\infty}(\overline{D})$ such that for every s > 0 and $f \in C^{\infty}(\overline{D})$, $L^{s}f$ vanishes up to order s-1 on ∂D and $f - L^s f \perp H^0(D)$ in $L^2(D)$. Bell used these operators to construct a nondegenerate sesquilinear pairing

$$\langle f, g \rangle_0 = \int_{\overline{D}} L^s f \cdot \overline{g}$$
 for $f \in H^\infty$ and $g \in H^{-s} \subset H^{-\infty} = \liminf_{s \to \infty} H^{-s}$.

He proved that H^{∞} and $H^{-\infty}$ are mutually dual via this pairing. (Note that if $g \in H^0(D)$ then $\langle f, g \rangle_0 = \langle f, g \rangle$. The statement of Theorem 1 for s > 0and the construction of L^s permit us to prove that for every s > 0, L^s maps continuously H^s into $\mathring{W}^s(D)$. In fact, L^s is an isomorphic imbedding of H^s into \hat{W}^s . This implies the following

THEOREM 2. For each integer s > 0 the spaces $H^s(D)$ and $H^{-s}(D)$ are mutually dual via the nondegenerate sesquilinear pairing

$$\langle f, g \rangle_0 = \int L^s f \cdot \overline{g}, \quad f \in H^s(D), g \in H^{-s}(D).$$

Boas in [5] proved that $\|\varrho^s h\|_{L^2(D)} \le c \|h\|_{-s}$ for holomorphic functions h. This estimate can be proved in the same way for harmonic h; it permits us to prove Theorem 1 for s < 0 and the following:

THEOREM 3. For integer s > 0, the space $H^{-s}(D)$ is equal to the space $L^2H(D, \varrho^{2s})$ and the norm $\|\cdot\|_{-s}$ is equivalent to the norm $\|\cdot\|_{L^2H(D,\varrho^{2s})}$; thus we have the representation of the space $(H^s)^*$ as the space $L^2H(D, \rho^{2s})$ with an eauivalent norm.

Bell's duality theory was originally invented to study the Soboley spaces of holomorphic functions in C^n (see [3]). We shall now outline the similarities and differences between these two cases.

Let D be a bounded smooth domain in C^n . Denote by $Hol^s(D)$ the closed subspace of $W^s(D)$ consisting of holomorphic functions, and by L^2 Hol (D, ϱ^{2s}) the space of holomorphic functions square-integrable with weight ρ^{2s} .

It follows immediately from Theorem 3 that for every (integer) s > 0

$$\operatorname{Hol}^{-s}(D) = L^{2} \operatorname{Hol}(D, \varrho^{2s}), \quad \| \ \|_{-s} = \| \ \|_{L^{2} \operatorname{Hol}(D, \varrho^{2s})}.$$

The pairing $\langle f, g \rangle_0 = \int L^s f \cdot \overline{g}$ is a sesquilinear pairing between Hol^s(D) and $\operatorname{Hol}^{-s}(D)$. It is equal to the pairing introduced by S. Bell in [3]. The main difference between the harmonic and the holomorphic case is that $\langle \cdot, \cdot \rangle_0$ can be degenerate or the spaces Hols and Hol-s can be not mutually dual via this pairing. Let B denote the Bergman projection from $L^2(D)$ onto $L^2 \operatorname{Hol}(D)$ (that means the orthogonal projection from $L^2(D)$ onto L^2 Hol(D)). Bell and Boas proved in [4] that Hol $^{\infty}(\bar{D})$ and Hol $^{-\infty}(\bar{D})$ are mutually dual via $\langle \cdot, \cdot \rangle_0$ iff B is continuous from $C^{\infty}(\overline{D})$ onto $\operatorname{Hol}^{\infty}(\overline{D})$. (This fact was also proved independently by G. Komatsu [6]). We can now prove the following.

Proposition 1. Let Holos denote the closure of L2 Hol(D) in Hols. For every integer s > 0 the following conditions on D are equivalent:

- (1) $\operatorname{Hol}^s(D)$ and $\operatorname{Hol}_0^{-s}(D)$ are mutually dual via the pairing $\langle \cdot, \cdot \rangle_0$.
- (2) B is a continuous projection from $W^s(D)$ onto $Hol^s(D)$.
- (3) B extends to a continuous projection from $H^{-s}(D)$ onto $Hol_0^{-s}(D)$.

