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The boundary of Taylor's joint spectrum for two commuting
Banach space operators

by
VOLKER WROBEL (Kiel)

Abstract. In this note it is shown that the boundary do of Taylor’s joint spectrum for a
puir of commuting operators on an arbitrary Banach space is contained in the union of the joint
approximate point spectrum APg and the joint approximate compression spectrum ACo, but
neither do <= APg nor fo < ACq is true in general, This is in strict contrast to the case of a
single operator where Jdo <z APo ~ ACo.

1. Introduction. In [5] and [6] F.-H, Vasilescu characterized Taylor’s
joint spectrum [3] for commuting operators on Hilbert spaces by means of
the noninvertability of a certain operator acting on a direct sum of copies of
the initial space. In this way he succeeded in giving a characterization of
Taylor’s joint spectrum in terms of classical spectral theory.

Based on Vasilescu’s characterization C. Muneo and M. Takaguchi [2]
proved that the boundary of Taylor's joint spectrum for a pair of commuting
Hilbert space operators is contained in the union of the joint approximate
point spectrum and the joint approximate compression spectrum in the sense
of A. T. Dash [1]. Since this union is of course contained in Taylor’s joint
spectrum, the result of Muneo and Takaguchi gives an easy characterization
of at least an important part of the spectrum. The method of proof in [2]
heavily relies on the Hilbert space setting. It is the purpose of this note to
show that the above-mentioned result holds true in the Banach space setting,
too. As it seems our proof is completely elementary.

Moreover, we shall show that in general neither d¢ < APo nor
do = ACo, but APo ACo is nonempty for two commuting operators.

Let X, Y, Z denote complex Banach spaces and let L(X, Y) denote the
space of all continuous linear operators from X into Y, writing L(X) for
L(X, X) and X’ for the dual space L(X, C) instead. Given Se L(X, Y) we let
S‘e L(Y', X') denote the dual operator.

Let T=(T,, ) (GTel(X), i=1,2) denote a pair of commuting
operators. Congider the sequence
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where 63.(x) := T, x@®To x (xe X) and 83 (x; @x,) 1= Tix2~ Ty x; (x;, x,6 X).
By definition [3], T is said to be nonsingular if the sequence (1.1) is exact.
Taylor’s joint spectrum o(T; X) is the complement of the set of all
z=(zy,2,)eC? such that z—T:=(z,~T},z,~T5) is nonsingular. An
element z =(zy, z;)e C* belongs to the joint approximate point spectrum
APqo(T; X) resp. joint approximate compression spectrum ACa (T X) (Dash
[17) if there exists a sequence (X,),oy < X resp. (Xp)pev < X' such that

IxJl=1 and [[(z;=Tx)—0 asn—w (i=1,2)
resp.
lxpl =1 and  [(z=T) x| =0 as n—oco (i=1,2).

Finally, given TeL(X, Y) let ker(T) and im(T) denote the kernel and the
range space of T, respectively. .

2. Main result. The following is our main result:
2.1. TusoreM. Let T=(T;, T3} L(X)* denote a puir of commuting
operators on a complex Banach space X. Then

00(T; X) = APa(T; X) wACa(T; X),

where do(T; X) denotes the boundary of Taylor's joint spectrum.

We repeat again that in contrast to the case of a single operator the lefi-
hand side is in general neither contained in AP (T; X) nor in ACo (T X).

The proof requires some preparations which we state in some
elementary lemmas, ‘

22. LeMMA. Let (S (Sx€ L(X, Y) denote a sequence of operators
between Banach spaces X and Y. Assume that (S,)eey tends to a topological
monomorphism Se L(X, Y) in the uniform operator topology. Then there exist
¢ >0 and noeN such that

S xll = clixll  (xe X, n = ng).

This follows casily from the triangle inequality and the fact that § is
assumed to be a topological monomorphism.
By duality we obtain

2.3. CoroLLARY. Let (T, (T L(Y, Z)) denote o sequence of operators
between Banach spaces Y and Z. Assume that (Tenw tends to a surjection
Te L(Y, Z) in the uniform operator topology. Then there exist ¢ = O und nye N
such that

T,(Ky (0, 1)) > K4(0, ¢)

where Ky (0, 1) denotes the open 1ball in Y centered ar 0.
Putting together we obtain

(nz ﬂo),
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24, Lemma. Let (S)n (S,e L(X, V), (Twen (T,eL(Y, Z)) denote
sequences  of operators  between Banach spaces X, Y, Z such that
ker(T,) <im(S,) (ne N). Assume that (S,), resp. (T,)uen tends to a topological
monomorphism SeL(X, Y) resp. a surjection TeL(Y, Z) in the uniform
operator topology. Then '

ker(T) <im(S).
Proof. Let yeker(T). Then we have
T =Ty =TT~ T Iy >0 as n— oo.