(4) There exists c > 0 such that for every harmonic function from $L^2(D)$

$$||Bu||_{L^{2}(D,\varrho^{2s})} \le c ||u||_{L^{2}(D,\varrho^{2s})}.$$

Barrett in [1] constructed an example of a bounded smooth domain (not pseudoconvex) for which (2) fails for every s > 0.

Note that the orthogonal projection P from $L^2(D)$ onto the space $L^2H(D)$ of square-integrable harmonic functions is continuous from $W^s(D)$ onto $H^s(D)$ for every smooth bounded D in \mathbb{R}^n and each s > 0 (see [2]).

II. Proofs.

1) Proof of Theorem 1 for s > 0. Let $s \ge k$. If $u \in H^s(D)$ then $\Delta^k \varrho^k u \in W^{s-k}$ and there exists a constant c such that $\|\Delta^k \varrho^k u\|_{s-k} \le c \|u\|_{s}$. Denote by G_k the operator which solves the Dirichlet problem $\Delta^k G_k(f) = f$, G_{k} f vanishes on ∂D up to order k-1. It is well known that for every $s \ge 0$, G_k maps continuously W^s into $W^{s+2k} \cap \mathring{W}^k$. $(\mathring{W}^k = \overline{C_0^\infty(D)} \subset W^k)$ Let F(u) $=G_k(\hat{A}^k(\varrho^k u))$. Then $F(u) \in W^{s+k} \cap \hat{W}^k$ and $||F(u)||_{s+k} \le c ||u||_s$, $u \in H^s(D)$. For $u \in H^{\infty}(\overline{D})$ the function $F(u) - \rho^{k} u \in C^{\infty}(\overline{D})$ vanishes on ∂D up to order k-1and $\Delta^k(F(u)-\rho^k u)=0$. Thus $F(u)=\rho^k u$ for $u\in H^\infty(\bar{D})$. The orthogonal projection P from $L^2(D)$ onto $L^2H(D)=H^0(D)$ is continuous from $W^s(D)$ onto $H^s(D)$ for each s > 0, since $Pf = I - \Delta G_2 \Delta f$. This implies that P maps $C^{\infty}(\bar{D})$ onto $H^{\infty}(\bar{D})$ and that $H^{\infty}(\bar{D})$ is dense in $H^{s}(D)$. The operators F(u)and $T_k(u) = \rho^k u$ are continuous from $H^s(D)$ into $W^s(D)$ and equal on the dense subset of $H^s(D)$. Thus for every $u \in H^s(D)$, $\rho^k u = F(u) \in W^{s+k}(D)$ and $\|\varrho^k u\|_{s+k} \leqslant c \|u\|_{s}$.

Let now $u \in H^0(D)$. We have $\Delta^k \rho^k u \in W^{-k}(D)$ and $||\Delta^k \rho^k u||_{-k} \le c ||u||_0$. We shall prove that there exists a continuous operator G_{-k} from W^{-k} to \mathring{W}^k such that $\Delta^k(G_{-k}f) = f$. The scalar product

$$\langle\langle f,g\rangle\rangle_{\mathbf{k}} = \sum_{|\alpha|=\mathbf{k}} \langle D^{\alpha}f, D^{\alpha}g\rangle$$

defines on \mathring{W}^k a Hilbert norm equivalent to the usual Sobolev norm. Let $f \in W^{-k}(D)$; then $\langle f \rangle_0$ defines a continuous linear functional on \mathring{W}^k . By the Riesz theorem there exists an element $G_{-k}(f) \in \mathcal{W}^k$ such that for every $g \in \mathring{W}^k$, $\langle g, f \rangle_0 = (-1)^k \langle \langle g, G_{-k}(f) \rangle_k$. The operator G_{-k} is an isomorphism between W^{-k} and W^k . If $a \in C_0^{\infty}(D)$ then integration by parts implies that $\langle g, f \rangle_0 = \langle \langle \Delta^k g, G_{-k}(f) \rangle \rangle_k$ which means that $\Delta^k G_{-k}(f) = f$.

Let $F(u) = G_k \Delta^k(\rho^k u)$. We have $Fu \in \mathring{W}^k(D)$ and $||Fu||_k < c ||u||_0$ for each $u \in L^2 H(D)$. The same consideration as above shows that $F(u) = \rho^k u$ for $u \in L^2 H(D)$. The standard interpolation shows now that $\rho^k u$ maps $H^s(D)$ into $W^{s+k}(D) \cap \mathring{W}^k(D)$ for $s \ge 0$ and

$$||\varrho^k u||_{s+k} \leqslant c_{sk} ||u||_s.$$

2) Proof of Theorem 2. It follows from the proved part of Theorem

1 that if $u \in H^s(D)$ for $s \ge 0$ then for every multiindex α , $D^\alpha(u\varrho^{|\alpha|}) \in W^s(D)$ and $|D^\alpha(u\varrho^{|\alpha|})| \le C ||u||_s (D^\alpha$ is the partial derivative corresponding to α). This implies that also $D^\alpha(u) \varrho^{|\alpha|} \in W^s$ and $||D^\alpha(u) \varrho^{|\alpha|}||_s \le C ||u||_s$. Now, let us recall the construction of $L^s u$:

$$L^{s} u = u - \Delta \left(\sum_{k=0}^{s-1} \theta_{k} \varrho^{k+2} \right),$$

$$\theta_{t} = \frac{\varphi}{(t+2)!} |\nabla \varrho|^{-2} \left(\frac{\partial}{\partial \eta} \right)^{t} L^{t} u, \quad \frac{\partial}{\partial \eta} = \sum_{i=1}^{n} \frac{\frac{\partial \varrho}{\partial x_{i}} \cdot \frac{\partial}{\partial x_{i}}}{|\nabla \varrho|^{2}},$$

$$L^{1} u = u - \Delta (\theta_{0} \varrho^{2}), \quad \theta_{0} = \frac{\varphi u}{2 |\nabla \varrho|^{2}}$$

where φ is an arbitrarily chosen C^{∞} -function equal to 1 in a neighborhood of ∂D and equal to 0 in a neighborhood of the set $\{ \nabla \varrho = 0 \}$.

The above construction and harmonicity of u imply that for each r>1, L^ru consists of terms of the type $h_{\beta}D^{\beta}(u)\varrho^{|\alpha|}$ where $0\leqslant |\beta|\leqslant |\alpha|\leqslant r(r+1)/2$. Thus for all r>1, $s\geqslant 0$, L^r extends to a continuous operator from $H^s(D)$ into $\mathring{W}^s(D)$. In particular, L^s maps continuously H^s into \mathring{W}^s . To prove Theorem 2 it suffices now to repeat the construction from the proof of Theorem 1 from [2]. We shall outline it briefly: since $||L^sf||\leqslant C\,||f||_s$, $f\in H^s$, we have for every $f\in H^s$ and $g\in H^{-s}$

$$|\langle f, g \rangle_0| = |\langle L^s f, g \rangle_0| \leqslant c \, ||f||_s \, ||g||_{-s}.$$

Thus for every $f \in H^s$, $\overline{\langle f, \cdot \rangle}_0 \in (H^{-s})^*$ and for every $g \in H^{-s}$, $\langle \cdot, g \rangle_0 \in (H^s)^*$. Every continuous functional on H^s has the form $\langle \cdot, v \rangle_s$. If u and v are in $C^{\infty}(\overline{D})$ then

$$\langle u, v \rangle_s = \sum_{|\alpha| \leq s} \langle D^{\alpha} u, D^{\alpha} v \rangle_0 = \langle u, E^s v \rangle_0$$

where $E^s v = P(\sum_{|\alpha| \leq s} (-1)^{|\alpha|} D^{\alpha} L^s D^{\alpha} v).$

The operator E^s extends to a continuous operator from H^s into H^{-s} and $\langle \cdot, v \rangle_s = \langle \cdot, E^s v \rangle_0$ on H^s . Every continuous functional φ on H^{-s} extends by the Hahn-Banach theorem to a continuous functional on W^{-s} and therefore can be represented as $\langle \cdot, \Phi \rangle_0$. Then it can be proved that $\varphi(u) = \langle u, P\Phi \rangle_0$ and $P\Phi_1 = P\Phi_2$ for two different representations of φ .