By 2.3 we know that T, is a surjection for n sufficiently large. Consequently
we find y,eker(T,) (neN) such that

Y=yl =0

But as ker(T,) €im(S,) by assumption, we find x,e X such that Vo =S,%,
and [yl = IS, %/l 2= cllx,l by 22 at least for n sufficiently large. As
{va: neN} is bounded, so is {x,: ne N}. Moreover, y = lim S,x, and

as n— oo.

1S%, =Sy x| SUS=Sll-IIxJ| -0 as n— co.
Therefore yeim(S), because § was assumed to be a topological

monomorphism. Hence ker(T) €im(S). m

Proof of 21. By doing- a translation, it is ‘enough to show that
(0, 0)edo(T; X) implies (0, 0)eAPo(T; X)UACo(T; X). Thus take a
sequence z,¢0(T; X) (neN) tending to (0,0), and let T,:=z,— T Then
evidently &, — % as n— oo in the uniform operator topology for i =0, 1.

So let us first assume (0, 0)e 6o (T; X)\APo(T; X). This in particular
implies that ker(63) = {0} and that 8%eL(X, X®X) is a topological
monomorphism, for otherwise we would find a sequence (x,),ov = X such
that x| =1 and ||Tx,|—0 as n—oo for i=1, 2 contradicting the
assumption (0, 0)¢ APa (T X).

Il im(8}) # X, we find x;e X’ such that |jx;| = 1 (neN) and x,06%— 0
in (X X) as n-» co. But this in particular implies that x,0 T, — 0 in X’ as
n~» o0 for i ==1, 2, and hence (0, 0)e ACo(T'; X). So we are done. Therefore
assume that im(34) == X. But then the sequences (5;',,"),,@. (i=1, 2) fulfill the
assumptions of 24. Consequently, ker (6}) < im (89), and hence we have the
exactness of (1.1) because im(39) < ker(8%) is always true. This contradicts
our assumptions. Therefore (0, 0)e ACo(T'; X).

On the other hand, let (0, 0)edo(T; X)\ACa(T; X). Thus im(5}) = X.
But by the argument of the first part of the proof, % cannot be a topological
monomorphism, for this together with im(6}) = X implies the exactness of
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(1.1) contradicting our assumptions. But if % is not
monomorphism, then (0, 0)e APo(T; X) and we are done. m

We now give an example showing that in general neither
0o (T; X) = APo(T; X) mnor do(T; X) <= ACo(T; X) is true for two
commuting operators. This is in strict contrast to the case of a single
operator where do(T; X) < APo(T; X) nACa(T; X) holds true.

2.5. ExampLE. Let X denote the complete Hilbert space tensor product
of two copies of *(N). Morcover, let S, S;& L(I*(V)) denote the left shift
81 (Xunan 1= (X4 1 )ney and the right shift S, (x,)pen = (0, X{, X5, ...). Then it
is well known that

a(Si;; P(N)) = D = APc (S; I*(N)) = ACa (S;; I2(N))
ACo (S F(N) = APc (S4; IF(N) = aD,

a  topological

(i=1,2),

where D denotes the closed unit disc in C.

Letting T,:=S,81, T,:=I®S,, we have a commuting pair
T =(T}, T,) on the Hilbert space tensor product X. By a result of Vasilescy
[6], we have

o(T; X) = o (8,5 B(N) x 0 (Sy; P(N)).
But
a0 (Sy; IZ(N))XO'(S;Z; P(N)) = aD xD ¢ APo(T; Xy Dxab,
o (Sy; B(N)x 86 (S; P(N)=DxD ¢ ACo(T; X) < 0D x D,

and thus 0o (T; X) is contained neither in APg (T; X) nor in ACo (T} X).

Remark. As o(T; X) has the projection property (Taylor [37]), ie.
ma(T; X) = o(T;; X), where n;: C*>— C denotes the canonical projection
onto the ith complex coordinate (i = 1, 2), we have

@ #(3( (T,; X) xa(Ty; X)) o (T; X) < do (T; X)
< APo(T; X)u ACa(T; X)
and all inclusions are proper in general,

Next we are going to prove that APe (T X) ACo (T X)n da (T3 X) is
nonempty for a pair of commuting operators. This constitutes a refined
answer to Dash’s [1] question whether APo (T} X) is always nonempty. Of
course we should mention that the nonemptiness of the joint approximate
point spectrum for an arbitrary n-tuple of commuting Banach space
operators has been proved by W. Zelazko [7].

In order to make things work easier, we apply ultrapower techniques.

26. ProrosiTioN. Let T = (T, Ty)e L(X)? be as in 2.1, Let M denote u
nontrivial ultrafilter on N and (X), the corresponding ultrapower of X, let Ty,
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denote the extension of T, (i =1, 2) upon (X), and T = (T,y, Toy). Then
5(7;1; (X)y) = o(T; X).