To prove this we shall consider the operator L^{s*} acting from \mathring{W}^s into H^s . We have $\langle L^{s*}u,v\rangle_s=\langle u,L^sv\rangle_s$. There exists an isomorphism F^s of W^{-s} onto \mathring{W}^s such that

$$I + \sum_{k=0}^{s} \Delta^{k} F^{s}(u) (-1)^{k} = u.$$

Thus the operator $L^{s*}F^{s}$ maps H^{-s} into H^{s} and for all $h \in H^{-s}$ and $g \in H^{s}$

$$\langle h, g \rangle_0 = \langle h, L^s g \rangle_0 = \langle F^s h, L^s g \rangle_s = \langle L^{s*} F^s h, g \rangle_s.$$

Thus $\langle h-E^sL^{s*}F^sh,g\rangle_0=0$ for every $g\in H^s$. Since the pairing $\langle\cdot,\cdot\rangle_0$ is nondegenerate on $H^{-\infty}\times H^\infty$ ([2]) we have $h=E^sL^{s*}F^sh$. This means that E^s is an isomorphism between H^s and H^{-s} . Since $E^s(H^\infty)\subset H^\infty$, it follows that H^∞ is dense in H^{-s} for every s>0. Note that it $\varphi(u)$ is a functional on H^{-s} and Φ_1 , Φ_2 its two representations in \mathring{W}^s then $\varphi(u)=\langle u,P\Phi_1\rangle_0$ for all $u\in H^\infty$. Thus $P\Phi_1=P\Phi_2$ and $\varphi(u)=\langle u,P\Phi_1\rangle_0$ for all $u\in H^{-s}$.

3) Proof that $T_s(u) = \varrho^s u$ maps continuously H^{-s} into $L^2(D)$ (see Boas [5]). Let $u \in H^{\infty}(D)$. By the Sobolev inequality we have

$$||\varrho^{s} u||_{0}^{2} \leq ||u||_{-s} ||\varrho^{2s} u||_{s} \leq c ||u||_{-s} ||\Delta^{s} \varrho^{2s} u||_{-s}.$$

By the generalized Leibniz formula and the harmonicity of u

$$\begin{split} \|\Delta^{s} \varrho^{2s} u\|_{-s} &= \sup_{\substack{\boldsymbol{\Phi} \in \boldsymbol{W}^{s} \\ \|\boldsymbol{\Phi}\|_{s} \leqslant 1}} |\langle \Delta^{s} \varrho^{2s} u, \boldsymbol{\Phi} \rangle_{0}| = \sup_{\substack{\boldsymbol{\Phi} \in \boldsymbol{W}^{s} \\ \|\boldsymbol{\Phi}\|_{s} \leqslant 1}} |\sum_{|\alpha| \leqslant s} \langle f_{\alpha} \varrho^{|\alpha|} D^{\alpha} u, \boldsymbol{\Phi} \rangle_{0}| \\ &\leqslant \sum_{|\alpha| \leqslant s} \sup_{\|\boldsymbol{\Phi}\|_{s} \leqslant 1} |\langle D^{\alpha} (f_{\alpha} \varrho^{|\alpha|}) u, \boldsymbol{\Phi} \rangle_{0}| \\ &+ \sum_{|\alpha| \leqslant s} \sup_{\|\boldsymbol{\Phi}\|_{s} \leqslant 1} |\langle f_{\alpha} \varrho^{|\alpha|} u, D^{\alpha} \boldsymbol{\Phi} \rangle_{0}| \leqslant c \|\varrho^{s} u\|_{0}. \end{split}$$

This last inequality follows from the fact that $D^{\alpha} \Phi \in \mathring{W}^{s-|\alpha|}$, and from the following inequality valid for every $v \in \mathring{W}^r$, $r \geqslant 1$:

$$||v/\varrho^r||_0 \leqslant c \, ||v||_r.$$

This implies that $\|\varrho^s u\|_0 \le c \|u\|_{-s}$ for $u \in H^{\infty}$. Since H^{∞} is dense in H^{-s} , this ends the proof.

4) Proof of Theorem 3 and Theorem 1 for s < 0. In [5] (estimates 2.6) we can find the following estimate: $||u||_{-r} \le c ||\varrho^r u||_0$ for all real r < 0, $r \ne (2k-1)/2$, and all smooth u. It implies that for each integer s > 0, $||\varrho^s u||_0$ is equivalent to the norm $||u||_{-s}$ on H^{-s} . The norm $||\varrho^s u||_0$ is equal to the norm $||u||_{L^2(D,\varrho^2s)}$. This implies that $H^{-s} = L^2 H(D,\varrho^{2s})$ and Theorem 2 shows that H^s is dual to the space $L^2 H(D,\varrho^{2s})$ via the pairing $\langle \ , \ \rangle_0$. Now we shall return to the proof of Theorem 1. If s > k then for every $u \in H^{-s}$

$$\|\varrho^k u\|_{-s+k} \leqslant c \|\varrho^k u \varrho^{s-k}\|_0 = c \|\varrho^s u\|_0 \leqslant c_1 \|u\|_{-s}.$$

If k > s then for every $u \in H^{\infty}$, $\varrho^k u \in W^{k-s}$ and

$$\|\varrho^k u\|_{k-s} \leqslant c \|\Delta^{k-s} \varrho^k u\|_{-k+s} = c \sup_{\substack{\Phi \in \mathcal{W}^{k-s} \\ \|\Phi\| \leqslant 1}} \left\langle \sum_{|\alpha| < k-s} f_\alpha \varrho^{s+|\alpha|} D^\alpha u, \Phi \right\rangle_0$$

$$\leq c_1 ||\varrho^s u||_0 \leq c_2 ||u||_{-s}$$

Sobolev spaces of harmonic functions

5) Proof of Proposition 1.

by the same reason as in the proof in 3). Thus if k > s then $T_k(u) = \rho^k u$ maps continuously H^{-s} into \mathring{W}^{k-s} . This ends the proof of Theorem 1.

 $(1) \Rightarrow (2)$. Let $u \in W^s$. (1) implies that

$$||Bu||_s \leqslant c \sup_{\|h\|_{-s} \leqslant 1} |\langle Bu, \, h \rangle_0| = c \sup_{\|h\|_{-s} \leqslant 1} |\langle u, \, h \rangle_0| \leqslant c \, ||u||_s$$

by the Sobolev inequality.

 $(2) \Rightarrow (3)$. Let $h \in H^{-s} \cap L^2(D)$. Then

$$||Bh||_{-s} \leqslant c \sup_{\substack{u \in H^{S} \\ ||u||_{S} \leqslant 1}} |\langle Bh, u \rangle_{0}| = c \sup_{\substack{u \in H^{S} \\ ||u||_{S} \leqslant 1}} |\langle h, Bu \rangle_{0}|$$

$$\leqslant c \sup_{\substack{u \in H^{S} \\ ||u||_{s} \leqslant 1}} ||h||_{-s} ||Bu||_{s} \leqslant c_{1} ||h||_{-s}$$

since B is continuous from H^s onto Hol^s. H^{∞} is dense in H^{-s} for each s (see [2]) and thus B extends to a continuous projection from H^{-s} onto Hol_0^{-s} .

(3) \Rightarrow (2). For every $f \in W^s$, $Pf \in H^s$ and Bf = BPf. Thus, it suffices to prove that B is a continuous projection from H^s onto Hol^s .