Proof. Let (0, 0)¢o(T; X). Since 62 is a topological monomorphism, so
is 67, and im(67) = (im(69)),. On the other hand, dt, is a surjection,
because d} is. Finally

ker (0f,) = (ker (6))
= (im ()
=im(s9,)

and thus (0, 0)éa(Ty; (X)) ’

Conversely, let (0, 0)¢o(T; (X)) Then 8% is a topological
monomorphism as a restriction of the topological monomorphism 5%1[. If
83 (xDy) = 0, then 5;‘," (jx@jy) = 0, where j, denotes the canonical embedding

of X into (X),. Consequently we find (x,)ye(X), such that jxer?jy
==5$“ ((x4)y)- But this in particular implies that x@®y is an accumulation

of im(39), hence ker(3})=im(69), as &% is a topological

by the exactness of (1.1)

monomorphism.

As a final step we have to show X =im(§}). By assumption we have
5%‘1( (K(X)ﬁ (0, ].)) pue} K(X)“ (0, C)

for some ¢ > 0: For every ye Ky(0, ¢) there exists (x,,)ueK(x,ﬁ(O, 1) such that
84, (%)) = jy- Thus 8} is nearly open, and hence open by the open mapping
theorem. Thus (0, 0) o (T; X). =

2.7. CoroLLARY. Let T = (T, Ty)e L(X)* be as in 2.1. Then for every
z,€00(Ty; X) there exist z,, z3e0(Ty; X) such that

z:=(zy, 2,)€ APa (T; X)n 80(T; X),
wi=(zq, 23)e ACo (T; X) N 0o (T; X).

Proof, Let z, e do(Ty; X). Then z, is an approximate ei'genvah}e and by
passing to the ultraproduct we may assume that z, is an ordxpary eigenvalue.
Let Xg:==ker(z;~Ty). Then Tj, T, leave X, invariant, since T, and T,
cormamute, Take z,e 80 (T Xo) < 0(Ty; X). Then (24, 25) =ze APo(T; X)n
8o (T; X). By duality we find weACo(T; X) N 0o (T; X). w

Finally we state the following

28. Tueorem. Let T =(Ty, T;)e L(X)* be as in 2.1. Then

APa(T; X)nACo(T; X) oo (T; X) # .
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Proof. First we statc that there exists a pair (a, f)eext conv o (T; X)
such that e eext conv o(T;; X). Here conv K denotes the convex hull of a set
K and ext L denotes the extreme points of a set L. Suppose that for all pairs
(@, B) such that aeextconve(Ti;X) and feo(Ty; X) we had
(x, p)¢ext cony o(T; X). Then by Carathéodory’s lemma (a, f8) is the convex
combination of at most 5 extreme points (of, ef)eext conv o (T; X)
(1 <i<%). But as a is an extreme point of conv ¢(T;; X) by assumption,
and as o(T; X) has the projection property, we have «=af? (1 <ig5)
Consequently each (a, of)) is an extreme point of the desired form. Now fix
an o with this property.

We next show that

{o} x C vint conv o (T X) = @,

where int K denotes the interior points of a set K. For if there were an
(2, weint conv o(T; X), then we would find an open neighborhood of « in
conv o (T;; X). A contradiction, since o was assumed to be an extreme point.

By Corollary 2.7 we find § such that (o, f)e AP (T; X) 0o (T: X). Let
C(a, p) denote the connected component of («, ) in o(T; X). We distinguish
two cases:

1° If 0 := C(x, f) is open relative to o(T; X), then by a result of Taylor
[4], 49 we find a spectral projection 7 with the following properties:

(i) me{Ti, T,}* (the bicommutant algebra of 7;, T, in L(X)).

(i) X has a direct decomposition X = X, @X, with

X, =X, X,=({-nX.

(iir) o(T; X)) =0, o(T; X,) =o(T; X)\o.

So without loss of generality we may reduce our comsiderations to
the case where ¢ =o(T;X) is connected. By 2.7 we find another
(@, Weba(T; X) "ACa(T; X). But since {a}xC lies in a supporting
hyperplane of conv ¢(T; X) by construction, (x, ) and («, @) lie in the same
component of do (T; X). But as do (T X) = APo (T; X)u ACa (T X) by 2.1,
we get the desired result, because APo (T; X) and ACo(T: X ) are compact
sets. ‘

2’ Next assume that C(x, f) is not open relative Lo a(Ty X). Then

Cla, f)=N{K: (&, f)eK, K closed and open in a(T; X)}.

With respect to each such K we again have a spectral decomposition as in
. 1°% By 2.7 we find for each such K an (a, ) in K A ACa(T; X)n do (T X).

By the compactness of o(T;X) we find a cluster point (x, p) in
C(, ) NACa(T; X) N da(T; X). By the same argument as above, (o, f) and
(@, 1) lie in the same component of 3o (T X). Hence we are donc. w
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