Let $h \in H^s$. Then

$$||Bh||_{s} \leqslant c \sup_{\substack{u \in H^{-s} \\ ||u||_{-s} \leqslant 1}} |\langle Bh, u \rangle_{0}| \leqslant c \sup_{\substack{u \in H^{-s} \\ ||u||_{-s} \leqslant 1}} ||h||_{s} ||Bu||_{-s} \leqslant c_{1} ||h||_{s}.$$

(2) and (3) \Rightarrow (1). We have $\text{Hol}_0^{-s} = B(H^{-s})$. Every continuous functional φ on Hol_0^{-s} can be extended by the Hahn-Banach theorem to a continuous functional on H^{-s} and therefore for every $f \in \text{Hol}_0^{-s}$

$$\varphi(f) = \langle f, u \rangle_0 = \langle f, Bu \rangle_0$$

Analogously every continuous functional on Hols can be written in the form

$$\varphi(f) = \overline{\langle u_{\omega}, f \rangle_0} = \overline{\langle Bu_{\omega}, f \rangle_0}, \quad u_{\omega} \in H^{-s}.$$

The equivalence (3)⇔(4) follows immediately from Theorem 2.

III. Remarks.

Remark 1. Bell's operator L^s can be extended to a continuous operator from W^s into \mathring{W}^s via $\mathring{L}^s u = L^s P u$. We have $P(\mathring{L}^s u) = P(L^s P u) = P u$ and thus $u-L^s u \perp H^0 = L^2 H(D)$. It is possible also to extend the operator L^s to the continuous projection $\tilde{\mathcal{L}}^s$ from W^s onto $\mathring{\mathcal{W}}^s$. To do this we need the following

THEOREM. Let ϱ denote a fixed defining function for a smooth bounded domain D in \mathbb{R}^n . Then every $f \in W^s(D)$ has a uniquely determined decomposition in the form

$$f = h_0 + \varrho h_1 + \ldots + \varrho^{s-1} h_{s-1} + u,$$

where

$$h_k \in H^{s-k}, \quad k = 0, \ldots, s-1,$$

and $u \in \mathring{W}^s(D)$. The operators $S_k(f) = h_k$ map continuously W^s onto H^{s-k} and the operator R(f) = u is a continuous projection of W^s onto \mathring{W}^s . In other words, W's is a direct sum of \mathring{W}^s and the spaces $T_k(H^{s-k}), k=0,\ldots,s-1$, where $T_k(h) = \rho^k h$.

Proof. Let $f \in C^{\infty}(\bar{D})$. Let u_0 be a solution of the Dirichlet problem Δv $=\Delta f$, v=0 on ∂D . Then $h_0=f-u_0$ and $||h_0||_s\leqslant c\,||f||_s$ for every $s\geqslant 1$. We have $u_0 = \varrho f_1, f_1 \in C^{\infty}(\overline{D}).$

As before we take the harmonic function h_1 on D s.t. $h_1 = f_1$ on ∂D , and obtain $f = h_0 + \rho h_1 + \rho^2 f_2 = h_0 + \rho h_1 + u_1$. We also have

$$h_1 = \frac{\sum_{i=1}^n \frac{\partial \varrho}{\partial x_i} \left(\frac{\partial}{\partial x_i} u_0 \right)}{\sum_{i=1}^n \left(\frac{\partial \varrho}{\partial x_i} \right)^2} \quad \text{on } \partial D$$

and thus $||h_1||_{s-1} \le c ||f||_s$ for $s \ge 2$. Theorem 1 yields $||\varrho h_1||_s \le c ||f||_s$ for $s \ge 2$ and therefore $||u_1||_s \le c||f||_s$. Now we can continue this process inductively. We have

$$f = h_0 + \varrho h_1 + \dots + \varrho^r h_r + u_r, \quad ||h_r||_{s-r} \le c_r ||f||_s \quad \text{for } s \ge r+1$$

and by Theorem 1, $||u_r||_s \le c_r ||f||_s$. Since $f \in C^{\infty}(\overline{D})$ we have $u_r = \varrho^{r+1} f_{r+1}$, $f_{r+1} \in C^{\infty}(\bar{D})$. We can take as h_{r+1} the harmonic function on D such that $h_{r+1} = f_{r+1}$ on ∂D . We also have

$$h_{r+1} = \frac{\sum_{i} \left(\frac{\partial \varrho}{\partial x_{i}}\right)^{r+1} \frac{\partial^{r+1}}{\partial x_{i}^{r+1}} (u_{r})}{\sum_{i} \left(\frac{\partial \varrho}{\partial x_{i}}\right)^{2r+2}}$$

on ∂D and thus

$$||h_{r+1}||_{s-r-1} \le c_{r+1} ||f||_s$$
, $||u_{r+1}||_s \le c_{r+1} ||f||_s$, $s \ge r+2$.

This implies that our operators S_k and R are well defined and continuous on the space of smooth functions in W^s . Since smooth functions are dense in W^s , S_k and R can be extended to continuous operators on W^s . Now let

$$f \in W^s$$
, $f = \sum_{k=0}^{s-1} h_k \varrho^k + u$.

We can define

$$\tilde{\tilde{L}}^s f = \sum_{k=0}^{s-1} L^s(h_k \varrho^k) + u.$$

We have $P\widetilde{L}^s f = Pf$. If $h \in H^s$ then $\widetilde{L}^s h = L^s h$ and if $u \in \mathring{W}^s$ then $\widetilde{L}^s u = u$. Theorem 1 implies that

$$||L^{s}(h_{k}\varrho^{k})||_{s} \leq c_{k}||h_{k}||_{s-k} \leq c_{k}||f||_{s}.$$

Thus $\tilde{\mathcal{L}}^s$ is a continuous projection from W^s onto \mathring{W}^s .

Remark 2. The operator $Q(u) = P(\varrho^s u)$ maps continuously $L^2(D)$ onto $H^s(D)$, because

$$\begin{split} ||P(\varrho^{s}u)||_{s} &= \sup_{\substack{h \in H^{0} \\ ||h||_{-s} \leq 1}} |\langle P(\varrho^{s}u), h \rangle| = \sup_{\substack{h \in H^{0} \\ ||h||_{-s} \leq 1}} |\langle \varrho^{s}u, h \rangle| \\ &\leq \sup_{\substack{h \in H^{0} \\ ||h||_{-s} < 1}} ||u||_{L^{2}(D)} ||\varrho^{s}h||_{L^{2}(D)} \leq c ||u||_{L^{2}(D)}. \end{split}$$

Since $\frac{1}{\varrho^s}L^s(f)\in L^2(D)$ for $f\in H^s(D)$, it follows that Im $Q=H^s(D)$. In the same way we can prove the following

PROPOSITION. Let D be a smooth bounded domain in C^n . The Bergman projection B maps continuously $W^s(D)$ onto $\operatorname{Hol}^s(D)$ if and only if for every defining function ϱ of the domain D the operator $Qu = P(\varrho^s u)$ maps continuously $L^2(D)$ onto $\operatorname{Hol}^s(D)$.

Remark 3. The operator P cannot be extended to a continuous operator from W^{-s} into H^{-k} for any s, k > 0.

Suppose that P is continuous from W^{-s} into H^{-k} . That implies that the operator $P(\Delta^s u)$ maps continuously \mathring{W}^s into H^{-k} . For every $u \in C_0^\infty$, $\Delta^s u$ is orthogonal to the harmonic functions. Since $C_0^\infty(D)$ is dense in \mathring{W}^s , $P(\Delta^s u) \equiv 0$ on \mathring{W}^s . Δ^s maps \mathring{W}^s onto W^{-s} and thus $P \equiv 0$. Contradiction. For the same reason the Bergman projection B cannot be bounded in negative Sobolev norms.

References

- D. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in C", Ann. of Math. 119 (1984), 431-436.
- [2] S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128.
- [3] -, A representation theorem in strictly pseudoconvex domains, Illinois J. Math. 26 (1982), 19-26.
- [4] S. Bell and H. Boas, Regularity of the Bergman projection and duality of holomorphic function spaces, Math. Ann. 267 (1984), 473-478.

[5] H. Boas, Sobolev space projections in strictly pseudoconvex domains, Trans. Amer. Math. Soc. 288 (1985), 227-240.

[6] G. Komatsu, Boundedness of the Bergman projector and Bell's duality theorem, Tôhoku Math. J. 36 (1984), 453-467.

INSTITUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

> Received February 13, 1985 Revised version June 20, 1985

(2032)